Am29000

Am29000

Streamlined Instruction Processor

1

Advanced

Micro
Devices

DISTINCTIVE CHARACTERISTICS

® Full 32-bit, three-bus architecture

® 23 milllon instructions per second (MIPS)

sustained at 33 MHz

33-, 25-, 20-, and 16-MHz operating frequency
W Efficient execution of high-level language

programs
CMOS technology

4-gigabyte virtual address space with demand

paging

¥ Concurrent instruction and data accesses

and data buses

Burst-mode access support

192 general-purpose registers
512-byte Branch Target Cache™
64-entry Memory-Management Unit
Demultiplexed, pipelined address, instruction,

Three-address instruction architecture

® On-chip byte-alignment support allows
optional byte/half-word accesses

SIMPLIFIED BLOCK DIAGRAM

'

Address

>

Am29027

Arithmetic
Accelerator

<

-

[, 32

Instruction
ROM

Am29000

Streamlined
Instruction
Processor

Data

>

<

32

Instruction

>

instruction
Memory

\/

AV4

Data
Memory

-
%

09075B-003A
BD011370

\/

32

Publication ¥

Issue Date:

09075 Rev. C

November 1983

Amendment 0

This Material Copyrighted By Its Respective Manufacturer

1-3

29K Family CMOS Devices

TABLE OF CONTENTS
DISTINCTIVE CHARACTERISTICSt iiiiiiti ittt eiiteneeeenennnann 1-3
SIMPLIFIED BLOCK DIAGRAMttt ittt tnnrnnanranenanenan 1-3
GENERAL DESCRIPTIONttt it ittt it ittt et ienetnaecnennnnannnns 1-7
RELATED AMD PRODUCTSttt ittt ittt tnrecinennernneasonannnennnns 1-7
CONNECTION DIAGRAM ittt ittt tieeneenenenannncanenananan 1-8
PINDESIGNATION ittt ittt e enniinsnennnrnnesnsennnanan 1-10
LOGIC SYMBOLttt ittt aaitanrencenonanennsnnonanans 1-14
ORDERING INFORMATION iitiiaininntenineenetneranenanananns 1-15
PINDESCRIPTION ittt ittt e ttee e e eeneenasaeaneanas 1-17
FUNCTIONAL DESCRIPTION i.i ittt it ieiiienaneeennnans 1-21
ProductOverview 1-21
CycleTime 1-21
Four-Stage Pipeline i 1-21
System Interface, 1-21
Register File 1-21
Instruction Execution i 1-22
BranchTargetCache 1-22
Branching 1-22
Loads @and Storesttt 1-22
Memory Management 1-23
Interrupts and Trapsttt 1-23
Floating-Point Arithmetic Unit 1-23
ARCHITECTURE HIGHLIGHTS i ittt it tnenreaeanannns 1-24
Architecture Overview i 1-24
ProgramModes 1-24
Visible Registers 1-24
Instruction Set Overview 1-26
DataFormatsand Handling uuuuuin . 1-29
Interrupts @and Traps 1-30
Memory Management 1-31
Coprocessor Programming 1-31
Timer Facility 1-31
Trace Facility 1-31
FUNCTIONAL OPERATIONttt iieiii ittt e rae e 1-32
Four-Stage Pipeline 1-32
FunctionOrganization 1-32
Instruction Fetch Unit 1-32
Execution Unit 1-32
Memory Management Unit 1-33
ProcessorModes 1-34
Systeminterface 1-34
1-4

This Material Copyrighted By Its Respective Manufacturer

Am23000

TABLE OF CONTENTS (continued)

Channel .. . e e 1-34
Test/DevelopmentInterface i 1-35
CloCKS . . e 1-35
Master/Stave Operation e 1-35
Coprocessor Attachment i 1-35
ProgramModes 1-36
SUpPerviISOTMOde e 1-36

USer MOAe e s 1-36
REGISTERDESCRIPTION ¢ttt iiieinrtanaenaraanananas 1-37
General-Purpose Registers i 1-37
TLB RegISIerS e 1-54
INSTRUCTION SETttt it inetanenaensrnenaanenaanaans 1-57
Integer Arithmetic e 1-57
COMIPANE e 1-57
Logical e 1-57
St . e e 1-57
Data Movement 1-57
CoNS ANt . . . e e 1-57
Floating-Point 1-57
Branch e 1-57
Miscellaneous 1-57
Reserved INStructions 1-60
DATAFORMATS ANDHANDLINGttt ittt ia et e aeaanns 1-64
Integer Data Types 1-64
Floating-Point Data TYpPesttt e e e 1-65
Special Floating-Point Values 1-66
External Data ACCESSESo ittt e 1-66
Addressingand Alignment 1-70
Byte and Half-Word Accesses i 1-72
INTERRUPTS AND TRAPS ittt iiittiaercnennanaranananens 1-75
I OITUDIS e 1-75
TIPS . .o e e 1-75
Wait Mode 1-75
VEOIOr AT 1-75
Inferruptand Trap Handling 1-76
WARN TraD ..o e 1-79
Sequencing of Interrupts and Traps 1-80
Exception Reportingand Restarting 1-80
Arithmetic EXCeptions 1-82
Exceptions During interrupt and TrapHandling 1-83
MEMORY MANAGEMENTttt asaeneretaanannnnnannn 1-84
Translation Look-Aside Buffer 1-84
Address Translation 1-85
Reload 1-87
Entry Invalidation 1-88
ProteCtion 1-88

1-5

This Material Copyrighted By Its Respective Manufacturer

29K Famlly CMOS Devices

TABLE OF CONTENTS (continued)

CHANNELDESCRIPTIONc.iiiiincnannnnn e eiaarecees e 1-89
User-Defined Signals 1-89
INSIUCHION ACCESSES . .. oot ittt ittt et et e et e et 1-89
Data ACCES S . . . ottt e 1-89
Reporting Errors e e 1-90
ACCESS ProtOCOISo e e 1-90
SIMPIE ACCESSESot 1-90
Pipelined ACCESSES it e 1-90
BUISt-MOE ACCESSES . .. oottt it ittt e e e e 1-92
ATt O . L . . e e 1-97
Use of BINVIO Cancelan ACCESSt ittt e e e et 1-98
Bus Sharing—Electrical Considerations 1-98
Channel Behavior for Interrupts andTraps iiiiiin... 1-99
Effectofthe LOCKOutput i e 1-99
Initialization and Reset L e 1-99

ABSOLUTEMAXIMUMBATINGScc0 ittt rteinansenesenanns 1-101

OPERATING RANGES iiiiiitreniinnnetnetoansssannnenanannns 1-101

DCCHARACTERISTICS ittt ittt tite i ieansaneaananaansnenns 1-101

CAPACITANCEttt iitnrietraesaannoesansonnnnsenananas 1-101

SWITCHING CHARACTERISTICS ittt it e i st cenaannn 1-102

SWITCHINGWAVEFORMS ittt a et e et aenaaanns 1-106

SWITCHING TEST CIRCUIT ...ttt ittt i isiianentaraeaannnaan 1-109

16

This Material Copyrighted By Its Respective Manufacturer

Am29000

GENERAL DESCRIPTION

The Am29000™ Streamtined Instruction Processor is a
high-performance, general-purpose, 32-bit micropro-
cessor implemented in CMOS technology. It supports a
variety of applications by virtue of a flexible architecture
and rapid execution of simple instructions that are com-
mon to a wide range of tasks.

The Am29000 efficiently performs operations common
to all systems, while deferring most decisions on system
policies to the system architect. It is well-suited for ap-
plication in high-performance workstations, general-
purpose super-minicomputers, high-performance real-
time controllers, laser printer controliers, network
protocol converters, and many other applications where
high performance, flexibility, and the ability to program
using standard software tools is important.

The Am23000 instruction set has been influenced by the
results of high-level language, optimizing compiler re-
search. It is appropriate for a variety of languages
because it efficiently executes operations that are com-
monto all languages. Consequently, the Am23000is an
ideal target for high-level languages such as C, FOR-
TRAN, Pascal, Ada, and COBOL.

The processor is available in two packaging options: a
168-lead pin-grid-array {(PGA) package, and a 164-lead
Ceramic Quad Flat Pack (CQFP) package for the mili-
tary. The PGA has 141 signalpins, 27 power and ground
pins, and 1 alignment pin. The CQFP has 141 signal
pins and 23 power and ground pins. A representative
system diagram is shown on page 1.

29K™ Family Develiopment Support Products

Contact your local AMD representative for information
on the complete set of development support tools.

Software development products on several hosts:

® Optimizing compilers for common high-level
languages

B Assembler and utility packages

¥ Source- and assembly-level software
debuggers

® Target-resident development monitors
B Simulators

Hardware Development:

® ADAPT29K™ Advanced Development and
Prototyping Tool

RELATED AMD PRODUCTS
Am29000 Peripheral Devices

Part No.
Am29027™

Description

Arithmetic Accelerator

This Materi al

1-7

Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

CONNECTION DIAGRAM

169-Lead PGA*

Bottom View

ABCDEFGHUJKLMNPRTU

/

@@@@@@@@@@@@@@@@@;

(oJoJoJoJoloJoJoJoXoZoJoXOJOXOJOXO,
(0JoJoJoJoJoJoJoJOJOXOJOXOJOXOJOJO)
10JoJO} 10JOJ O]
OO 10JOJO)
101010 10JoJO}
0JOJO] 10JOJO;
0Jo10) l0JoJoj
01010} 10JOJO)
101010} 101010,
02040 10JOJO,
®O06 10JOJO)
@ee 10JOJO)
0JOJOJO) 10J0JO}

0JoJoJoJoJOJOJOJOJOIOJOROJOROJOO]
loJoloJoJoJoJoJoJoloJoJoJoJoJo1oJO)

ﬁﬂ@@@@@@@@@@@@@@@@

AN MTWONODO O~ NOMIT W O©N

—_—_ o o -

* Pinout observed from pin side of package.

1-8

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

CONNECTION DIAGRAM
164-Lead CQFP

Top View
(Lid Facing Viewer)

N
T

1-9

This Material Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

PGA PIN DESIGNATION

(Sorted by Pin No.)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
A-1 GND C-10 GND J-16 Ass R-12 STAT:
A-2 Iy C-11 GND J-17 Aa R-13 GND
A-3 lo Cc-12 D2 K-1 o R-14 OPTo
A-4 D2 C-13 D2e K-2 l2s R-15 Az

A-5 Ds Cc-14 Vee K-3 GND R-16 As

A-6 Ds C-15 Dao K-15 Vce R-17 A7

A-7 Ds C-16 Das K-16 Az T-1 INCLK
A-8 D11 c-17 Az K-17 Aus T-2 BREQ
A-9 D2 D-1 111 L-1 Iz T-3 DERR
A-10 Die D-2 1o L-2 I8 T-4 TRDY
A-11 Dis D-3 7 L-3 Vee T-5 WARN
A-12 Dis D-4 PIN169 L-15 Vee T-6 NTRz
A-13 Dz D-15 A L-16 Ao T-7 INTRo
A-14 D21 D-16 Azs L-17 An T-8 BINV
A-15 Das D-17 Acs M-1 [T-9 BGRT
A-16 Dar E-1 la M-2 [T-10 DREQ
A-17 GND E-2 Iz M-3 GND T-11 LOCK
B-1 Is E-3 Vee M-15 GND T-12 MSERR
B-2 Is E-15 GND M-16 Ao T-13 STATo
B-3 Ia E-16 A2z M-17 A1 T-14 SUP/US
B-4 Do E-17 Az N-1 Is1 T-15 OPT;
B-5 o]} F-1 I N-2 TEST T-16 As

B-6 Ds F-2 Iss N-3 SYSCLK T-17 Ad

B-7 Ds F-3 la N-15 GND U-1 GND
B-8 Do F-15 Acs N-16 MPGM U-2 PEN
B-9 Dis F-16 Az N-17 MPGMo uU-3 1ERR
B-10 D1s F-17 Az P-1 CNTL: U-4 IBACK
B-11 D17 G-1 le P-2 CNTLo U-5 INTRs
B-12 Dis G-2 ls P-3 PWRCLK U-6 INTR:
B-13 D23 G-3 l17 P-15 As u-7 TRAPo
B-14 Das G-15 Az P-16 As uU-8 IBREQ
B-15 D2s G-16 Ax P-17 As U-9 TREQ
B-16 D2o G-17 Ats R-1 RESET U-10 PIA
B-17 Aso H-1 l2o R-2 CDA U-11 R/W
C-1 ls H-2 [P R-3 DRDY U-12 DREQT:
c-2 Is H-3 {21 R-4 DBACK U-13 DREQTo
c-3 la H-15 GND R-5 GND U-14 STAT:
c-4 I2 H-16 Ass R-6 Vee U-15 IREQT
C-5 GND H-17 Az R-7 TRAP: U-16 OPT:
C-6 Ds J-1 iz R-8 GND U-17 GND
C-7 D J-2 f24 R-9 DBREQ

C-8 Veo J-3 GND R-10 PDA

C-9 Vcc J-15 Ais R-11 Vce

Note: Pin Number D-4 is the alignment pin and is electrically connected to the package lid.

1-10

This Materi al

Copyrighted By Its Respective Manufacturer

Am29000

PGA PIN DESIGNATIONS

(Sorted by Pin Name)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
M-16 Ao B-6 Ds K-3 GND T-1 INCLK
M-17 A A-6 Ds N-15 GND T-7 INTRo
R-15 Az Cc-7 Dy R-5 GND uU-6 INTR:
T-16 As B-7 De U-1 GND T-6 INTR:
T-17 As A-7 Do R-13 GND U-5 INTRs
P-15 As B-8 Do R-8 GND T-4 IRDY
R-16 As A-8 Dn M-3 GND U-9 TREQ
R-17 Az A-9 Dr2 U-17 GND U-15 IREQT
P-16 As B-9 Dis A-3 b T-11 LOCK
P-17 As A-10 D A-2 h N-17 MPGMo
L-16 Avw B-10 Dis C-4 l2 N-16 MPGM,
L-17 A A-11 D B-3 Is T-12 MSERR
K-16 Ax B-11 Dz C-3 I R-14 OPTo
K-17 A1 A-12 Dis B-2 Is T-15 OPT:
J-17 Aw B-12 Dis B-1 ls uU-16 OPT:
J-15 As A-13 D2 D-3 Iz R-10 PDA
J-16 A A-14 D2 c-2 ls U-2 PEN
H-17 A C-12 D22 C-1 Is U-10 PiA
H-16 Aun B-13 Das D-2 ho D-4 PIN169
G-17 A B-14 D2¢ D-1 I P-3 PWRCLK
G-16 A A-15 D2s E-2 h2 U-11 R/W
F-17 Az c-13 D2s E-1 ha R-1 RESET
G-15 A2 A-16 D27 F-3 la T-13 STATo
E-17 Az B-15 Das F-2 Iis U-14 STAT:
F-16 Az B-16 Da2s F-1 he R-12 STAT:
F-15 Azs C-15 Do G-3 7 T-14 SUP/US
D-17 Az C-16 Dar G-2 he N-3 SYSCLK
E-16 Az R-4 DBACK G-1 he N-2 TEST
D-16 Az R-9 DBREQ H-1 lo U-7 TRAPo
C-17 Ax T-3 DERR H-3 Iz1 R-7 TRAP,
B-17 Ax R-3 DRDY H-2 Iz C-14 Ve
D-15 Az T-10 DREQ J-1 [P L-15 Vee

T-9 BGRT U-13 DREQTo J-2 [C-8 Vee

T-8 BINV uU-12 DREQT: K-2 Is Cc9 Vee

T-2 BREQ E-15 GND K-1 ls E-3 Vee

R-2 CDA H-15 GND L-1 1z K-15 Vee

P-2 CNTLs M-15 GND L-2 I L-3 Vee

P-1 CNTL: c-10 GND M-1 I» R-6 Veoc

B-4 Do A-1 GND M-2 [R-11 Vce

B-5 Di A-17 GND N-1 In T-5 WARN
A-4 D: C-5 GND u-4 IBACK

Cc-6 Ds C-11 GND U-8 IBREQ

A5 D« J-3 GND U-3 1IERR

Note: Pin Number D-4 is the alignment pin and is electrically connected to the package lid.

This Materi al

Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

CQFP PIN DESIGNATION

(Sorted by Pin No.)

Pin No Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
1 CDA 42 Vee 83 Vee 124 GND

2 INCLK 43 Ia 84 GND 125 OPTo

3 PWRCLK 44 Iz 85 Ax 126 OPT:

4 SYSCLK 45 Iy 86 Az 127 OPT2

5 GND 46 GND 87 Az 128 SUP/US
6 Vee 47 lo 88 Azs 129 IREQT
7 GND 48 Do B9 Az 130 STATo
8 RESET 49 o] 90 Azs 131 STAT;
9 CNTLo 50 D2 91 Azs 132 STAT:
10 CNTL: 51 Ds 92 Aca 133 MSERR
11 TEST 52 Ds 93 A2 134 DREQTo
12 I3t 53 Ds 94 Az 135 DREQT:
13 lso 54 Ds 95 Az 136 LOCK
14 I 55 D2 96 Az 137 R/W

15 loa 56 Ds 97 Ats 138 DREQ
16 Iz 57 Do 98 A 139 PDA

17 Is 58 Dio 99 A 140 PIA

18 I2s 59 Dn 100 Ais 141 TREQ
19 |24 60 D12 101 Ats 142 BGRT
20 GND 61 D13 102 GND 143 DBREQ
21 Vee 62 Dia 103 Vee 144 IBREQ
22 I2s 63 Vee 104 A 145 BINV
23 l22 64 GND 105 A 146 Vee

24 |21 65 Dis 106 Az 147 GND

25 120 66 Dis 107 An 148 Vce

26 l1e 67 D7 108 Ao 149 GND

27 s 68 Dis 109 Al 150 TRAP
28 17 69 Dio 110 Ao 151 TRAP:
29 le 70 Dz 111 MPGMo 152 INTRo
30 l1s 71 D21 112 MPGM: 153 INTRs
31 ha 72 D22 113 Vee 154 INTR2
32 la 73 D23 114 As 155 INTRs
33 he 74 Das 115 As 156 WARN
34 I 75 Dzs 116 A7 157 IBACK
35 ho 76 Da2s 117 As 158 TRDY
36 ls 77 D27 118 As 159 1ERR

37 Is 78 Dzs 119 As 160 DERR
38 73 79 Da2s 120 As 161 DBACK
39 Is 80 D= 121 Az 162 PEN
40 Is 81 Da 122 GND 163 BREQ
1 la 82 GND 123 GND 164 DRDY
112

This Materi al

Copyrighted By Its Respective Manufacturer

Am29000

CQFP PIN DESIGNATIONS

(Sorted by Pin Name)

Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name
110 Ao 51 Ds 82 GND 144 IBREQ
109 At 52 Da 84 GND 159 IERR
121 Az 53 Ds 102 GND 2 INCLK
120 As 54 Ds 122 GND 152 iNTRo
119 A« 55 Ds 123 GND 153 INTR:
118 As 56 De 124 GND 154 INTR:
117 As 57 Ds 147 GND 155 INTR:
116 Az 58 Do 149 GND 158 IRDY
115 As 59 Du 47 lo 141 IREQ
114 As 60 Dy 45 h 129 IREQT
108 Avw 61 Du 44 I2 136 LOCK
107 An 62 D1 43 la 111 MPGMo
106 Asz 65 Dis 41 le 112 MPGM;
105 Av 66 Dis 40 Is 133 MSERR
104 A 67 D2 39 le 125 OPTo
101 Ais 68 Dis 38 17 126 OPT:
100 Ass 69 Do 37 Is 127 OPT:
99 A 70 Dx» 36 Io 139 PDA

ag A 71 D2 35 le 162 PEN

97 A 72 Dz 34 ls 140 PIA

96 Az 73 D2 33 Iz 3 PWRCLK
95 Az 74 D2 32 hs 137 RW

94 Az 75 Das 31 la 8 RESET
93 Az 76 Dzs 30 hs 130 STATo
92 A2 77 D2y 29 le 131 STAT:
N Azs 78 D2s 28 hr 132 STAT:
90 Az 79 D2 27 le 128 SUP/US
89 Az 80 Do 26 e 4 SYSCLK
88 Az 81 Ds: 25 to 11 TEST
87 Az 161 DBACK 24 Izs 150 TRAP.
86 Asn 143 DBREQ 23 12 151 TRAP:
85 A3 160 DERR 22 2% 6 Vee

142 BGRT 164 DRDY 19 [21 Vee

145 BINV 138 DREQ 18 ls 42 Vce

163 BREQ 134 DREQTo 17 Is 63 Vee

1 CDA 135 DREQT, 16 Iy 83 Vce

9 CNTLo 5 GND 15 s 103 Vee

10 CNTL, 7 GND 14 b 113 Vee

48 Do 20 GND 13 lao 146 Vee

49 D+ 46 GND 12 131 148 Vee

50 D2 64 GND 157 IBACK 156 WARN

This Materi al

Copyrighted By Its Respective Manufacturer

1-13

29K Family CMOS Devices

LOGIC SYMBOL
——»{ BREQ BGRTL — »
— (PN BRVI —— »
RGY RW »
——»{ [ERR supUs——»
—————» BACK KL —»
———— DROY MPGM,-MPGM, |——#—
—— » DERR QL
_ oEmx AL,
__ Tm EREG L
— AR DREQT,-DREQT, —-—2/——'
ID NTR-INTR, MSERR [P
— CNTL,—CNTL, DREGL —— »
»| AESET OPT,-OPT, ___5_.>
———H TEST STAT-STAT, _-—_—a_'“>
—¥ INCLK IREQT [——»
2/. TRAP,-TRAP, PR
¥ PWRCLK ik DDy As-Ao 32 >

1-14

This Materia

Copyrighted By Its Respective Manufacturer

Am29000

ORDERING INFORMATION
Standard Products

AM29000

AMD standard products are available in several packages and operating ranges. The ordering number

(Valid Combination) is formed by a combination of:

-25 G

0

a. Device Number

b. Speed Option (If applicable)
c. Package Type

d. Temperature Range

e. Optional Processing

-I——— e. OPTIONAL PROCESSING

Blank = Standard Processing
B = Bum-in

d. TEMPERATURE RANGE

C = Commercial (T.=0 to +85°C)

c. PACKAGE TYPE

G = 169-Lead Pin Grid Array without
Heat Sink (CGX169)

b. SPEED OPTION

a. DEVICE NUMBER/DESCRIPTION
Am23000
Streamlined Instruction Processor

Valid Combinations

AM29000-33
AM29000-25
AM29000-20
AM29000-16

GC, GCB

=33 = 33 MHz
~25 = 25 MHz
~20 = 20 MHz
-16 = 16 MHz

Valid Combinations

Valid Combinations list configurations planned to
be supported in volume for this device. Consuit
the local AMD sales office to canfirm availability of
specific valid combinations, to check on newly
released combinations, and to obtain additional
data on AMD's standard military grade products.

This Materi al

Copyrighted By Its Respective Manufacturer

29K Famity CMOS Devices

ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating
ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The
ordering number (Valid Combination) is formed by a combination of: a. Device Number

b. Speed Option (if applicabie)
c. Device Class

d. Package Type

e. Lead Finish

C
—L-—— e. LEAD FINISH

C = Gold
d. PACKAGE TYPE

Z = 169-Lead Pin Grid Array without Heatsink
(CGX169)

Y = 164-Lead Ceramic Quad Flat Pack without
Heatsink

c. DEVICE CLASS

/B =Class B

b. SPEED OPTION

Am28000

—20 = 20 MHz
-16 = 16 MHz

a. DEVICE NUMBER/DESCRIPTION

Streamlined Instruction Processor

Valid Combinations
Valid Combinations list configurations planned to

be supported in volume for this device. Cansuit
the local AMD sales office to confirm availability of
specific valid combinations, to check on newly

Valid Combinations
AM23000-20 /BZC
AM23000-16

M: -
AM29000-20 AYC
AM29000-16

released combinations, and to obtain additional
data on AMD's standard military grade products.

Group A Tests
Group A tests consist of Subgroups
1,2,3,7,8,9,10, 11.

1-16

This Materi al

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

PIN DESCRIPTION

Although certain outputs are described as being three-
slate or bidirectional outputs, ali outputs (except
MSERR) may be placed in a high-impedance state by
the Test mode. The three-state and bidirectional termi-
nology in this section is for those outputs (except
SYSCLK) that are disabled when the processor grants
the channel to another master.

Aa—Ao

Address Bus (three-state output, synchronous)
The Address Bus transfers the byte address for all ac-
cesses except burst-mode accesses. For burst-mode
accesses, it transfers the address for the first access in
the sequence.

BGRT

Bus Grant (output, synchronous)

This output signals to an external master that the
processor is relinquishing control of the channel in
response to BREQ.

BINV

Bus Invalid (output, synchronous)

This output indicates that the address bus and related
controls are invalid. it defines an idle cycle for the
channel.

BREQ

Bus Request (Input, synchronous)

This input allows other masters to arbitrate for control of
the processor channel.

CDA

Coprocessor Data Accept (input, synchronous)
This signal allows the coprocessor to indicate the ac-
ceptance of operands or operation codes. For transfers
to the coprocessor, the processor does not expect a
DRDY response; an active level on CDA perorms the
function normatly performed by DRDY. CDA may be
active whenever the coprocessor is able to accept
transfers.

CNTL—~CNTL,
CPU Control (input, asynchronous)
These inputs control the processor mode:

DBACK

Data Burst Acknowledge (input, synchronous)
This input is active whenever a burst-mode data access
has been established. it may be active even though no
data are currently being accessed.

DBREQ

Data Burst Request (three-state output,
synchronous)

This signal is used to establish a burst-mode data ac-
cess and to request data transfers during a burst-mode
data access. DBREQ may be active eventhough the ad-
dress bus is being used for an instruction access. This
signal becomes valid {ate in the cycle, with respect to
DREQ.

DERR

Data Error (input, synchronous)

This input indicates that an error occurred during the
current data access. For a load, the processor ignores
the contentof the data bus. For a store, the accessister-
minated. in either case, a Data Access Exception trap
occurs. The processor ignores this signal if there is no
pending data access.

DRDY

Data Ready (Input, synchronous)

For loads, this input indicates that valid data is on the
data bus. For stores, it indicates that the access is com-
plete, and that data need no longer be driven on the data
bus. The processor ignores this signal if there is no
pending data access.

DREQ
Data Request (three-state output, synchronous)

This signal requests a data access. Whenitis active, the
address for the access appears on the address bus.

DREQT:—-DREQT,
Data Request Type
(three-state output, synchronous)

These signals specify the address space of a data ac-
cess, as follows (the value “x” is a “don’t care™):

DREQT, DREQT, Meaning
CNTL, CNTL, Mode 0 0 Instruction/data
memory access
Y e Load Tgst 0 1 Input/output
Instruction access
0 1 Step
1 o Halt 1 X Coprocessor
1 1 Normal transfer
Ds:—Do An interrupt/ftrap vector request is indicated as a data-

Data Bus (bidirectional, synchronous)

The Data Bus transfers data to and from the processor
for load and store operations.

memory read. If required, the system can identify
the vector fetch by the STAT>-STATae outputs.
DREQT-DREQT. are valid only when DREQ is active.

117

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

lar—lo

Instruction Bus (input, synchronous)

The Instruction Bus transfers instructions to the
processor.

IBACK

Instruction Burst Acknowledge

(input, synchronous)

This input is active whenever a burst-mode instruction
access has been established. It may be active even
though no instructions are currently being accessed.

IBREQ

Instruction Burst Request (three-state

output, synchronous)

This signal is used to establish a burst-mode instruction
access and to request instruction transfers during a
burst-mode instruction access. IBREQ may be active
eventhough the address bus is being used for a data ac-
cess. This signal becomes valid late in the cycle with re-
spect to IREQ.

IERR

Instruction Error (input, synchronous)

This input indicates that an error occured during the
current instruction access. The processor ignores the
content of the instruction bus, and an Instruction Access
Exception trap occurs if the processor attempts to exe-
cute the invalid instruction. The processor ignores this
signal it there is no pending instruction access.

INCLK

Input Clock (input)

When the processor generates the clock for the system,
this is an oscillator input to the processor at twice the
processor’s operating frequency. In systems where the
clock is not generated by the processor, this signal must
be tied High or Low, except in certain master/slave con-
figurations.

INTR—INTR,

Interrupt Request (input, asynchronous)

These inputs generate prioritized interrupt requests.
The interrupt caused by INTRo has the highest priority,
and the interrupt caused by INTRa has the lowest prior-
ity. The interrupt requests are masked in prioritized or-
der by the Interrupt Mask field in the Current Processor
Status Register.

IRDY

Instruction Ready (input, synchronous)

This input indicates that a valid instruction is on the in-
struction bus. The processor ignores this signal if there
is no pending instruction access.

IREQ

Instruction Request

(three-state output, synchronous)

This signal requests an instruction access. When it is
active, the address for the access appears on the ad-
dress bus.

IREQT
Instruction Request Type
{three-state output, synchronous)

This signal specifies the address space of an instruction
request when IREQ is active:

IREQT Meaning
0 Instruction/data memory access
1 Instruction read-only memory
access
LOCK

Lock (three-state output, synchronous)

This output allows the implementation of various chan-
nel and device interlocks. It may be active only for the
duration of an access, or active for an extended period
of time under control of the Lock bit in the Current
Processor Status.

MPGM—MPGM,

MMU Programmable

(three-state output, synchronous)

These outputs reflect the value of two PGM bits in the
Translation Look-Aside Butfer entry associated with the
access. if no address translation is performed, these
signals are both Low.

MSERR
Master/Slave Error (output, synchronous)

This output shows the result of the comparison of
processor outputs with the signais provided internally to
the off-chip drivers. If there is a difference for any en-
abled driver, this line is asserted.

1-18

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

OPTOPT,

Option Control

{three-state output, synchronous)

These outputs reflect the value of bits 18—16 of the load
or store instruction that begins an access. Bit 18 of the
instruction is reflected on OPTz, bit 17 on OPT;, and bit
16 on OPTo.

The standard definitions of these signals (based on
DREQT) are as follows (the value “x” is a “don't care”):

DREQT, DREQT, OPT, OPT, OPT, Meaning
0 X 0 [[¢] Word-
length
access
0 X Q 0 1 Byte
access

0 X 0 1 [¢] Half-word
access

0 0 1 0 o] Instruction
ROM
access

(as data)
0 0 1 0 1 Cache
control

0 o] 1 1 [¢] ADAPT29K

accesses

-all others- Reserved

During an interrupt/trap vector fetch, the OPT—0PTo
signals indicate a word-length access (000). Also, the
system should return an entire aligned word for a read,
regardless of the indicated data length.

The Am29000 does not explicitly prevent a store to the
instruction ROM. OPTa-OPTo are valid only when
DREQ is active.

PDA

Pipelined Data Access

{three-state output, synchronous)

If DREQ is not active, this output indicates thata data ac-
cess is pipelined with another in-progress data access.
The indicated access cannot be completed until the first
access is complete. The completion of the first access is
signaled by the assertion of DREQ.

PEN

Pipeline Enable (input, synchronous)

This signal allows devices that can support pipelined ac-
cesses (i.e., that have input latches for the address and
required controls) to signal that a second access may
begin while the first is being completed.

PIA

Pipelined Instruction Access

(three-state output, synchronous)

If IREQ is not active, this output indicates that an instruc-
tion access is pipelined with another in-progress instruc-
tion access. The indicated access cannot be completed

until the first access is complete. The completion of the
tirst access is signaled by the assertion of IREQ.

RW
Read/Write (three-state output, synchronous)

This signal indicates whether data is being transferred
from the processor to the system, or from the systemto
the processor. R/Wis valid only when the address bus is
valid. R/W will be High when TREQ is active.

RESET
Reset (input, asynchronous)
This input places the processor in the Reset mode.

STAT—STAT,

CPU Status (output, synchronous)

These outputs indicate the state of the processor's exe-
cution stage on the previous cycle. They are encoded
as follows:

STAT, STAT, STAT, Condition

0 0 0 Halt or Step Modes

0 0 1 Pipeline Hold Mode

0 1 0 Load Test Instruc-
tion Mode,
Halt/Freeze

0 1 1 Wait Mode

1 0 0 Interrupt Return

1 0 1 Taking Interrupt or
Trap

1 1 0 Non-sequential
Instruction Fetch

1 1 1 Executing Mode

SUP/US

Supervisor/User Mode
(three-state output, synchronous)

This output indicates the program mode for an access.

The processor does not relinquish the channel (in re-
sponse to BREQ) when LOCK is active.

SYSCLK
System Clock (bidirectional)

This is either a clock output with a frequency that is half
that of INCLK, or aninput from an external clock genera-
tor at the processor’s operating frequency.

TEST
Test Mode (input, asynchronous)

When this input is active, the processor is in Test mode.
All outputs and bidirectional lines, except MSERR, are
forced to the state.

TRAP,~-TRAP,
Trap Request (input, asynchronous)

These inputs generate prioritized trap requests. The
trap caused by TRAPs has the highest priority. These

1-19

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

trap requests are disabled by the DA bit of the Current
Processor Status Register.

WARN

Warn (input, asynchronous, edge-sensitive)

A high-to-low_transition on this input causes a non-
maskable WARN trap to occur. This trap bypasses the
normal trap vector fetch sequence, and is useful in situ-
ations where the vector fetch may not work (e.g., when
data memory is faulty).

The following pins are not signal pins, but are named in
Am29000 documentation because of their special role
in the processor and system.

PWRCLK
Power Supply for SYSCLK Driver

This pin is a power supply forthe SYSCLK output driver.
Itisolates the SYSCLK driver, and is used to determine

whether or not the Am29000 generates the clock for the
system. If power (+5 voits) is applied to this pin, the
Am29000 generates a clock on the SYSCLK output. If
this pin is grounded, the Am29000 accepts a clock gen-
erated by the system on the SYSCLK input.

PIN169

Alignment pin

In the PGA package, this pin is used to indicate proper
pin-alignment of the Am29000 and is used by the
ADAPT29K to communicate its presence to the system.
This pin does not exist on the Am29000 in CQFP
package.

1-20

Copyrighted By Its Respective Manufacturer

This Materi al

Am23000

FUNCTIONAL DESCRIPTION
Product Overview

The Am28000 contains a high-function execution unit, a
large register file (192 locations), a Branch Target
Cache (32 4-bit instruction branch targets), a memory
management unit (64 entries), and a high-bandwidth,
pipelined external channel with separate instruction and
data buses. The flexible register file may be used as a
cache for run-time variables during program execution,
or as a collection of register banks allocated to separate
tasks in muttitasking applications.

The Am29000 provides a significant margin of per-
formance over other processors in its class, since the
majority of processor features were defined with the
maximum achievable performance in mind. This section
describes the features of the Am29000 from the point of
view of system performance.

Cycle Time

The processor operates at a frequency of 33 MHz. The
processor cycle time is a single, 30-ns clock period. The
processor interface drivers can drive 80-pF loads at this
frequency (for greater loads see Capacitive Output
Delay table).

The Am29000 architecture and system interfaces are
designed so that the processor cycle time can decrease
with technology improvements.

Four-Stage Pipeline

The Am29000 utilizes a four-stage pipeline, allowing it
to execute one instruction every clock cycle. The pro-
cessor can complete an instruction on every cycle, even
though four cycles are required from the beginning of an
instruction to its completion.

Ata 33-MHz operating frequency, the maximum instruc-
tion execution rate is 33 million instructions per second
(MIPS). The Am29000 pipeline is designed so that the
Am29000 can operate at the maximum instruction
execution rate a significant portion of the time.

Pipeline interlocks are implemented by processor hard-
ware. Except for a few special cases, it is not necessary
to rearrange programs to avoid pipeline dependencies.

System Interface

The Am29000 accesses external instructions and data
using three non-multiplexed buses. These buses are re-
terred to collectively as the channel. The channel proto-
col minimizes the logic chains involved in atransfer, and
provides a maximum transfer rate of 264 Mb/s.

Separate Address, Instruction, and Data Buses

The Am239000 incorporates two 32-bit buses for instruc-
tion and data transfers, and a third address bus that is
shared between instruction and data accesses. This
bus structure allows simultaneous instruction and data
transfers, even though the address bus is shared. The

channel achieves the performance of four separate
32-bit buses at a much-reduced pin count.

Pipelined Addresses

The Am29000 address bus is pipelined so that it can be
released before an instruction or data transfer is com-
pleted. This allows a subsequent access to begin before
the first has been completed, and allows the processor
to have two accesses in progress simultaneously.

Support of Burst Devices and Memories
Burst-mode accesses provide high transfer rates for
instructions and data at sequential addresses. For such
accesses, the address of the first instruction or datum
is sent, and subsequent requests for instructions or data
at sequential addresses do not require additional
address transfers. These instructions or data are trans-
ferred until either party involved in the transfer termi-
nates the access.

Burst-mode accesses can occur at the rate of one ac-
cess per cycle after the first address has been pro-
cessed. At 33 MHz, the maximum achievable transter
bandwidth for either instructions or data is 132 Mb/s.

Burst-mode accesses may occur to input/output de-
vices if the system design permits.

Interface to Fast Devices and Memories

The processor can be interfaced to devices and memo-
ries that complete accesses withinone cycle. The chan-
nel protocol takes maximum advantage of such devices
and memories by allowing data to be returned to the
processor during the cycle in which the address is trans-
mitted. This aliows a full range of memory-speed trade-
offs to be made within a particular system.

Register File

An on-chip Register File containing 192 general-
purpose registers allows most instruction operands to
be fetched without the delay of an external access. The
Register File incorporates several features that aid the
retention of data required by an executing program.
Because of the number of general-purpose registers,
the frequency of external references for the Am29000 is
significantly lower than the frequency of references in
processors having only 16 or 32 registers.

Triple-port access to the Register File allows two source
operands to be fetched in one cycle while a previously
computed result is written. Three 32-bit internal buses
prevent contention in the routing of operands. All oper-
and fetches and result write-backs for instruction execu-
tion can be performed in a single cycle.

The registers allow efficient procedure linkage by cach-
ing a portion of a compiler's run-time stack. On the aver-
age, procedure calls and returns can be executed 5 to
10 times faster (on a cycle-by-cycle basis) than in pro-
cessors that require the implementation of a run-time

1-21

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

stack in external memory (with the attendant loading
and storing of registers on procedure call and return).

The registers can contain variables, constants, ad-
dresses, and operating-system values. In multitasking
applications, they can be used to hold the processor
status and variables for as many as eight differenttasks.
A register-banking option allows the Register File to be
divided into segments, which can be individually pro-
tected. In this configuration, a task switch can occur in
as few as 17 cycles.

Instruction Execution

The Am23000 uses an Arithmetic/Logic Unit, a Field
Shift Unit, and a Prioritizer to execute most instructions.
Each of these is organized to operate on 32-bit oper-
ands and provide a 32-bit result. All operations are per-
formed in a single cycle.

Instruction operations are overlapped with operand
fetch and result write-back to the Register File. Pipeline
forwarding logic detects pipeline dependencies and
routes data as required, avoiding delays that might arise
from these dependencies.

Branch Target Cache

In general, the AmM29000 meets its instruction
bandwidth requirements via instruction prefetching.
However, instruction prefetching is ineffective when a
branch occurs. The Am29000 therefore incorporates an
on-chip Branch Target Cache to supply instructions fora
branch—if this branch has been taken previously—
while a new prefetch stream is established.

If branch-target instructions are in the Branch Target
Cache, branches execute in a single cycle. The Branch
Target Cache in the Am29000 has an average hit rate of
60%. In other words, it eliminates the branch latency for
60% of all successful branches on the average.

Branching

Branch conditions in the Am298000 are based on
Boolean data contained in general-purpose registers
rather than on arithmetic condition codes. Using a con-
dition-code register for the purpose of branching—
which is common in other processors—inhibits certain
compiler optimizations because the condition-code reg-
ister is modified by many different instructions. lt is diffi-
cuit for an optimizing compiler to schedule this shared
use. By treating branch conditions as any other instruc-
tion operand, the Am23000 avoids this problem.

The Am29000 executes branches in a single cycle for
those cases where the target of the branch is in the
Branch Target Cache. The single-cycle branch is un-
usual for a pipelined processor, and is due to processor
hardware that allows much of the branch instruction op-
eration to be performed early in the execution of the
branch. Single-cycle branching has a dramatic effect on
performance, since successful branches typically repre-
sent 15% to 25% of a processor’s instruction mix.

The techniques used to achieve single-cycle branching
also minimize the execution time of branches in those
cases where the target is not in the Branch Target
Cache. To keep the pipeline operating at the maximum
rate, the instruction following the branch, referred to as
the delay instruction, is executed regardless of the out-
come of the branch. An optimizing compiler candefine a
useful instruction for the delay instruction in approxi-
mately 90% of branch instructions, thereby increasing
the performance of branches.

Loads and Stores

The performance degradation of load and store opera-
tions is minimized in the Am239000 by overlapping them
with instruction execution, by taking advantage of
pipelining, and by organizing the flow of external data
onto the processor so that the impact of external ac-
cesses is minimized.

Overlapped Loads and Stores

In the Am29000, a load or store is performed concur-
rently with execution of instructions that do not have de-
pendencies on the load or store operation. An optimiz-
ing compiler can schedule joads and stores in the in-
struction sequence so that, in most cases, data ac-
cesses are overlapped with instruction execution.

Overlapped load and store operations can achieve upto
a 30% improvement in performance when data memory
has a two-cycle access lime. Processor hardware de-
tects dependencies while overlapped loads and stores
are being performed, so dependencies have no soft-
ware implications.

The Am23000 exception restart mechanism automati-
cally saves information required to restart any load
or store until the operation is successfully completed.
Thus, it allows the overlapped execution of loads and
stores while properly handling address-translation
exceptions.

The Am23000 data-flow organization avoids the one-
cycle penaity that would result from the contention be-
tween load data and the results of overlapped instruc-
tion execution. Load data is buffered in a latch while
awaiting an opportunity to be written into the register file.
This opportunity is guaranteed to arise before the next
load is executed. While the data is buffered in this latch,
it may be used as an instruction operand in place of the
destination register for the load.

Load Muitiple and Store Multiple

Load Multiple and Store Multiple instructions allow the
transfer of the contents of multiple registers to or from
external memories or devices. Thistransfer canoccur at
a rate of one register content per cycie.

The advantage of Load Multiple and Store Multiple is
best seen in task switching, register-file saving and
restoring, and in block data moves. In many systems,

1-22

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

such operations require a significant percentage of
execution time.

The Load Multiple and Store Multiple sequences are in-
terruptible so that they do not affect interrupt latency.

Forwarding of Load Data

Datathat are sentto the processor at the completionof a
joad are forwarded directly to the appropriate execution
unit if the data are required immediately by an instruc-
tion. This avoids the common one-cycle delay frombus
transfer to use of data, and reduces the access latency
of external data by one cycle.

Memory Management

A 64-entry Transiation Look-Aside Butfer (TLB) on the
Am29000 performs virtual-to-physical address trans-
lation, avoiding the cycle that would be required to trans-
fer the virtual address to an external TLB. A number of
enhancements improve the performance of address
translation:

1. Pipelining—The operation of the TLB is pipe-
lined with other processor operations.

2. Early Address Translation—Address transla-
tions for load, store, and branch instructions oc-
cur during the cycle in which these instructions
are executed. This allows the physical address
to be transferred externally in the next cycle.

3. Task Identifiers—Task Identifiers allow TLB en-
tries to be matched to different processes so that
TLB invalidation is not required during task
switches.

4. Least-Recently Used Hardware-—This hard-
ware allows immediate selection of a TLB set to
be replaced.

5. Software Reload—Software reload allows the
operating system to use a page-mapping
scheme that is best matched to its environment.
Paged-segmented, one-level page mapping,
two-level page mapping, or any other user-de-
fined page-mapping scheme can be supported.
Because Am23000 instructions execute at an
average rate of nearly one instruction per cycle,
software reload has a performance approaching
that of hardware TLB reload.

Interrupts and Traps

Whenthe Am29000 takes aninterrupt or trap, it does not
automaltically save its current state information. This
greatly improves the performance of temporary inter-
ruptions such as TLB reload, floating-point emulation, or
other simple operating-system calis that require no sav-
ing of state information.

In cases where the processor state must be saved, the
saving and restoring of state information is under the
control of software. The methods and data structures
used to handle interrupts—and the amount of state
saved—may be tailored to the needs of a particular
system.

Interrupts and traps are dispatched through a 256-entry
Vector Area, which directs the processor to a routine to
handle a given interrupt or trap. The Vector Area may be
relocated in memory by the modification of a processor
register. There may be multiple Vector Areas in the sys-
tem, though only one is active at any given time.

The Vector Area is either a table of pointers to the inter-
rupt and trap handlers, or a segment of instruction mem-
ory (possibly read-only memory) containing the han-
dlers themselves. The choice between the two possible
Vector Area definitions is determined by the cost/per-
formance trade-offs made for a particular system.

If the Vector Area is a table of vectors in data memory, it
requires only 1 kb of memory. However, this structure
requires that the processor perform a vector fetch every
time an interrupt or trap is taken. The vector fetch re-
quires at least three cycles in addition to the number of
cycles required for the basic memory access.

If the Vector Area is a segment of instruction memory, it
requires a maximum of 64 kb of memory. The advan-
tage of this structure is that the processor begins the
execution of the interrupt or trap handler in the minimum
amount of time.

Floating-Point Arithmetic Unit

The Am29027 is a double-precision, floating-point arith-
metic unit for the Am23000. It can provide an order-ot-
magnitude performance increase over floating-point op-
erations performed in software. It performs both single-
precision and double-precision operations using |IEEE
and other floating-point formats. The Am29027 also
supports 32- and 64-bit integer functions.

The Am298027 performs floating-point operations using
combinatorial—rather than sequential—logic; there-
fore, operations with the Am239027 require only five
Am29000 cycles. Floating-point operations may be
overlapped with other processor operations. Further-
more, the Am28027 incorporates pipeline registers
and eight operand registers, permitting very high
throughput for certain types of operations (such as array
computations}.

The Am29027 attaches directly to the Am23000 using
the coprocessor interface. The Am29000 can transfer
two 32-bit quantities to the Am23027 in one cycle.

The Am29027 is described in detail in the Am28027
Arithmetic Accelerator Data Sheet (order# 09114) and
the Am29027 Handbook (order# 11852).

1-23

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

ARCHITECTURE HIGHLIGHTS

This section introduces the principle architectural ele-
ments, hardware features, and system interfaces of the
Am29000.

Architecture Overview

This section gives a brief description of the Am29000
from a programmer’s point of view. It introduces the
processor’s program modes, registers, and instructions.
An overview of the processor’s data formats and han-
dling is given. This section also briefly describes inter-
rupts and traps, memory management, and the
coprocessor interface. Finally, the Timer Facility and
Trace Facility are introduced.

Program Modes

There are two mutually exclusive modes of program
execution: the Supervisor mode and the User mode. In
the Supervisor mode, executing programs have access
to all processor resources. In the User mode, certain
processor resources may not be accessed; any at-
tempted access causes a trap.

Visible Registers

The Am23000 incorporates three classes of registers
that are accessed and manipulated by instructions:
general-purpose registers, special-purpose registers,
and Translation Look-Aside Buffer (TLB) registers. (Re-
fer to the Register Description section for greater detail
of the register categories.)

General-Purpose Registers

The Am29000 has 192 general-purpose registers. With
a few exceptions, general-purpose registers are not
dedicated to any special use and are available for any
appropriate program use.

Most processor instructions are three-address instruc-
tions. An instruction specifies any three of the 192 regis-
ters for use in instruction execution. Normally, two of
these registers contain source operands for the instruc-
tion, and a third stores the result of the instruction.

The 192 registers are divided into 64 globat and 128 lo-
cal registers. Global registers are addressed with abso-
lute register numbers, while local registers are ad-
dressed relative to an internal Stack Pointer.

For tast procedure calling, a portion of a compiler's run-
time stack can be mapped into the local registers. Stati-
cally allocated variables, temporary values, and operat-
ing-system parameters are kept in the global registers.

The Stack Pointer for local registers is mapped to Global
Register 1. The Stack Pointer is a full 32-bit virtual ad-
dress for the top of the run-time stack.

The general-purpose registers may be accessed in-
directly, with the register number specified by the con-
tent of a special-purpose register (see below) rather
than by an instruction field. Three independent indirect

register numbers are contained in three separate spe-
cial-purpose registers. Indirect addressing is accom-
plished by specifying Global Register 0 as aninstruction
operand or result register. An instruction can specify an
indirect register access for any or all of the source oper-
ands or resutt.

General-purpose registers may be partitioned into seg-
ments of 16 registers for the purpose of access protec-
tion. A register in a protected segment may be accessed
only by a program executing inthe Supervisor mode. An
attempted access (either read or write) by a User-mode
program causes a trap to occur.

Special-Purpose Registers

The Am29000 contains 27 special-purpose registers.
These registers provide controis and data for certain
processor functions.

Special-purpose registers are accessed by data move-
ment only. Any special-purpose register can be written
with the contents of any general-purpose register, and
any general-purpose register can be written with the
contents of any special-purpose register. Operations
cannot be performed directly on the contents of special-
purpose registers.

Some special-purpose registers are protected, and can
be accessed only in the Supervisor mode. This restric-
tion applies to both read and write accesses. An attempt
by a User-mode program to access a protected register
causes a trap to occur.

The protected special-purpose registers are defined as
follows:

1. Vector Area Base Address—Defines the begin-
ning of the interrupt/trap Vector Area.

2. Old Processor Status—Receives a copy of the
Current Processor Status (see below) when an
interrupt or trap is taken. It is laterused to restore
the Current Processor Status on an interrupt
return.

3. Current Processor Status—Contains control in-
formation associated with the currently execut-
ing process, such as interrupt disables and the
Supervisor Mode bit.

4. Configuration—Contains control informa-
tion that normally varies only from system to
system, and usually is set only during system
initialization.

5. Channel Address—Contains the address asso-
ciated with an external access, and retains the
address if the access is not completed success-
fully. The Channel Address Register, in con-
junction with the Channe! Data and Channel
Control registers described below, allows the re-
starting of unsuccessful external accesses. This

1-24

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

might be necessary for an access encountering
a page fault in a demand-paged environment,
for example.

6. Channel Data—Contains data associated witha
store operation, and retains the data if the opera-
tion is not completed successfully.

7. Channel Control—Contains control information
associated with a channel operation, and retains
this information if the operation is not completed
successfully.

8. Register Bank Protect—Restricts access of
user-mode programs to specified groups of 16
registers. This facilitates register banking for
multitasking applications, and protects operat-
ing system parameters kept in the global regis-
ters from corruption by user-mode programs.

9. Timer Counter—Supports real-time control and
other timing-related functions.

10. Timer Reload—Maintains synchronization of
the Timer Counter. It includes control bits for the
Timer Facility.

11. Program Counter 0—Contains the address of
the instruction being decoded when an interrupt
or trap is taken. The processor restarts this in-
struction upon interrupt return.

12. Program Counter 1—Contains the address of
the instruction being executed when an interrupt
or trap is taken. The processor restarts this in-
struction upon interrupt return.

13. Program Counter 2—Contains the address of
the instruction just completed when an interrupt
or trap is taken. This address is provided for in-
formation only, and does not participate in an in-
terrupt return.

14. MMU Configuration—Allows selection of vari-
ous memory-management options, such as
page size.

15. LRU Recommendation—Simpiifies the reload of
entries in the Translation Look-Aside Buffer
(TLB) by providing information on the least
recently used entry of the TLB when a TLB miss
occurs.

The unprotected special-purpose registers are defined
as follows:

1. Indirect Pointer C—Allows the indirect access of
a general-purpose register.

2. Indirect Pointer A—Allows the indirect access of
a general-purpose register.

3. Indirect Pointer B—Allows the indirect access of
a general-purpose register.

4. Q—Provides additional operand bits for muitiply
step, divide step, and divide operations.

5. ALU Status—Contains information about the
outcome of integer arithmetic and logical opera-
tions, and holds residual control for certain in-
struction operations.

6. Byte Pointer—Contains an index of a byte or
half-word within a word. This register is also ac-
cessible via the ALU Status Register.

7. Funnel Shift Count—Provides a bit offset for the
extraction of word-length fields from double-
word operands. This register is also accessible
via the ALU Status Register.

8. Load/Store Count Remaining—Maintains a
count of the number of loads and stores remain-
ing for Load Multiple and Store Multiple opera-
tions. The count is initialized to the total number
of loads or stores to be performed before the op-
eration is initiated. This register is also accessi-
ble via the Channel Contro! Register.

9. Floating-Point Environment—Controls the op-
eration of floating-point arithmetic, such as
rounding modes and exception reporting.

10. Integer Environment—Enables and disables the
reporting of exceptions that occur during integer
multiply and divide operations.

11. Floating-Point Status—Contains information
about the outcome of floating-point operations.

12. Exception Opcode—Reports the operation code
of an instruction causing a trap. This register is
provided primarily for recovery from floating-
point exceptions, but is also set for other instruc-
tions that cause traps.

TLB Registers

Translation Look-Aside Buffer (TLB) entries in the
Am29000 Memory Management Unit are accessed via
128 TLB registers. A single TLB entry appears as two
TLB registers; TLB registers are thus paired according
to the corresponding TLB entry.

TLB registers are accessed by data movement only.
Any TLB register can be written with the contents of any
general-purpose register, and any general-purpose reg-
ister can be written with the contents of any TLB register.
Operations cannot be performed directly on the
contents of TLB registers.

TLB registers can be accessed only in the Supervisor
mode. This restriction applies to both read and write ac-
cesses. An attempt by a User-mode program to access
a TLB register causes a trap to occur.

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

Instruction Set Overview

The three-address architecture of the Am29000 instruc-
tion set allows a compiler or assembly-language pro-
grammer to prevent the destruction of operands, and
aids register allocation and operand reuse. Instruction
operands may be contained in any 2 of the 192 general-
purpose registers, and instruction resuits may be stored
in any of the 192 general-purpose registers.

The compiler or assembly-language programmer has
complete freedom to allocate register usage. There is
no dedication of a particular register or register group to
aparticular class of operations. The instruction set is de-
signed to minimize the number of side effects and
implicit operations of instructions.

Most Am29000 instructions can specify an 8-bit con-
stant as one of the source operands. Larger constants
are constructed using one or two additional instructions
and a general-purpose register. Relative branchinstruc-
tions specify a 16-bit, signed, word offset. Absolute
branches specify a 16-bit word address.

The Am29000 instruction set contains 117 instructions.
These instructions are divided into nine classes:

1. Integer Arithmetic—Perform integer add, sub-
tract, multiply, and divide operations.

2. Compare—Perform arithmetic and logical com-
parisons. Some instructions in this class allow
the generation of a trap if the comparison condi-
tion is not met.

3. Logica—Perform a set of bit-wise Boolean op-
erations.

4. Shift—Perform arithmetic and logical shifts, and
allow the extraction of 32-bit words from 64-bit
double words.

5. Data Movement—Perform movement of data
fields between registers, and the movement
of data to and from external devices and
memories.

6. Constant—Allow the generation of large con-
stant values in registers.

7. Floating-Point—Iincluded for floating-point arith-
metic, comparisons, and format conversions.
These instructions are not curmently imple-
mented directly in processor hardware.

8. Branch—Perform program jumps and subrou-
tine calls.

9. Miscellaneous—Perform miscellaneous control
functions and operations not provided by other
classes.

The Am29000 executes all instructions in a singte cycle,
except for interrupt returns, Load Muiltiple, and Store
Muittiple.

Figure 1 shows a complete list of Am29000 instructions,
listed aiphabetically by instruction mnemonic (refer to
the Instruction Set section for more details).

1-26

Copyrighted By Its Respective Manufacturer

Am29000

Mnemonic

Instruction Name

ADD
ADDC
ADDCS
ADDCU
ADDS
ADDU
AND
ANDN
ASEQ
ASGE
ASGEU
ASGT
ASGTU
ASLE
ASLEU
ASLT
ASLTU
ASNEQ
CALL
CALLI
CLASS
CLz
CONST
CONSTH
CONSTN
CONVERT
CPBYTE
CPEQ
CPGE
CPGEU
CPGT
CPGTU
CPLE
CPLEU
CPLT
CPLTU
CPNEQ
DADD
DDIV
DEQ
DGE
DGT
DIV
DIVO
DIVIDE
DIVIDU
DIVL
DIVREM
DMUL
DSuUB
EMULATE
EXBYTE
EXHW
EXHWS
EXTRACT
FADD
FDIV
FDMUL
FEQ
FGE

Add

Add with Carry

Add with Carry, Signed

Add with Carry, Unsigned

Add, Signed

Add, Unsigned

AND Logical

AND-NOT Logical

Assert Equal To

Assert Greater Than or Equal To

Assert Greater Than or Equal To, Unsigned
Assert Greater Than

Assert Greater Than, Unsigned

Assert Less Than or Equal To

Assert Less Than or Equal To, Unsigned
Assert Less Than

Assert Less Than, Unsigned

Assert Not Equal To

Call Subroutine

Call Subroutine, Indirect

Classify Floating-Point Operand

Count Leading Zeros

Constant

Constant, High

Constant, Negative

Convert Data Format

Comparse Bytes

Compare Equal To

Compare Greater Than or Equal To
Compare Greater Than or Equal To, Unsigned
Compare Greater Than

Compare Greater Than, Unsigned
Compare Less Than or Equai To

Compare Less Than or Equal To, Unsigned
Compare Less Than

Compare Less Than, Unsigned

Compare Not Equal To

Floating-Point Add, Double-Precision
Floating-Point Divide, Double-Precision
Floating-Point Equal Te, Double-Precision
Floating-Point Greater Than or Equal To, Double-Precision
Floating-Point Greater Than, Double-Precision
Divide Step

Divide Initialize

integer Divide, Signed

Integer Divide, Unsigned

Divide Last Step

Divide Remainder

Floating-Point Multiply, Double-Precision
Floating-Point Subtract, Double-Precision
Trap to Software Emulation Routine

Extract Byte

Extract Half-Word

Extract Half-Word, Sign-Extended

Extract Word, Bit-Aligned

Floating-Point Add, Single-Precision
Floating-Point Divide, Single-Precision
Floating-Point Multiply, Single-to-Double Precision
Floating-Point Equal To, Single-Precision
Floating-Point Greater Than or Equal To, Single-Precision

Figure 1. Am29000 instruction Set

This Material Copyrighted By Its Respective Manufacturer

1-27

29K Family CMOS Devices

Mnemonic

Instruction Name

FGT
FMUL
FSuB
HALT
INBYTE
INHW
INV

IRET
IRETINV
JMP
JMPF
JMPFDEC
JMPFI
JMP
JMPT
JMPTI
LOAD
LOADL

. LOADM
LOADSET
MFSR
MFTLB
MTSR
MTSRIM
MTTLB
MUL
MULL
MULTIPLU
MULTIPLY
MULTM
MULTMU
MULU
NAND
NOR

OR
SETIP
SLL
SQRT
SRA

SRL
STORE
STOREL
STOREM
suB
SUBC
SUBCS
SuBCU
SUBR
SUBRC
SUBRCS
SUBRCU
SUBRS
SUBRU
SuBs
SuUBU
XNOR
XOR

Floating-Point Greater Than, Single-Precision
Floating-Point Multiply, Single-Precision
Floating-Point Subtract, Single-Precision
Enter Hait Mode

Insert Byte

insent Half-Word

Invalidate

Interrupt Return

Interrupt Return and Invalidate

Jump

Jump False

Jump False and Decrement

Jump False Indirect

Jump Indirect

Jump True

Jump True Indirect

Load

Load and Lock

Load Multiple

Load and Set

Move from Special Register

Move from Translation Look-Aside Buffer Register
Move to Special Register

Move to Special Register Inmediate
Move to Translation Look-Aside Buffer Register
Muttiply Step

Muttiply Last Step

Integer Muttiply, Unsigned

Integer Multiply, Signed

Integer Multiply Most-Significant Bits, Signed
Integer Multiply Most-Significant Bits, Unsigned
Muitiply Step, Unsigned

NAND Logical

NOR Logical

OR Logical

Set Indirect Pointers

Shift Left Logical

Square Root

Shift Right Arithmetic

Shift Right Logical

Store

Store and Lock

Store Multiple

Subtract

Subtract with Carry

Subtract with Carry, Signed

Subtract with Carry, Unsigned

Subtract Reverse

Subtract Reverse with Carry

Subtract Reverse with Carry, Signed
Subtract Reverse with Carry, Unsigned
Subtract Reverse, Signed

Subtract Reverse, Unsigned

Subtract Signed

Subtract Unsigned

Exclusive-NOR Logical

Exclusive-OR Logical

Figure 1. Am29000 Instruction Set (continued)

1-28

This Materia

Copyrighted By Its Respective Manufacturer

Am239000

Data Formats and Handling

This section introduces the data formats and data-
manipulation mechanisms that are supported by the
Am29000.

Data Types

Aword is defined as 32 bits of data. A half-word consists
of 16 bits, and a double word consists of 64 bits. Bytes
are 8 bits in length. The Am23000 has direct suppornt
tor word-integer (signed and unsigned), word-logical,
word-Boolean, half-word integer (signed and unsigned),
and character (signed and unsigned) data.

Other data types, such as character strings, are sup-
ported with sequences of basic instructions and/or ex-
ternal hardware. Single- and double-precision floating-
point types are defined for the Am29000, but are not
supported directly by hardware.

The format for Boolean data used by the processor is
such thatthe Boolean values TRUE and FALSE are rep-
resentedby 1 and 0, respectively, inthe most-significant
bit of a word.

Figure 2 illustrates the numbering conventions for data
units contained in a word. Within a word, bits are num-
bered in increasing order from right to left, starting with
the number 0 for the least-significant bit. Bytes and half-
words within a word are numbered in increasing order,
starting with the number 0. However, bytes and half-

words may be numbered right-to-left or left-to-right, as
controlled by the Configuration Register.

Note that the numbering of bits within words is strictly for
notational convenience. In contrast, the numbering con-
ventions for bytes and half-words within words affect
processor operations.

External Data Accesses

External accesses move data between the processor
and external devices and memories. These accesses
occur only as a result of load and store instructions.

Load and store instructions move words of data to and
from general-purpose registers. Each load and store in-
struction moves a single word. There are load and store
instructions that support interlocking operations neces-
sary for multiprocessor exclusion, synchronization, and
communication.

For the movement of multiple words, Load Multiple and
Store Multiple instructions move the contents of se-
quentially addressed external locations to or from se-
quentially numbered general-purpose registers. The
Load Multiple and Store Mukiple allow the movement of
up to 192 words at a maximum rate of one word per
processor cycle. The multiple load and store sequences
may be interrupted, and restarted at the point of
interruption.

This Materi al

Bytes Within Words it =
31 23 15 7 0
ettt tet iy ettt TeTrTTTd
Byts 0 Byte t Byte 2 Byte 3
OR BO bit = 1
31 23 15 7 0
RERERERRRRRRERRRRRR RN
Byte 3 Byte 2 Byte 1 Byte 0
31 23 15 7 0
CTErT T Tl e T T T T T T T TTITTIT T T
Half-Word 0 Half-Word 1
OR it =
31 23 15 7 0
EEERERRERRRRRERRERRREER RN
Half-Word 1 Half-Word 0

Figure 2. Data-Unit Numbering Conventions

Copyrighted By Its Respective Manufacturer

1.29

This Materia

29K Family CMOS Devices

Load and store instructions provide no mechanism for
computing the address associated with the external
data access. All addresses are contained in a general-
purpose register at the beginning of the access, or are
given by an 8-bit instruction constant. Any address com-
putation must be performed explicitly before the load or
store instruction is executed. Since address computa-
tions are expressed directly, they are exposed for
compiler optimizations as any other computations are.

External data accesses are overlapped with instruction
execution. Processor performance is improved if in-
structions that follow loads do not immediately use ex-
ternally referenced data. In this manner, the time re-
quired to perform the external access is overlapped with
subsequent instruction execution. Because of hardware
interlocks, this concurrency has no effect on the logical
behavior of an executing program.

Addressing and Alighment

External instructions and data are contained in one of
four 32-bit address spaces:

Instruction/Data Memory

Input/Output

Coprocessor

instruction Read-Only Memory (Instruction
ROM)

An address in the instruction/data memory address
space may be treated as virtual or physical, as deter-
mined by the Current Processor Status Register. Ad-
dress transiation for data accesses is enabled sepa-
rately from address translation for instruction accesses.
A program in the Supervisor mode may temporarily dis-
able address transiation for individual loads and stores;
this permits load-real and store-real operations.

PN

Bits contained within load and store instructions distin-
guish between the instruction/data memory, input/out-
put, and coprocessor address spaces. Address transla-
tion also may determine whether an access is per-
formed in the instruction/data memory or the input/out-
put address space. The Current Processor Status regis-
ter determines whether instruction accesses are di-
rected to the instruction/data memory address space or
to the instruction ROM address space.

The Am29000 does not support data accesses directly
to the instruction ROM address space. However, this
capability is possible as a system option.

All addresses are interpreted as byte addresses, al-
though accesses are word-oriented. The number of a
byte within a word is given by the two least-significant
address bits. The number of a half-word within a word is
given by the next-to-least-significant address bit.

Since only byte addressing is supported, it is possible
that an address for the access of a word or half-word is
not aligned to the desired word or half-word. For a word
access, an unaligned address has a 1 in either or both of
the two least-significant address bits. For a half-word
access, an unaligned address has a 1 in the least-sig-
nificant address bit. In many systems, address align-

ment can be ignored, with addresses truncated to ac-
cess the word or half-word of interest. However, as a
user option, the Am23000 creates a trap when a non-
aligned access is attempted. The trap allows software
emulation of nonaligned accesses.

inthe Am29000, all instructions are 32 bits in length, and
are aligned on word-address boundaries.

Byte and Haif-Word Accesses

The Am29000 supports the direct external access of
bytes and half-words as an option. If this option is en-
abled, the Am29000 selects a byte or half-word within a
word on a load, and aligns it to the low-order byte or half-
word of a register. On a store, the low-order byte or half-
word of a register is replicated in all byte or half-word po-
sitions, so that the external memory can easily write the
required byte or half-word in memory. This oplion re-
quires that the external memory system be able to write
individual bytes and half-words within words.

To avoid the memory-system complexity caused by
writing individual bytes and half-words, the Am29000
can perform byte and half-word accesses using soft-
ware alone. The Am29000 can set a byte-position
indicator in the ALU Status Register as an optionforjoad
instructions, with the two least-significant bits of the
address for the load. To load a byte or half-word, a word
load is first performed. This load sets the byle-position
indicator, and a subsequent instruction extracts the byte
or half-word of interest fromthe accessed word. To store
a byte or haif-word, a load is also first performed; the
byte or half-word of interest is inserted into the accessed
word, and the resulting word then is stored. Even if
the Am29000 is configured to perform byte and
half-word accesses in hardware, this software-only
technique operates correctly; this allows software to be
upwardly compatible from simpler systems to more
complex systems.

Iinterrupts and Traps

Normal program flow may be preempted by an interrupt
or trap for which the processor is enabled. The effecton
the processor is identical for interrupts and traps; the
distinction is inthe different mechanisms by which inter-
rupts and traps are enabled. It is intended that interrupts
be used for suspending current program execution and
causing another program to execute, while traps are
used fo report errors and exceptional conditions.

The interrupt and trap mechanism supports high-speed,
temporary context switching and user-defined interrupt-
processing mechanisms.

Temporary Context Switching
The basic intefrupiirap mechanism of the Am29000
supports temporary context switching. During the tem-
porary context switch, the interrupted context is held in
processor registers. The interrupt or trap handler canre-
turn immediately to this context.

Temporary context switching is useful for instruction
emulation, floating-point operations, TLB reload rou-

1-30

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

tines, and so forth. Many of its features are similar to
microprogram execution; processor context does not
have tobe saved, interrupts are disabled forthe duration
of the program, and all processor resources are acces-
sible, even if the context that was interrupted is in the
User mode. The associated routine may execute from
instruction/data memory or instruction ROM.

User-Defined Interrupt Processing

Since the basic interruptirap mechanism for the
Am29000 keeps the interrupted context in the pro-
cessor, dynamically nested interrupts are not supported
directly. The context in the processor must be saved
before another interrupt or trap can be taken.

The interrupt or trap handler executing during a tempo-
rary context switch is not required to return to the in-
terrupted context. This routine optionally may save the
interrupted context, load a new one, and return to the
new context.

The implementation of the saving and restoring of con-
texts is completely user-defined. Thus, the context
save/restore mechanism used (e.g., interrupt stack,
program status word area, efc.) and the amount of con-
text saved may be lailored to the needs of the system.

Vector Area

interrupt and trap dispatching occur through a
relocatable Vector Area, which accommodates as many
as 256 interrupt and trap handling routines. Entries into
the Vector Area are associated with various sources of
interrupts and traps; some are predefined while others
are user-defined.

The Vector Area is either a table of vectors indata mem-
ory where each vector points to the beginning of an in-
terrupt or trap handler, or it is a segment of instruction/
data memory (or instruction ROM) containing the actual
routines. The latter configuration for the Vector Area
yields better interrupt performance with the cost of addi-
tional memory.

Memory Management

The Am23000 incorporates a Memory Management
Unit (MMU) that accepts a 32-bit vitual byte address
and transiates it to a 32-bit physical byte address in a
singie cycle. The MMU is not dedicated to any particular
address-translation architecture.

Address translation in the MMU is performed by a
64-entry Transiation Look-Aside Buffer (TLB), an asso-
ciative table containing the most recently used address
translations for the processor. If the translation for a
given address cannot be performed by the TLB, a TLB
miss occurs and causes a trap that allows the required
translation to be placed into the TLB.

Processor hardware maintains information for each
TLB line indicating which entry was least recently used;
when a TLB miss occurs, this information is used to

indicate the TLB entry to be replaced. Software is
responsible for searching system page tables and modi-
fying the indicated TLB entry as appropriate. This allows
the page tables to be detined according to the system
environment.

TLB entries are modified directly by processor instruc-
tions. A TLB entry consists of 64 bits and appears as two
word-length TLB registers, which may be inspected and
modified by instructions.

TLB entries are tagged with a Task |dentifier field, which
allows the operating systemto create a unique 32-bit vie-
tual address space for each of 256 processes. In addi-
tion, TLB entries provide support for memory protection
and user-defined contro! information.

Coprocessor Programming

The coprocessor interface for the Am239000 allows a
program to communicate with an off-chip coprocessor
for performing operations not supporied by processor
hardware directly.

The coprocessor interface allows the program to trans-
fer operands and operation codes to the coprocessor,
and then perform other operations while the coproces-
sor operation is in progress. The results of the operation
are read from the coprocessor by a separate transfer.
The processor may transfer multiple operands to the
coprocessor without retransferring operation codes or
reading intermediate results. As many as 64 bits of in-
formation can be iransferred to the coprocessor in a
single cycle.

The Am29000 includes features that support the defini-
tion of the coprocessor as a system option. In this case,
coprocessor operations are emulated by software when
the coprocessor is not present in a system.

Timer Facility

The Timer Facility provides a counterfor implementing a
real-time clock or other software timing functions. This
facility comprises two special-purpose registers: the
Timer Counter Register, which decrements at a rate
equal to the processor operating frequency, and the
Timer Reload Register, which reinitializes the Timer
Counter Register when it decrements to 0. The Timer
Facility optionally may create an interrupt when the
Timer Counter decrements to 0.

Trace Facility

The Trace Facility allows a debug program to emulate
single-instruction stepping in a program under test. This
facility allows a trap to be generated after the execution
of any instruction in the program being tested.

Using the Trace Facility, the debug program can inspect
and modify the state of the program at every instruction
boundary. The Trace Facility is designed to work
properly in the presence of normal system interrupts
and traps.

1-31

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

FUNCTIONAL OPERATION

This section briefly describes the operation of Am23000
hardware. It introduces the processor pipeline and the
three major internal functional units: the Instruction
Fetch Unit, the Execution Unit, and the Memory Man-
agement Unit. Finally, the processor's operational
modes are described.

Four-Stage Pipeline

The Am29000 implements a four-stage pipeline for in-
struction execution. The four stages are: fetch, decode,
execute, and write-back. The pipeline is organized so
that the effective instruction execution rate is as high as
one instruction per cycle. Data forwarding and pipeline
interlocks are handled by processor hardware.

Feich Stage

During the fetch stage, the Instruction Fetch Unit
determines the location of the next processor instruction
and issues the instruction to the decode stage. The in-
struction is fetched either from the Instruction Prefetch
Butfer, the Branch Target Cache, or an externat
instruction memory.

Decode Stage

During the decode stage, the Execution Unit decodes
the instruction selected during the feich stage and
fetches and/or assembles the required operands. it also
evaluates addresses for branches, loads, and stores.

Execute Stage

During the execute stage, the Execution Unit perfforms
the operation specified by the instruction. in the case of
branches, loads, and stores, the Memory Manage ment
Unit performs address translation if required.

Write-Back Stage

During the write-back stage, the results of the operation
performed during the execute stage are stored. In the
case of branches, loads, and stores, the physical ad-
dress resulting from translation during the execute
stage is transmitted to an external device or memory.

Function Organization

Figure 3 shows the Am29000 internal data-flow organi-
zation. The following sections refer to the various com-
ponents on this data-flow diagram.

Instruction Fetch Unit

The Instruction Fetch Unit fetches instructions and sup-
plies instructions to other functional units. It incorpo-
rates the instruction Prefetch Buffer, the Branch Target
Cache, and the Program Counter Unit. All components
of the Instruction Fetch Unit operate during the fetch
stage of the processor pipeline.

Instruction Prefetch Buffer
Most instructions executed by the Am23000 are fetched
from external instruction/data memory. The processor

prefetches instructions so that they are requested at
least four cycles before they are required for execution.

Pretetched instructions are stored in a four-word In-
struction Prefetch Buffer while awaiting execution. An
instruction prefetch request occurs whenever there is a
free location in this buffer (if the processor is otherwise
enabled to fetch instructions). When a nonsequential in-
struction fetch occurs, prefetching is terminated, and
then restarted for the new instruction stream.

Instruction prefetching uncouples the instruction fetch
rate from the instruction access latency. For example,
an instruction may be transferred to the processor two
cycles after it is requested. However, as long as instruc-
tions are supplied to the processor at an average rate of
one instruction per cycle, this latency has no effect on
the instruction execution rate.

Branch Target Cache

The Am29000 incorporates a Branch Target Cache that
contains as many as 128 instructions. The Branch Tar-
get Cache is a two-way, set-associative cache contain-
ing the first four target instructions of a number of re-
cently taken branches. Each of the two sets in the
Branch Target Cache contains 64 instructions, and the
64 instructions are further divided into 16 blocks of 4 in-
structions each. :

The purpose of the Branch Target Cache is to provide
instructions for the beginning of a nonsequential in-
struction-fetch sequence. This keeps the instruction
pipeline full until the processor can establish a new in-
struction prefetch stream from the external instruction/
data memory.

The processor is organized so that branch instructions
can execute in a single cycle if the target instruction se-
quence is present in the Branch Target Cache.

Program Counter Unit

The Program Counter Unit creates and sequences
addresses of instructions as they are executed by the
processor.

Execution Unit

The Execution Unit executes instructions. It incorpo-
rates the Register File, the Address Unit, the Arithmetic/
Logic Unit, the Field Shift Unit, and the Prioritizer. The
Register File and Address Unit operate during the de-
code stage of the pipeline. The Arithmetic/Logic Unit,
Field Shift Unit, and Prioritizer operate during the exe-
cute stage of the pipeline. The Register File operates
during the write-back stage.

Register File

The general-purpose registers are implemented by a
192-location Register File. The Register File can per-
form two read accesses and one write access in a single
cycle. Normally, two read accesses are performed dur-
ing the decode-pipeline stage to fetch operands re-

1-32

Copyrighted By Its Respective Manufacturer

This Materia

Am295000

-
' EXECUTION UNIT
T INSTAUCTION FETCH UNIT ' R-AUS o '
0
: - 1 :
. e PC.BUS 3 ' —3{ C [.
Branch Target [V td T st
' Cache ' Address por ol B) .
' 2nedx 2 Program | Unk Generator Rang::u .
' Counter ' — 192 x 32 .
' Unit [
' N .
’ : A a .
) | .
'] R : 1-BUS » .
. , A-BUS 4
' <3 .
» N B-BUS .
, Instruction . <3¢ »
’ Prefetch 17 4 . *
: 8 ¢ Read/ A B :
] [S d_. _: Write .
! , MEMORY MANAGEMENT 1 | Contret :
.] UNIT ' l .
*]
' Arthmetic Logic Unit [
. : TLBREG# : Field Shift Unit 3
' -ABi Prioritizer [
' \ Botior | [Toewe 11| spocia D-8us '
' N and Interface ' Purmpose Interface N
' 1 Pratection Logic | Registers '
. ' 2x32x64 ' [
' ' ' '
: N I : oavs [;
’ 1 ' 1
N ! 2 A-BUS :
1] i L3
e - -- L I o e e e - T T I I e B ittt -
instruction Baa
Bus Bus

Figure 3. Am29000 Data Flow

quired by the instruction being decoded. The write ac-
cess during the same cycle completes the write-back
stage of a previously executed instruction.

Addressing logic associated with the Register File dis-
tinguishes between the global and local general-
purpose registers, and it performs the Stack-Pointer ad-
dressing for the local registers. Register File addressing
functions are performed during the decode stage.

Address Unit

The Address Unit evaluates addresses for branches,
loads, and stores. lt also assembles instruction-immedi-
ate data and computes addresses for Load Multiple and
Store Multiple sequences.

Arithmetic/Logic Unit
The ALU performs all logical, compare, and arithmetic
operations (including multiply step and divide step).

Fleld Shift Unit

The Field Shift Unit performs N-bit shifts. The Field Shift
Unit also performs byte and half-word extract and insert
operations, and it extracts words from double words.

Prioritizer

The Prioritizer provides a count of the number of leading
0 bits in a 32-bit word; this is useful for performing float-
ing-point normalization, for example. It can also
be used to implement prioritization in a muitilevel
interrupt handler.

Memory Management Unit

The Memory Management Unit (MMU) performs ad-
dress translation and memory-protection functions for
allbranches, loads, and stores. The MMU operates dur-
ing the execute stage of the pipeline, so the physical ad-
dress that it generates is available at the beginning of
the write-back stage.

All addresses for external accesses are physical ad-
dresses. MMU operation is pipelined with external ac-
cesses, so that an address translation can occur while a
previous access is being completed.

Address translation is not performed for the addresses
associated with instruction prefetching. Instead, these
addresses are generated by an instruction prefetch
pointer that is incremented by the processor. Address

1-33

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

translation is performed only at the beginning of the
prefetch sequence (as the result of a branch instruc-
tion), and when the pretetch pointer crosses a potential
virtual-page boundary.

Processor Modes

The Am29000 operates in several different modes to
accomplish various processor and system functions. All
modes except for Pipeline Hold (see below) are under
direct control of instructions and/or processor control
inputs. The Pipeline Hold mode normally is determined
by the relative timing between the processor and its
external system for certain types of operations. The
processor provides an external indication of its
operational mode.

Executing

When the processor is in the Executing mode, it fetches
and executes instructions as described in this manual.
External accesses occur as required.

Wait

Whenthe processor is in the Wait mode, it does not exe-
cute instructions and it performs no external accesses.
The Wait mode is controlled by the Current Processor
Status Register. The processor leaves this mode when
an interrupt or trap for which it is enabled occurs, or
when a reset occurs.

Pipeline Hold

Under certain conditions, processor pipelining might
cause nonsequential instruction execution or timing-de-
pendent resuits of execution. For example, the proces-
sor might attempt to execute an instruction that has not
been fetched from instruction/data memory.

For such cases, pipeline-interlock hardware detects the
anomalous condition and suspends processor execu-
tion until execution can proceed properly. While execu-
tion is suspended by the interlock hardware, the proces-
sor is in the Pipeline Hoid mode. The processor re-
sumes execution when the pipeline-interlock hardware
determines that it is correct to do so.

Halt

The Halt mode is provided so that the processor may be
placed under the control of the ADAPT29K or other
hardware-development system for the purposes of
hardware and software debugging. The processor en-
ters the Halt mode as the result of instruction execution,
or as the result of external controls. In the Halt mode, the
processor neither fetches nor executes instructions.

Step

The Step mode allows the ADAPT29K or other hard-
ware-development system to step through processor
pipeline operation on a stage-by-stage basis. The Step
mode is nearly identical to the Halt mode, except that it
enables the processor to enter the Executing mode
while the pipeline advances by one slage.

Load Test Instruction

The Load Test Instruction mode permits the ADAPT29K
or other hardware-development system to access data
contained in the processor or system. This is accom-
plished by aliowing the ADAPT29K to supply the pro-
cessor with instructions, instead of having the processor
fetch instructions from instructionsdata memory. The
Load Test Instruction mode is defined so that, once the
processor has completed the execution of instructions
provided by the ADAPT29K, it may resume the execu-
tion of its normal instruction sequence.

Test

The Test mode facilitates testing of hardware associ-
ated with the processor by disabling processor outputs
so that they may be driven directly by test hardware. The
Test mode also allows the addition of a second proces-
sor to a system to monitor the outputs of the first and to
signal detected errors.

Reset

The Reset mode provides initialization of certain pro-
cessor registers and control state. This is used for
power-onreset, for eliminating unrecoverable error con-
ditions, and for supporting certain hardware debugging
functions.

System Interface

This section briefly describes the features of the
Am23000 that allow it to be connected to other system
components.

The two major interfaces of the Am23000, introduced in
this section, are the channel and the Test/Development
interfaces. The other topics briefly described here are
clock generation, master/slave checking, and coproces-
sor attachment.

Channel

The Am29000 channel consists of the following 32-bit
buses and related controls:

1. An Instruction Bus, which transfers instructions
into the processor

2. ADataBus, whichtransfers datato and fromthe
processor

3. An Address Bus, which provides addresses for
both instruction and data accesses. The ad-
dress bus also is used 1o transfer data to a
COprocessor.

The channel performs accesses anddata transfersto all
external devices and memories, including instruction/
data memories, instruction caches, instruction read-
only memories, data caches, input/output devices, bus
converters, and coprocessors.

1-34

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

The channel defines three different access protocols:
simple, pipelined, and burst-mode. For simple
accesses, the Am29000 holds the address valid
throughout the entire access. This is appropriate for
high-speed devices that can complete an access in one
cycle, and for fow-cost devices that are accessed in-
frequently (such as read-only memories containing
initialization routines). Pipelined and burst-mode
accesses provide high performance with other types of
devices and memories.

For pipelined accesses, the address transter is uncou-
pled from the corresponding data or instruction transfer.
After transmitting an address for a request, the proces-
sor may transmit one more address before receiving the
reply to the first request. This allows address transfer
and decoding to be overlapped with another access.

On the other hand, burst-mode accesses eliminate the
address-transfer cycle completely. Burst-mode ac-
cesses are defined so that once an address is trans-
ferred for a given access, subsequent accesses 1o se-
quentially increasing addresses may occur without re-
transfer of the address. The burst may be terminated at
any time by either the processor or responding device.

The Am23000 determines whether an access is simple,
pipelined, or burst-mode on a transfer-by-transfer (i.e.,
generally device-by-device) basis. However, an access
that begins as a simple access may be converted to a
pipelined or burst-mode access at any time during the
transfer. This relaxes the timing constraints on the chan-
nel-protocol implementation, since addressed devices
do not have to respond immediately to a pipelined or
burst-mode request.

Except for the shared address bus, the channel main-
tains a strict division between instruction and data
accesses. In the most common situation, the system
supplies the processor with instructions using burst-
mode accesses, with instruction addresses transmitted
to the system only when a branch occurs. Data ac-
cesses can occur simultaneously without interfering
with instruction transfer.

The Am29000 contains arbitration kogic to support other
masters onthe channel. A single external master can ar-
bitrate directly for the channel, while multiple masters
may arbitrate using a daisy chain or other method that
requires no additional arbitration logic. However, to in-
crease arbitration performance in a multiple-master
configuration, an external channel arbiter shouid be
used. This arbiter works in conjunction with the proces-
sor’s arbitration logic.

Test/Development Interface

The AmM29000 supports the attachment of the
ADAPT29K or other hardware-development system.
This attachment is made directly to the processor in the
system under development, without the removal of the
processor from the system. The Test/Development In-
terface makes it possibie for the hardware-development
system to gain controt over the Am29000, and inspect

and modify its internal state (e.g., general-purpose reg-
ister contents, TLB entries, etc.). In addition, the
Am29000 may be used to access other system devices
and memories on behalf of the hardware-development
system.

The TesVDevelopment interface is made up of controls
and status signals provided on the Am29000, as well as
the instruction and data buses. The Halt, Step, Reset,
and Load Test Instruction modes aflow the hardware-
development system to control the operation of the
Am29000. The hardware-development system may
supply the processor with instructions on the instruction
bus using the load test instruction mode. The internal
processor state can be inspected and modified via the
data bus.

Clocks

The Am29000 generates and distributes a system clock
at its operating frequency. This clock is specially de-
signed to reduce skews between the system clock and
the processor’s internal clocks. The internal clock-gen-
eration circuitry requires a single-phase oscillator signal
at twice the processor operating frequency.

For systems in which processor-generated clocks are
not appropriate, the Am239000 also can accept a clock
from an external clock generator.

The processor decides between these two clocking
arrangements based on whether the power supply to
the clock-output driver (PWRCLK) is tied to +5 voltsor to
Ground.

Master/Slave Operation

Each Am23000 output has associated logic that com-
pares the signal on the output with the signal that the
processor is providing internally 1o the output driver. The
processor signals situations where the output of any en-
abled driver does not agree with its input.

For a single processor, the output comparison detects
short circuits in output signals, but does not detect open
circuits. it is possible to connect a second processor in
parallel with the first, where the second processor has
its outputs disabled due to the Test mode. The second
processor detects open-circuit signals, as well as pro-
vides a check of the outputs of the first processor.

Coprocessor Attachment

A coprocessor for the Am23000 attaches directly to the
processor channel. However, this attachment has fea-
tures that are different from those of other channel de-
vices. The coprocessor interface is designed to support
a high operand transfer rate and to support the overlap
of coprocessor operations with other processor opera-
tions, including other extermnal accesses.

The coprocessor is assigned a special address space
on the channel. This permits the transfer of operands
and other information on the address bus without inter-
fering with normal addressing functions. Since both the

1-35

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

address bus and data bus are used for data transter, the
Am29000 can transfer 64 bits of information to the
coprocessor in one cycle.

Program Modes

All system-protection features of the Am28000 are
based on two mutually exclusive program modes: the
Supervisor mode and the User mode. Memory pro-
tection in the Memory Management Unit is also based
on the Supervisor and User modes (see Memory
Management section).

Supervisor Mode

The processor is in the Supervisor mode whenever the
Supervisor Mode (SM) bit of the Curmrent Processor
Status Register (see Register Description section) is 1.
In this mode, executing programs have access to all
processor resources.

During the address cycle of a channe! request, the
Supervisor mode is indicated by the SUP/US output be-
ing High.

User Mode

The processor is in the User mode whenever the SM bit
in the Current Processor Status Register is 0. In this
mode, any of the following actions by an executing pro-
gram causes a Protection Violation trap to occur:

1. An attempted access of any TLB entry.

2. An attempted access of any general-purpose
register for which a bit in the Register Bank Pro-
tect Registeris 1.

3. An attempted execution of a load or store in-
struction for which the PA bitis 1, or for which the
UA bit is 1. (The attempted execution of a trans-
lated load or store for which the AS bit is 1 also
causes a Protection Violation trap. However,
this trap occurs regardiess of whether or not the
processor is in the User mode.)

4. An attempted execution of one of the following
instructions: Interrupt Return, Interrupt Return
and Invalidate, Invalidate, or Halt. However, a
hardware-development system such as the
ADAPT29K can disable protection checking for
the Halt instruction, so this instruction may be
used to implement instruction breakpoints in
User-mode programs.

5. An attempted access of one of the following reg-
isters: Vector Area Base Address, Old Proces-
sor Status, Current Processor Status, Configu-
ration, Channel Address, Channel Data, Chan-
nel Control, Register Bank Protect, Timer
Counter, Timer Reload, Program Counter 0,
Program Counter 1, Program Counter 2, MMU
Configuration, or LRU Recommendation.

6. An attempted execution of an assert or Emulate
instruction that specifies a vector number be-
tween 0 and 63, inclusive.

Devices and memories on the channel also can imple-
ment protection and generate traps based on the value
of the SM bit. During the address cycle of a channel re-
quest, the User mode is indicated by the SUP/US output
being Low.

1-36

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

REGISTER DESCRIPTION

The Am29000 has three classes of registers that are
accessible by instructions. These are general-purpose
registers, special-purpose registers, and Translation
Look-Aside Buffer (TLB) registers. Any operation avail-
able in the Am29000 can be performed on the general-
purpose registers, while special-purpose registers and
TLB registers are accessed only by explicit data move-
ment to or from general-purpose registers. Various pro-
tection mechanisms prevent the access of some of
these registers by User-mode programs.

General-Purpose Registers

The Am238000 incorporates 192 generai-purpose regis-
ters. The organization of the general-purpose registers
is diagrammed in Figure 4.

General-purpose registers hold the following types of
operands for program use:

32-bit data addresses

32-bit signed or unsigned integers

32-bit branch-target addresses

32-bit logical bit strings

8-bit signed or unsigned characters

16-bit signed or unsigned integers

word-length Booleans

single-precision floating-point numbers
double-precision floating-point numbers (in two
register locations)

CENOIO AN

Because a large number of general-purpose registers
are provided, a large amount of frequently used data
can be kept on-chip, where access time is fastest.

Am23000 instructions can specify two general-purpose
registers for source operands, and one general-purpose
register for storing the instruction resutt. These registers
are specified by three 8-bit instruction fields containing
register numbers. A register may be specified directly by
the instruction, or indirectly by one of three special-pur-
pose registers.

Register Addressing

The general-purpose registers are partitioned into 64
global registers and 128 local registers, differentiated by
the most-significant bit of the register number. The dis-
tinction between global and local registers is the result of
register-addressing considerations.

The following terminology is used to describe the ad-
dressing of general-purpose registers:

1. Register number—this is a software-level num-
ber for a general-purpose register. For example,
this is the number contained in an instruction
field. Register numbers range from 0 to 255.

2. Global register number—this is a software-tevel
number for a global register. Global register
numbers range from 0 to 127.

3. Local register number—this is a software-level
number for a local register. Local register num-
bers range from 0 to 127.

4. Absolute register number—this is a hardware-
level number used to select a general-purpose
register in the Register File. Absolute register
numbers range from 0 to 255.

Global Registers

When the most-significant bit of a register numberis 0, a
giobal register is selected. The seven least-significant
bits of the register number give the global register num-
ber. For globalregisters, the absolute register number is
equivalent to the register number.

Global Registers 2 through 63 are unimplemented. An
attempt to access these registers yields unpredictable
results; however, they may be protected from User-
mode access by the Regisler Bank Protect Register.

The register numbers associated with Giobal Registers
0 and 1 have special meaning. The number for Global
Register 0 specifies that an indirect pointer is to be used
as the source of the register number; there is an indirect
pointer for each of the instruction operand/result
registers. Global Register 1 contains the Stack Pointer,
which is used in the addressing of local registers as
explained below.

Local Register Stack Pointer

The Stack Pointer is a 32-bit register that may be an op-
erand of an instruction as any other general-purpose
register. However, a shadow copy of Global Register 1
is maintained by processor hardware to be used in local
register addressing. This shadow copy is set only with
the resuits of Arithmetic and togical instructions. If the
Stack Pointer is set with the result of any other instruc-
tion class, local registers cannot be accessed predict-
ably until the Stack Pointer is set once again with an
Arithmetic or Logical instruction.

Local Registers

Whenthe most-significant bit of a registernumberis 1, a
local register is selected. The seven least-significant
bits of the register number give the local-register num-
ber. For local registers, the absolute register number is
obtained by adding the local register number to bits 8-2
of the Stack Pointer and truncating the result to seven
bits; the most-significant bit of the original register num-
ber is unchanged (i.e., it remains a 1).

The Stack Pointer addition applied to local register num-
bers provides a limited form of base-plus-offset ad-
dressing within the local registers. The Stack Pointer
contains the 32-bit base address. This assists run-time
storage management of variables for dynamically
nested procedures.

1-37

Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

Absolute REG# General-Purpose Register
0 Indirect Pointer Access
1 Stack Pointer
2 through 63 not implemented
g
64 Global Register 64
65 Global Register 65
66 Global Register 66
Global ° *
Registers * *
. .
126 Global Register 126
127 Global Register 127
\
/
128 Local Register 126
129 Local Register 126
130 Local Register 127
131 Local Register 0 ._I
132 Local Register 1
Local Stack
Registers . . Pointer
. . =131
° . {example)
254 Local Register 123
\ 255 Local Register 124
Figure 4. General-Purpose Register Organization
Register Banking and are partitioned according to absolute register num-
For the purpose of access restriction, the general- bers, as shown in Figure 5.
purpose registers are divided into register banks. Regis- The Register Bank Protect Register contains 16 protec-
ter banks consist of 16 registers (except for Bank 0, tion bits, where each bit controls User-mode accesses

which contains Unimplemented Registers 2 through 15)

1-38

This Material Copyrighted By Its Respective Manufacturer

Am29000

Register Absolute- General-Purpose
Bank Protect Register Numbers Registers
Register Bit
Bank 0
0 2 through 15 {unimplemented)
1 16 through 31 Bank 1
(unimplemented)
2 32 through 47 Bank 2
(unimplemented)
3 48 through 63 Bank 3
(unimplemented)
4 64 through 79 Bank 4
5 80 through 95 Bank 5
6 96 through 111 Bank 6
7 112 through 127 Bank 7
8 128 through 143 Bank 8
9 144 through 159 Bank 9
10 160 through 175 Bank 10
11 176 through 191 Bank 11
12 192 through 207 Bank 12
13 208 through 223 Bank 13
14 224 through 239 Bank 14
15 240 through 255 Bank 15

This Materia

Figure 5. Register Bank Organization

(read or write) to a bank of registers. Bits 0—15 of the
Register Bank Protect Register protect Register Banks
0 through 15, respectively.

When abitin the Register Bank Protect Registeris 1 and
a register in the corresponding bank is specified as an
operand register or result register by a User-mode in-
struction, a Protection Violation trap occurs. Note that
protection is based on absolute register numbers; inthe
case of local registers, Stack-Pointer addition is per-
formed before protection checking.

When the processor is in Supervisor mode, the Register
Bank Protect Register has no effect on general-purpose
register accesses.

Indirect Accesses

Specification of Global Register 0 as an instruction-op-
erand register or result register causes an indirect ac-
cess 1o the general-purpose registers. In this case, the
absolute register number is provided by an indirect
pointer contained in a special-purpose register.

1-39

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

Each of the three possible registers for instruction exe-
cution has an associated 8-bit indirect pointer. Indirect
register numbers can be selected independently for
each of the three operands. Since the indirect pointers
contain absolute register numbers, the number in an
indirect pointer is not added to the Stack Pointer when
local registers are selected.

The indirect pointers are set by the Move To Special
Register, Floating-Point, MULTIPLY, MULTM, MULTI-
PLU, MULTMU, DIVIDE, DIVIDU, SETIP, and EMU-
LATE instructions.

For a Move To Special Register instruction, an indirect
pointer is set with bits 9—2 of the 32-bit source operand.
This provides consistency between the addressing of
words in general-purpose registers and the addressing
of words in external devices or memories. A modifica-
tion of an indirect pointer using a Move To Special Reg-
ister has a delayed effect on the addressing of general-
purpose registers.

Forthe remaining instructions, all three indirect pointers
are set, simultaneously, with the absolute register num-
bers derived from the register numbers specified by the
instruction. For any local registers selected by the in-
struction, the Stack-Pointer addition is applied to the
register numbers before the indirect pointers are set.

Register numbers stored into the indirect pointers are
checked for bank-protection violations—except when
an indirect pointer is set by a Move-To-Special-Register
instruction—at the time that the indirect pointers are set.

Special-Purpose Registers

The Am29000 contains 27 special-purpose registers.
The organization of the special-purpose registers is
shown in Figure 6.

Special-purpose registers provide controls and data for
certain processor operations. Some special-purpose
registers are updated dynamically by the processor, in-
dependent of software controls. Because of this, a read
of a special-purpose register following a write does not
necessarily get the data that was written.

Some special-purpose registers have fields that are re-
served for future processor implementations. When a
special-purpose register is read, a bit in a reserved field
is read as a 0. An attempt to write a reserved bit witha 1
has no effect; however, this shouid be avoided because
of upward-compatibility considerations.

The special-purpose registers are accessed by expilicit
data movement only. Instructions that move data to or
from a special-purpose register specify the special-
purpose register by an 8-bit field containing a special-
purpose register number. Register numbers are speci-
fied directly by instructions.

An attempted read of an unimplemented special-pur-
pose register yields an unpredictable value. An at-
tempted write of an unimplemented special-purpose

register has no effect; however, this should be avoided,
because of upward-compatibility considerations.

The special-purpose registers are partitioned into pro-
tected and unprotected registers. Special-purpose reg-
isters numbered 0-127 and 160-255 are protected
(note that not all of these are implemented). Special-
purpose registers numbered 128—159 are unprotected
(again, not all are implemented).

Protected special-purpose registers numbered 0-127
are accessible only by programs executing in the Super-
visor mode. An attempted read or write of a protected
special-purpose register by a User-mode program
causes a Protection Violation irap to occur. Protected
special-purpose registers numbered 160-255 are not
accessible by programs in either the User mode or the
Supervisor mode. These register numbers identify vir-
tual registers in the floating-point architecture.

The Floating-Point Environment Register, integer Envi-
ronment Register, Floating-Point Status Register, and
Exception Opcode Register are not implemented in
processor hardware. These registers are implemented
via a virtual floating-point interface provided on the
Am29000.

Unprotected special-purpose registers are accessibie
by programs executing in both the User and Supervisor
modes.

Vector Area Base Address (Register 0)

This protected special-purpose register (see Figure 7)
specifies the beginning address of the interruptitrap
Vector Area. The Vector Area is either a table of 256
vectors that points to interrupt and trap handling
routines, or a segment of 256 64-instruction blocks that
directly contains the interrupt and trap handling
routines.

The organization of the Vector Areais determined by the
Vector Fetch (VF) bit of the Configuration Register. If the
VF bit is 1 when an interrupt or trap is taken, the vector
number for the interrupt or trap (see Interrupts and
Traps section) replaces bits 9-2 of the value in the
Vector Area Base Address Register to generate the
physical address for a vector contained in instruction/
data memory.

if the VF bit is 0, the vector number replaces bits 15-8 of
the value in the Vector Area Base Address Register to
generate the physical address of the first instruction of
the interrupt or trap handler. The instruction fetch for this
instruction is directed either to instruction memory or in-
struction read-only memory, as determined by the ROM
Vector Area (RV) bit of the Configuration Register.

Bits 31-16: Vector Area Base (VAB)—The VAB field
gives the beginning address of the Vector Area. This ad-
dress is constrained to begin on a 64-kb address-
boundary in instruction data memory or instruction read-
only memory.

1-40

Copyrighted By Its Respective Manufacturer

Am29000

Register Number

Protected Registers

0 Vector Area Base Address
1 Old Processor Status
2 Current Processor Status
3 Configuration
4 Channel Address
5 Channel Data
[Channel Control
7 Register Bank Protect
8 Timer Counter
9 Timer Reload
10 Program Counter 0
1 Program Counter 1
12 Program Counter 2
13 MMU Configuration
14 LRU Recommendation
Unprotected Registers
128 Indirect Pointer C
129 Indirect Pointer A
130 Indirect Pointer B
131 Q
132 ALU Status
133 Byte Pointer
134 Funnel Shift Count
135 Load/Store Count Remaining
'1 8;) Floating-Point Environment
161 Integer Environment
162 Floating-Point Status
164 Exception Opcode

Figure 6. Special-Purpose Registers

Mnemonic
vTB
OPS
CPS
CFG
CHA
CHD
CHC
RBP
T™MC
TMR
PCO
PC1
PG2
MMUC
LRU

IPC
IPA
IPB

SR
BPR
FCR
MC
FPE
INTE
FPS
EXOP

This Material Copyrighted By Its Respective Manufacturer

1-41

This Materia

29K Family CMOS Devices

15

TTTTTTTTITTTTT]

VAB

Figure 7. Vector Area Base Address Register

Bits 15-0: Zeros—These bits force the alignment of the
Vector Area.

Old Processor Status (Register 1)

This protected special-purpose register has the same
format as the Current Processor Status described be-
low. The Old Processor Status stores a copy of the Cur-
rent Processor Status when an interrupt or trap is taken.
This is required since the Current Processor Status will
be modified to reflect the status of the interrupt/trap
handler.

During an interrupt return, the Old Processor Status is
copied into the Current Processor Status. This allows
the Current Processor Status to be set as required for
the routine that is the target of the interrupt return.

Current Processor Status (Register 2)

This protected special-purpose register (see Figure 8)
controls the behavior of the processor and its ability to
recognize exceptional events.

Bits 31-16: reserved.

Bit 15: Coprocessor Active (CA)—The CA bit is set
and reset underthe control of load and store instructions
that transfer informationto and from a coprocessor. This
bit indicates that the coprocessor is performing an op-
eration at the time that an interrupt or trap is taken. This
notifies the interrupt or trap handier that the coprocessor
contains state information to be preserved. Note that
this notification occurs because the CA bit of the Old
Processor Status is 1 in this case, not because of the
value of the CA bit of the Current Processor Status.

Bit 14: Interrupt Pending (IP)—This bit allows soft-
ware to detect the presence of external interrupts while
they are disabled. The IP bit is set if one or more of the
external signals INTR—INTRoe is active, but the proces-
sor is disabled from taking the resulting interrupt due to

the value of the DA, DI, or IM bits. If all external interrupt
signals subsequently are deasserted while still dis-
abled, the 1P bit is reset.

Bits 13—12: Trace Enable, Trace Pending (TE, TP)—
The TE and TP bits implement a software-controlled, in-
struction single-step facility. Single stepping is not im-
plemented directly, but rather emulated by trap se-
quences controlled by these bits. The value of the TE bit
is copied to the TP bitwhenever aninstruction execution
is completed. When the TP bitis 1, a Trace trap occurs.

Bit 11: Trap Unaligned Access (TU)—The TU bit en-
ables checking of address alignment for external data-
memory accesses. When this bit is 1, an Unaligned Ac-
cess trap occurs if the processor either generates an ad-
dress for an external word that is not aligned on a word
address boundary (i.e., either of the least-significant two
bits is 1), or generates an address for an external half-
word that is not aligned on a half-word address bound-
ary (i.e., the least-significant address bit is 1). When the
TU bit is 0, data-memory address alignment is ignored.

Alignment is ignored for input/output accesses and
coprocessor transfers. The alignment of instruction ad-
dresses is also ignored (unaligned instruction ad-
dresses can be generated only by indirect jumps). Inter-
rupt/trap vector addresses always are aligned properly.

Bit 10: Freeze (FZ)—The FZ bit prevents certain regis-
ters from being updated during interrupt and trap pro-
cessing, except by explicit data movement. The affected
registers are: Channel Address, Channel Data, Channel
Control, Program Counter 0, Program Counter 1, Pro-
gram Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values.
An affected register can be changed only by a Move To
Special Register instruction. When the FZ bit is 0, there
is no effect on these registers, and they are updated by

31 23
ILARERRERRRRRRA

Reserved

1o
CA

Voo
Te! 1
TP

Oe==4
>

L)
I
WM,
P E

Figure 8. Current Processor Status Register

1-42

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

processor instruction execution as described in this
manual.

The FZ bit is set whenever an interrupt or trap is taken,
holding critical state in the processor so that it is not
modified unintentionally by the interrupt or trap handler.

Bit 9: Lock (LK)—The LK bit controls the value of the
LOCK external signal. If the LK bit is 1, the COCK signal
is active. If the LK bit is 0, the LOCK signal is controlied
by the execution of the instructions Load and Set, Load
and Lock, and Store and Lock. This bit is provided for
the implementation of multiprocessor synchronization
protocols.

Bit 8: ROM Enable (RE)—The RE bit enables instruc-
tion fetching from external instruction read-only memory
(ROM). When this bit is 1, the IREQT signal directs all
instruction requests to ROM. Instructions that are
fetched from ROM are subject to capture and reuse by
the Branch Target Cache whenit is enabled; the Branch
Target Cache distinguishes between instructions from
ROM and those from non-ROM storage. When this bit
is 0, off-chip requests for instructions are directed to
instruction/data memory.

Bit 7: WAIT Mode (WM)—The WM bit places the pro-
cessor in the Wait mode. When this bit is 1, the proces-
sor performs no operations. The Wait mode is reset by
an interruptor trap for which the processoris enabled, or
by the Reset mode.

Bit 6: Physicai Addressing/Data (PD)—The PD bit
determines whether address translation is performed
for load or store operations. Address translation is per-
formed for an access only when this bit is 0, and the
Physical Address (PA) bit in the load or store instruction
causing the access is also 0.

Bit 5: Physical Addressing/instructions (Pl}—The Pi
bit determines whether address translation is performed
for external instruction accesses. Address translation is
performed only when this bit is 0.

Bit 4: Supervisor Mode (SM)—The SM bit protects
certain processor context, such as protected special-
purpose registers. When this bit is 1, the processor is in
the Supervisor mode, and access to all processor con-
textis allowed. When this bit is 0, the processor is in the
User mode, and access to protected processor context
is not allowed; an attempt to access (either read or write)
protected processor context causes & Protection Viola-
tion trap.

For an external access, the User Access (UA) bit in the
load or store instruction also controls access to pro-
tected processor context. When the UA bit is 1, the
Memory Management Unit and channel perform the ac-
cess as though the program causing the access was in
User mode.

Bits 3-2: Interrupt Mask (IM}—The IM field is an en-
coding of the processor priority with respect to external
interrupts. The interpretation of the interrupt mask is
specified by the following table:

IM Value Result
00 INTR, enabled
01 INTR,—INTR, enabled
10 INTR-INTR, enabled
11 INTR,~INTR, enabled

Bit 1: Disable Interrupts {Di}—The DI bit prevents the
processor from being interrupted by external interrupt
requests INTR=—INTRo. When this bit is 1, the processor
ignores all external interrupts. However, note that traps
{both internal and external), Timer interrupts, and Trace
traps will be taken. When this bit is 0, the processor will
take any interrupt enabled by the IM field, unless the DA
bit is 1.

Bit 0: Disable all interrupts and Traps (DA)—The DA
bit prevents the processor from taking any interrupts
and most traps. Whenthis bit is 1, the processor ignores
interrupts and traps, except for the WARN, Instruction
Access Exception, Data Access Exception, and Co-
processor Exception traps. When this bit is 0, all traps
will be taken, and interrupts will be taken if otherwise
enabled.

Configuration (Register 3)

This protected special-purpose register (see Figure 9)
controls certain processor and system options. Most
fields normally are modified only during system initial-
ization. The Configuration Register definition follows.

Bits 31-24: Processor Reiease Level (PRL)—The
PRL field is an 8-bit, read-only identification number that
specifies the processor version.

Bits 23-6: reserved.

Bit 5: Data Width Enable (DW)—The DW bit enables
and disables byte and half-word external accesses. If
the DW bit is 0, byte and half-word accesses are not per-

23

PRL

SEEEERAEREERREREEREREREERE

Reserved

T v 1 v v
R T T I |

. ! ot
DW 'RV | CP !
VF BO cb

Figure 9. Configuration Register

1-43

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

formed in hardware, and these accesses must be emu-
lated by software. if the DW bit is 1, byte and half-word
accesses are performed by hardware: this requires that
external devices and memories be able to write individ-
ual bytes and half-words within a word.

Bit 4: Vector Fetch (VF)—The VF bit determines the
structure of the interrupt/trap Vector Area. If this bitis 1,
the Vector Area is defined as a block of 256 vectors that
specify the beginning addresses of the interrupt andtrap
handling routines. if the VF bit is 0, the Vector Areais a
segment of 256 64-instruction biocks that contain the
actual routines.

Bit 3: ROM Vector Area (RV)—If the VF bit is 0, the RV
bit specifies whether the Vector Area is contained in
instruction memory (RV = 0) or instruction read-only
memory (RV = 1). The value of the RV bit is irrelevant if
the VF bitis 1.

Bit 2: Byte Order (BO)—The BO bit determines the or-
dering of bytes and half-words within words. |f the BO bit
is 0, bytes and hatf-words are numbered left-to-right
within aword. If the BO bit is 1, bytes and half-words are
numbered right-to-left.

Bit 1: Coprocessor Present (CP)—The CP bit indi-
cates the presence of a coprocessor that may be used
by the processor. if this bit is 1, it enables the execution
of load and store instructions that have a Coprocessor
Enable (CE) bit of 1. if the CP bit is 0 and the processor
attempts to execute a load or store instruction with a CE
bit of 1, a Coprocessor Not Present trap occurs. This
feature may be used to emulate coprocessor operations
as well as to protect the state of a coprocessor shared
between muttiple processes.

Bit 0: Branch Target Cache Disable (CD)—The CD bit
determines whether or not the Branch Target Cache is
used for nonsequential instruction references. When
this bit is 1, all instruction references are directed to ex-
ternal instruction memory or instruction ROM, and the
Branch Target Cache is not used. When this bit is 0, the
targets of nonsequential instruction fetches are storedin
the Branch Target Cache and reused. The value of the

CD bit does not take effect until the execution of the next
branch instruction.

Channel Address (Register 4)

This protected special-purpose register (Figure 10} is
used to report exceptions during external accesses or
coprocessor transfers. it also is used to restart inter-
rupted Load Multiple and Store Multiple operations, and
to restart other external accesses when possibie (e.g.,
after TLB misses are serviced).

The Channel Address Register is updated onthe execu-
tion of every load or store instruction, and on every load
or store in a Load Multiple or Store Muttiple sequence,
except when the Freeze (FZ) bit in the Current Proces-
sor Status Register is 1.

Bits 31-0: Channel Address (CHA)—This field con-
tains the address of the current channel transaction (it
the FZ bit of the Current Processor Status Register is 0).
For external data accesses, the address is virtual if ad-
dress translation was enabled for the access, or physi-
cal if transiation was disabled. For transfers to the
coprocessor, the CHA field contains data transferred to
the coprocessor.

Channel Data (Reglster 5)

This protected special-purpose register (Figure 11) is
used to report exceptions during external accesses or
coprocessor transfers. It is also used to restart the first
store of an interrupted Store Multiple operation and to
restart other extemnal accesses when possible (e.g., af-
ter TLB misses are serviced).

The Channel Data Register is updated on the execution
of every load or store instruction, and on every load or
store in a Load Muttiple or Store Multiple sequence, ex-
cept when the Freeze (F2) bit in the Current Processor
Status Registeris 1. Whenthe Channel Data Register is
updated for a load operation, the resulting value is un-
predictable.

Bits 31-0: Channel Data (CHD)—This field contains
the data (if any) associated with the current channel

EEEERRERREBRRRERERRRRERRRRRREES

CHA

Figure 10. Channel Address Register

SRRRERRRRERRRRRRRERRRRRRRRREERD

CHD

Figure 11. Channel Data Register

1-44

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

transaction (if the FZ bit of the Current Processor Status
Register is 0). If the current channel! transaction is not a
store or a transfer to the coprocessor, the value of this
field is irrelevant.

Channel Control (Register 6)

This protected special-purpose register (Figure 12) is
used to report exceptions during external accesses or
coprocessor transfers. It also is used to restart inter-
rupted Load Multiple and Store Multiple operations, and
to restart other external accesses when possible (e.g.,
after TLB misses are serviced).

The Channel Control Register is updated on the execu-
tion of every load or store instruction, and on every load
or store in a Load Multiple or Store Multiple sequence,
except when the Freeze (FZ) bit in the Current Proces-
sor Status Registeris 1.

Bits 31-24—These bits are a direct copy of bits 2316
fromthe load or store instruction that started the current
channel transaction.

Bits 23-16: Load/Store Count Remaining (CR)—The
CR tield indicates the remaining number of transfers for
a Load Multiple or Store Multiple operation that encoun-
tered an exception or was interrupted before comple-
tion. This number is zero-based; for example, a value of
28 in this field indicates that 29 transfers remain to be
completed. if the fault or interrupt occurs on the last
transaction, the CR field contains a value of 0 and the
ML bit is 1 (see below).

Bit 15: Load/Store (LS)—The LS bit is 0 if the channel
transaction is a store operation, and 1 if it is a load
operation.

Bit 14: Multiple Operation (ML)}—The ML bit is 1 if the
current channel transaction is a partially complete Load
Multiple or Store Multiple operation; otherwise it is 0.

Bit 13: Set (ST)—The ST bit is 1 if the current channel
transactionis for a Load and Set instruction; otherwise it
is 0.

Bit 12: Lock Active (LA)—The LA bit is 1 if the current
channel transaction is for a Load and Lock or Store and
Lock instruction; otherwise it is 0. Note that this bit is not
set as the result of the Lock (LK) bit in the Current Pro-
cessor Status Register.

Bit 11: reserved.

Bit 10: Transaction Faulted (TF)}—The TF bit indicates
that the current channel transaction was not complete
due to some exceptional circumstance. This bit is set
only for exceptions reported via the DERR input, and it
causes a Data Access Exception or Coprocessor Ex-
ception trap to occur (depending on the value of the CE
bit) when it is 1.

The TF bit allows the proper sequencing of externally re-
ported errors that get preempted by higher-priority
traps; it is reset by software that handles the resulting
trap.

Bits 9-2: Target Register (TR}—The TR field indicates
the absolute register number of data operand for the
current transaction (either a joad target or store data
source). Since the register number in this field is abso-
lute, it reflects the Stack-Pointer addition when the indi-
cated register is a local register.

Bit 1: Not Needed (NN)—The NN bit indicates that,
even though the Channel Address, Channel Data, and
Channel Control registers contain a valid representation
of an uncompleted load operation, the data requested is
not needed. This situation arises when a foad instruction
is overlapped with an instruction that writes the load tar-
get register.

Bit 0: Contents Valid (CV)}—The CV bit indicates that
the contents of the Channel Address, Channel Data,
and Channel Control registers are valid.

Register Bank Protect (Register 7)

This protected special-purpose register (Figure 13) pro-
tects banks of general-purpose registers from User-
mode program accesses.

The general-purpose registers are partitioned into 16
banks of 16 registers each (except that Bank 0 contains
14 registers). The banks are organized as shown in
Figure 4.

Bits 31-16: reserved.

Bits 15-0: Bank 15 through Bank 0O Protection Bits
(B15-B0)—in the Register Bank Protect Register, each
bit is associated with a particular bank of registers and
the bit number gives the associated bank number (e.g.,
B11 determines the protection for Bank 11).

31 2!

3
HERERE

CR

HEREE

CNTL

7 0
FTETTT

TR

LS

ML

N
[
ST. RS

]
LA

NN

QO =e=-=d
<

TF

Figure 12. Channel Control Register

1-45

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

3t 23
FTTTTET Tt irTid

Reserved

15 7 0
[TTTTIT TR

B15 BO

Figure 13. Register Bank Protect Register

When a protection bit is 1, the corresponding bank is
protected from access by programs executing in the
User mode. A Protection Violation trap occurs when a
User-mode program attempts to access (either read or
write) a register in a protected bank. When a bit in this
register is 0, the corresponding bank is available to pro-
grams executing in the User mode.

Supervisor-mode programs are not affected by the Reg-
ister Bank Protect Register.

Register protection is based on absolute register num-
bers. For local registers, the protection checking is per-
formed after the Stack-Pointer addition is performed.

Timer Counter {Register 8)

This protected special-purpose register (Figure 14)
contains the counter for the Timer Facility.

Bits 31-24: reserved.

Bits 23-0: Timer Count Value (TCV)—The 24-bit TCV
field decrements by one on each processor clock. When
the TCV field decrements to 0, it is reloaded with the
content of the Timer Reload Value field in the Timer
Reload Register. At this time, the Interrupt bit in the
Timer Reload Register is set.

Timer Reload (Register 9)
This protected special-purpose register {Figure 15)
maintains synchronization of the Timer Counter Reg-

ister, enables Timer interrupts, and maintains Timer
Facility status information.

Bits 31-27: reserved.

Bit 26: Overflow (OV)—The OV bit indicates that a
Timer interrupt occurred before a previous Timer inter-
rupt was serviced. Itis setif the Interrupt (IN) bitis 1 (see
beiow) when the Timer Count Value (TCV) field of the
Timer Counter Register decrements to C. Inthis case, a
Timer interrupt caused by the IN bit has not been ser-
viced when another interrupt is created.

Bit 25: Interrupt (IN)—The N bit is set whenever the
TCV field decrements to 0. If this bit is 1 and the IE bitis
also 1, a Timer interrupt occurs. Note thatthe INbit is set
when the TCV field decrements to 0, regardless of the
value of the IE bit. The IN bit is reset by software that
handies the Timer interrupt.

The TCV field is zero-based with respect to the Timer in-
terrupt interval; for example, a vaiue of 28 in the TCV
field causes the IN bit to be set in the 29th subsequent
processor cycle. The reason for this is that the TCV field
is 0 for a compiete cycle before the IN bit is set.

Bit 24: Interrupt Enable (IE}—When the IE bitis 1, the
Timer interrupt is enabled, and the Timer interrupt oc-
curs whenever the IN bit is 1. When this bit is 0, the
Timer interrupt is disabled. Note that Timer interrupts

31
IBRERRR

HERERRRRRRARRREARRRRARR

Reserved TCV
Figure 14. Timer Counter Register

31 23 15 7 0
R NERERRRRRRRRRRRRRRRRRR
Reserved TRV

RIS

DL

ov: IE

N

Figure 15. Timer Reload Register

1-46

Copyrighted By Its Respective Manufacturer

Am29000

may be disabled by the DA bit of the Current Processor
Status Register regardless of the value of the IE bit.

Bits 23-0: Timer Reload Value (TRV)—The value of
this field is written into the Timer Count Value (TCV) field
of the Timer Counter Register whenthe TCV field decre-
ments to 0.

Program Counter 0 (Register 10)

This protected special-purpose register (Figure 16) is
used on an interrupt return to restart the instruction that
was in the decode stage when the original interrupt or
trap was taken.

Bits 31-2: Program Counter 0 (PC0)—This field cap-
tures the word address of an instruction as it enters the
decode stage of the processor pipeline, unless the
Freeze (FZ) bitof the Current Processor Status Register
is 1. f the FZ bit is 1, PCO holds its value.

When aninterrupt or trap is taken, the PCO field contains
the word address of the instruction in the decode stage;
the interrupt or trap has prevented this instruction from
executing. The precessor uses the PCO field to restart
this instruction on an interrupt return.

Bits 1-0: Zeros—These bits are 0 since instruction ad-
dresses are always word-aligned.

Program Counter 1 (Register 11)

This protected special-purpose register (Figure 17) is
used on an interrupt return to restart the instruction that
was in the execute stage when the original interrupt or
trap was taken.

Bits 31-2: Program Counter 1 (PC1)—This field cap-
tures the word address of an instruction as it enters the
execute stage of the processor pipeline, unless the
Freeze (FZ) bitof the Current Processor Status Register
is 1. If the FZ bit is 1, PC1 holds its value.

When aninterrupt or trap is taken, the PC1 field contains
the word address of the instruction in the execute stage;
the interrupt or trap has prevented this instruction from
completing execution. The processoruses the PC1 field
to restart this instruction on an interrupt return.

Bits 1-0: Zeros—These bits are 0 since instruction ad-
dresses are always word-aligned.

Program Counter 2 (Register 12)

This protected special-purpose register (Figure 18) re-
ports the address of certain instructions causing traps.

Bits 31—-2: Program Counter 2 (PC2)—This field cap-
tures the word address of an instruction as it enters the
write-back stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register
is 1. if the FZ bit is 1, PC2 holds its value.

When aninterrupt ortrap is taken, the PC2 field contains
the word address of the instruction in the write-back
stage. In certain cases, PC2 contains the address of the
instruction causing atrap. The PC2field is used to report
the address of this instruction, and has no other use in
the processor.

N 23 15 7 0
BERRERRRRRRRRRERRRRRRREREEEEE
PCO ofo
Figure 16. Program Counter 0 Register
31 23 15 7 0
NERRRRRERRRRERRRERR RN
PC1 ole
Figure 17. Program Counter 1 Register
31 23 15 7 0
BRERRERRE R R RN
) oo

Figure 18. Program Counter 2 Register

This Material Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

Bits 1-0: Zeros—These bits are 0 since instruction ad-
dresses are always word-aligned.

MMU Configuration (Register 13)

This protected special-purpose register (Figure 19)
specifies parameters associated with the Memory Man-
agement Unit (MMU}).

Bits 31-10: reserved.

Bits 9-8: Page Size (PS)y—The PS field specities the
page size for address translation. The page size affects
translation as discussed in the Memory Management
section. The PS field has a delayed effect on address
translation. At least one cycle of delay must separate an
instruction that sets the PS field and an instruction that
performs address translation. The PS field is encoded
as follows:

PS Page Size
00 1 kb
01 2 kb
10 4 kb
11 8 kb

Bits 7-0: Process Identifier (PID)—For translated
User-mode loads and stores, this 8-bit field is compared
10 Task Identifier (TID) fields in Translation Look-Aside
Butfer entries when address translation is performed.
Forthe address translationto be valid, the PtD field must
match the TID field in an entry. This allows a separate
32-bit virtual-address space to be allocated to each ac-
tive User-mode process (within the limit of 255 such
processes). Translated Supervisor-mode loads and

stores use afixed processidentifier of 0, and require that
the TID field be 0 for successful translation.

LRU Recommendation (Register 14)

This protected special-purpose register (Figure 20) as-
sists Translation Look-Aside Buffer (TLB) reloading by
indicating the least recently used TLB entry in the re-
quired replacement line.

Bits 31-7: reserved.

Bits 6-1: Least Recently Used Entry (LRU}—The
LRU field is updated whenever a TLB miss occurs dur-
ing an address translation. It gives the TLB register
number of the TLB entry selected for replacement. The
LRU field also is updated whenever a memory-protec-
tion violation occurs; however, it has no interpretation in
this case.

Bit 0: Zero—The appended 0 serves to identify Word 0
of the TLB entry.

Indirect Pointer C (Register 128)

This unprotected special-purpose register (Figure 21)
provides the RC-operand register number when an in-
struction RC field has the value 0 (i.e., when Global Reg-
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: Indirect Pointer C (IPC)—The 8-bit IPC field
contains an absolute register number for a general-
purpose register. This number directly selects aregister

31 23 15 7 0
(TTTTTTITT I TRl rprreiirl
Reserved PS PID
Figure 19. MMU Configuration Register
31 23 15 7 0
[TTTTTITTITTITETITTI T I TR ireTd
Reserved LRU 0
Figure 20. LRU Recommendation Register
31 23 15 7 0
FTTTErTr et v e rrerperiirnd
Reserved IPC ojo

Figure 21. Indirect Pointer C Register

1-48

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

{Stack-Pointer addition is not performed in the case of
local registers).

Bits 1-0: Zeros—The IPC field is aligned for compati-
bility with word addresses.

Indirect Pointer A (Register 129)

This unprotected special-purpose register (Figure 22)
provides the RA-operand register number when an in-
struction RA field has the value 0 (i.e., when Global Reg-
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: indirect Pointer A (IPA)}—The 8-bit IPA field
contains an absolute register number for either a
general-purpose register or a local register. This num-
ber directly selects a register (Stack-Pointer addition is
not performed in the case of local registers).

Bits 1-0: Zeros—The IPA field is aligned tor compati-
bility with word addresses.

Indirect Pointer B (Reglister 130)

This unprotected special-purpose register (Figure 23)
provides the RB-operand register number when an in-
struction RB tield has the value 0 (i.e., when Global Reg-
ister 0 is specified).

Bits 31-10: reserved.

Bits 9-2: Indirect Pointer B (IPB)—The 8-bit IPB field
contains an absolute register number for a general-
purpose register. This number directly selects a register
(Stack-Pointer addition is not performed in the case of
local registers).

Bits 1-0: Zeros—The IPB field is aligned for compati-
bility with word addresses.

Q (Register 131)

The Q Registeris an unprotected special-purpose regis-
ter (Figure 24).

Bits 31-0: Quotient/Multiplier (Q)—During a se-
quence of divide steps, this field holds the low-order bits
of the dividend; it contains the quotient at the end of the
divide. During a sequence of multiply steps, this field
holds the muitiplier; it contains the low-order bits of the
result at the end of the multiply.

For an integer divide instruction, the Q field contains the
high-order bits of the dividend at the beginning of the in-
struction, and contains the remainder upon completion
of the instruction.

ALU Status (Register 132)

This unprotected special-purpose register (Figure 25)
holds information about the outcome of Arithmetic/Logic
Unit (ALU) operations as well as control for certain op-
erations performed by the Execution Unit.

Bits 31-12: reserved.

Bit 11: Divide Flag (DF)—The DF bit is used by the in-
structions that implement division. This bit is set at the
end of the division instructions either to 1 or to the com-
plement of the 33rd bit of the ALU. When a Divide Step
instruction is executed, the DF bit then determines
whether an addition or sublraction operation is per-
formed by the ALU.

31 23 15 7 0
BERRRRRRRRRRRRRRRRREREEEEE

Reserved IPA 010

Figure 22. Indirect Pointer A Register
BRERARRERARRRRERRRRRRNRRRRRRRENE
Reserved IPB oj0

Figure 23. indirect Pointer B Register
31 23 15 7 0
T T T T T TTTITT T TTTITTITITITT]

Q

Figure 24. Q Register

1-49

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

Reserved

TTTTTTTTITTTTTTT 7T |

0
1T
FC

BP

DF

Figure 25. ALU Status Register

Bit 10: Overflow (V)}—The V bit indicates that the result
of a signed, twos-complement ALU operation required
more than 32 bits to represent the result correctly. The
value of this bit is determined by exclusive ORing the
ALU carry-out with the carry-in to the most-significant bit
for signed, twos-complement operations. This bit is not
used for any special purpose in the processor, and is
provided for information only.

Bit 9: Negative (N)}—The N bit is set with the value of
the most-significant bit of the result of an arithmetic or
logical operation. If twos-complement overflow occurs,
the N bit does not reflect the true sign of the result. This
bit is used in divide operations.

Bit 8: Zero (Z)—The Z bit indicates that the result of an
arithmetic or logical operationis 0. This bitis notused for
any special purpose inthe processor, andis provided for
information only.

Bit 7: Carry (C)—The C bit stores the carry-out of the
ALU for arithmetic operations. It is used by the add-with-
carry and subtract-with-carry instructions to generate
the carry into the Arithmetic/Logic Unit.

Bits 6-5: Byte Pointer {(BP)—The BP field holds a 2-bit
pointer to a byte within a word. It is used by insert Byte
and Extract Byte instructions. The exact mapping of the
pointer value to the byte position depends on the value
of the Byte Order (BO) bit in the Configuration Register.

The most-significant bit of the BP field is used to deter-
mine the position of a half-word within a word for the In-
sert Hatf-Word, Extract Half-Word, and Extract Half-
Word, Sign-Extended instructions. The exact mapping
of the most-significant bit to the half-word position de-
pends on the value of the BO bit in the Configuration
Register.

The BP field is set by a Move To Special Register in-
struction with either the ALU Status Register or the Byle
Pointer Register as the destination. It is also set by a

load or store instruction if the Set Byte Pointer (SB) bitin
the instruction is 1. A load or store sets the BP field
either with the two least-significant bits of the address (if
the DW bit of the Configuration Register is 0) or with the
complement of the Byte Order bit of the Configuration
Register (it DW is 1).

Bits 4-0: Funnel Shift Count (FC)—The FC fieid con-
tains a 5-bit shift count for the Funne! Shifter. The Fun-
nel Shifter concatenates two source operands into a sin-
gle 64-bit operand and extracts a 32-bit result from this
64-bit operand; the FC field specifies the number of bit
positions from the most-significant bit of the 64-bit oper-
and to the most-significant bit of the 32-bit result. The
FC field is used by the Extract instruction.

The FC field is set by a Move To Special Register in-
struction with either the ALU Status Register or the Fun-
net Shift Count Register as the destination.

Byte Pointer (Register 133)

This unprotected special-purpose register (Figure 26)
provides an alternate access to the BP field in the ALU
Status Register.

Bits 31-2: Zeros.

Bits 1-0: Byte Pointer (BP)—This field allows a pro-
gramto change the BP field without affecting other fields
in the ALU Status Register.

Funnel Shift Count (Register 134)

This unprotected special-purpose register (Figure 27)
provides an alternate access to the FC field in the ALU
Status Register.

Bits 31-5: Zeros.

31 23

BP

Figure 26. Byte Pointer

1-50

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

31 23 7 l I I l0
oloJo|olojo]jo]ofjo{ojolofolo]o]o ofojojo]ojo|ojo|o}o EC
Figure 27. Funnel Shift Count
Bits 4-0: Funnel Shift Count (FC)—This field allows a
program to change the FC field without affecting other FRM1-0 Round Mode
fields in the ALU Status Register. 00 Round to nearest
01 Round to —-
Load/Store Count Remaining (Register 135) 10 Round 1o +e-
11 Round to zero

This unprotected special-purpose register (Figure 28}
provides alternate access to the CR field in the Channe!
Control Register.

Bits 31-8: Zeros.

Bits 7-0: Load/Store Count Remaining (CR)—This
field allows a program to change the CR field without af-
fecting other fields in the Channel Control Register, and
is used 1o initialize the value before a Load Multiple or
Store Multiple instruction is executed.

Fioating-Point Environment (Register 160)

This unprotected special-purpose register (Figure 29)
contains control bits that affect the execution of floating-
point operations.

Bits 31-9: reserved.

Bit 8: Fast Float Select (FF)—The FF bit being 1 en-
ables fast floating-point operations, in which centain re-
quirements of the IEEE floating-point specification are
not met. This improves the performance of certain
operations by sacrificing conformance to the IEEE
specification.

Bits 7-6: Floating-Point Round Mode (FRM)—This
field specifies the default mode used to round the results
of floating-point operations, as follows:

Blt 5: Floating-Point Divide-By-Zero Mask (DM)—lif
the DM bit is 0, a Floating-Point Exception trap occurs
when the divisor of a fioating-point division operation is
zero and the dividend is a non-zero, finite number. if the
DM bit is 1, a Floating-Point Exception trap does not oc-
cur for divide-by-zero.

Bit 4: Floating-Point Inexact Resuit Mask (XM)—If
the XM bit is 0, a Floating-Point Exception trap occurs
when the result of a floating-point operation is not equal
to the infinitely precise result. if the XM bitis 1, a Float-
ing-Point Exception trap does not occur for an inexact
result.

Bit 3: Floating-Point Underflow Mask (UM)—If the
UM bitis 0, a Floating-Point Exception trap occurs when
the result of a floating-point operation is too small to be
expressed in the destination fermat. If the UM bitis 1, a
Floating-Point Exception trap does not occur for under-
flow.

Bit 2: Floating-Point Overflow Mask (VM)—If the VM
bit is 0, a Floating-Point Exception trap occurs whenthe
result of a floating-point operation is teo large to be ex-
pressed in the destination format. If the VM bitis 1, a

31 23

TITTTTT

Figure 28. Load/Store Count Remaining

Reserved

31 23 15 7
crrrrerrrrerrrrertrirn |

FRM

Memoman
<
<
Z
2
Z------

Figure 29. Floating-Point Environment

1-51

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

Floating-Point Exception trap does not occur for over-
flow.

Bit 1: Floating-Point Reserved Operand Mask (RM)
—If the RM bit is 0, a Floating-Point Exception trap oc-
curswhen one or more input operands to aflcating-point
operation is a reserved value, or when the result of a
floating-point operation is a reserved value. If the RM bit
is 1, a Floating-Point Exception trap does not occur for
reserved operands.

Bit 0: Fleating-Point Invalid Operation Mask (NM)—
ifthe NM bit is 0, a Floating-Point Exception trap occurs
when the input operands to a floating-point operation
produce an indeterminate result (e.g., - times 0}. If the
NM bit is 1, a Floating-Point Exception trap does not oc-
cur for invalid operations.

Integer Environment (Register 161)

This unprotected special-purpose register (Figure 30)
contains control bits that affect the execution of integer
operations.

Bits 31-2: reserved.

Bit 1: Integer Division Overflow Mask (DO)}—If the
DO bitis 0, an Out of Range trap occurs when overflow
of a signed or unsigned 32-bit result occurs during DI-
VIDE or DIVIDU instructions, respectively. If the DO bit
is 1, an Out of Range trap does not occur for overflow
during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an
Out of Range trap upon division by 0, regardless of the
value of the DO bit.

Bit 0: Integer Multiplication Overflow Exception
Mask (MO)}—If the MO bit is 0, an Out of Range trap oc-
curs when overflow of a signed or unsigned 32-bit resuit

occurs during MULTIPLY or MULTIPLU instructions, re-
spectively. If the DO bit is 1, an Out of Range trap does
not occur foroverflow during integer multiply operations.

Floating-Point Status (Register 162)

This unprotected special-purpose register (Figure 31}
contains status bits indicating the outcome of floating-
point operations. The bits of the Floating-Point Status
Register are divided into two groups of status bits. The
bits in each group correspond to the causes of Floating-
Point Exception traps that are enabled and disabled by
bits 50 of the Floating-Point Environment Register.

The first group of status bits (bits 13-8) are trap status
bits that report the cause of a Floating-Point Exception
trap. The trap status bits are set only when a Floating-
Point Exception trap occurs, and indicate all conditions
that apply to the trapping operation. All other operations
leave the status bits unchanged. A trap status bit is
set regardiess of the state of the corresponding mask
bit of the Floating-Point Environment Register, except
that at least one of the mask bits must be 0 for the trap
to occur. When a Floating-Point Exception trap occurs,
all trap status bits not relevant to the trapping operation
are reset.

The second group of status bits (bits 5-0) are sticky
status bits that, once set, remain set until explicitly
cleared by a Move to Special Register {(MTSR) or Move
to Special Register Immediate (MTSRIM) instruction.
A sticky status bit is set only when a floating-point
exception is detected and the corresponding mask bit
of the Floating-Point Environment Register is 1. That is,
the sticky status bitis set only if the corresponding cause
of a Floating-Point Exception trap is disabied. Normally,
this means that sticky status bits are not set when a
Floating-Point Exception trap is taken. However, if

31 23 15 7 0
TTTTTTTETTITTTITITI T I T T IR Tl
Reserved

N

D0

MO

Figure 30. integer Environment

31 23 15 7 4]
[TTTTTTITTTIITT T l
Reserved res

" -ol:' 0 ||r:v

) lllll] lllll

L A DL L]

DT JUT {RT; DS | US [Rs |

XT VT NT XS VS NS

Figure 31. Floating-Point Status

1-52

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

multiple exceptions are detected, a sticky status bit
corresponding to 2 masked exception may still be set if
a Floating-Point Exception trap occurs for an unmasked
exception.

Bits 31-14: reserved.

Bit 13: Floating-Point Divide-By-Zero Trap (DT)—
The DT bit is set when a Floating-Point Exception trap
occurs, and the associated floating-point operation is a
divide with a zero divisor and a non-zero, finite dividend.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bit 12: Fioating-Point Inexact Result Trap (XT)—The
XT bit is set when a Floating-Point Exception trap oc-
curs, and the result of the associated floating-point op-
eration is not equal to the infinitely precise resuit. Other-
wise, this bit is reset when a Floating-Point Exception
trap occurs.

Bit 11: Floating-Point Underflow Trap (UT)}—The UT
bit is set when a Floating-Point Exception trap occurs,
and the resutlt of the associated fioating-point operation
is too small to be expressed in the destination format.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)—The VT
bit is set when a Floating-Point Exception trap occurs,
and the result of the associated floating-point operation
is too large to be expressed in the destination format.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bit 9: Floating-Point Reserved Operand Trap (RT)—
The RT bit is set when a Floating-Point Exception trap
occurs, and either one or more input operands to the as-
sociated floating-point operation is a reserved value or
the result of this floating-point operation is a reserved
value. Otherwise, this bit is reset when a Floating-Point
Exception trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT)—
The NT bit is set when a Floating-Point Exception trap
occurs, and the input operands to the associated float-
ing-point operation produce an indeterminate result.
Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs.

Bits 7-6: reserved.

Bit 5: Floating-Point Divide-By-Zero Sticky (DS)—
The DS bit is set when the DM bit of the Floating-Point
Environment Registeris 1, the divisor of a floating-point

division operation is a 0, and the dividend is a non-zero,
finite number.

Bit 4: Floating-Point Inexact Result Sticky {XS)—
The XS bit is set when the XM bit of the Floating-Point
Environment Register is 1, and the result of a floating-
point operation is not equal to the infinitely precise
resuit.

Bit 3: Floating-Point Underflow Sticky (US)—The US
bit is set when the UM bit of the Floating-Point Environ-
ment Register is 1, and the result of a floating-point op-
eration is too small to be expressed in the destination
format.

Bit 2: Floating-Point Overflow Sticky (VS)—The VS
bit is set when the VM bit of the Floating-Point Environ-
ment Register is 1, and the result of a floating-point op-
eration is too large to be expressed in the destination
format.

Bit 1: Floating-Point Reserved Operand Sticky
(RS)—The RS bit is set when the RM bit of the Floating-
Point Environment Register is 1, and either one or more
input operands to a floating-point operation is a re-
served value or the result of a floating-point operation is
a reserved value.

Bit 0: Floating-Point invalid Operation Sticky (NS)—
The NS bit is set when the NM bit of the Floating-Point
Environment Register is 1, and the input operands to
a fioating-point operation produce an indeterminate
result.

Exception Opcode (Register 164)

This unprotected special-purpose register (Figure 32)
reports the operation code (opcode) of an instruction
causing a trap. It is provided primarily for recovery from
floating-point exceptions, but reports the opcode of any
trapping instruction.

Bits 31-8: reserved.

Bits 7-0: Instruction Opcode {IOP)—This field cap-
tures the opcode of aninstruction causing atrap as are-
sult of instruction execution; the opcode is captured as
the instruction enters the write-back stage of the proces-
sor pipeline. Instructions that do not trap as a conse-
quence of execution do not modify the IOP field.

Reserved

TTTTTT T T T T T T T T T TT

TTTT7TT

IOP

Figure 32. Exception Opcode

1-53

Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

TLB Registers

The Am29000 contains 128 Translation Look-Aside
Buffer (TLB) registers. The organization of the TLB reg-
isters is shown in Figure 33.

The TLB registers comprise the TLB entries, and are
provided so that programs may inspect and alter TLB
entries. This allows the loading, invalidation, saving,
and restoring of TLB entries.

TLB registers have fields that are reserved for future
processor implementations. When a TLB register is
read, abitinareservedfieldis read as a 0. An attemptto
write a reserved bit with a 1 has no effect; however, this
should be avoided because of upward-compatibility
considerations.

The Translation Look-Aside Buffer (TLB) registers are
accessed only by explicit data movement by Su-
pervisor-mode programs. Instructions that move data to
or from a TLB register specify a general-purpose regis-
ter containing a TLB register number. The TLB register
number is given by the contents of bits 60 of the
general-purpose register. TLB register numbers may

only be specified indirecty by general-purpose
registers.

TLB entries are accessed as registers numbered
0-127. Since two words are required to completely
specify a TLB entry, two registers are required for each
TLB entry. The words corresponding to an entry are
paired as two sequentially numbered registers starting
on an even-numbered register. The word with the even
register number is catled Word 0, and the word with the
odd register number is called Word 1. The entries for
TLB Set 0 are in registers numbered 0-63, and the en-
tries for TLB Set 1 are in registers numbered 64-127.

TLB Entry Word 0
The TLB Entry Word 0 register is shown in Figure 34.

Bits 31-15: Virtual Tag (VTAG)—When the TLB is
searched for an address translation, the VTAG field of
the TLB entry must match the most significant 17, 16,
15, or 14 bits of the address being translated—for page
sizes of 1, 2, 4, and 8 kb, respectively—for the searchto
be successful.

TLB Reg# TLB Set 0
0 TLB Entry Line 0 Word 0
1 TLB Entry Line 0 Word 1
2 TLB Entry Line 1 Word 0
3 TLB Entry Line 1 Word 1
L] .
. »*
* L]
62 TLB Entry Line 31 Word 0
63 TLB Entry Line 31 Word 1
TLB Set 1
64 TLB Entry Line 0 Word 0
65 TLB Entry Line 0 Word 1
- .
L] L]
* L
126 TLB Entry Line 31 Word 0
127 TLB Entry Line 31 Word 1

Figure 33. Translation Look-Aside Buffer Registers

1-54

This Materia

Copyrighted By Its Respective Manufacturer

This Materi al

Am23000

VTAG

31 23 15
HERRRRRRERREREEN

TTTTTTT

TID

T
. 1
(I

SE ! uw

SR

.
1]
1]
'
13
VE SwW UR UE

Figure 34. TLB Entry Word 0

When software loads a TLB entry with an address trans-
lation, the most significant 14 bits of the Virtual Tag are
set with the most significant 14 bits of the virtual address
whose translation is being loaded into the TLB. The re-
maining 3 bits of the Virtual Tag must be set either to the
corresponding bits of the address or to 0s, depending on
the page size, as follows (“A" refers to corresponding
address bits):

Page Size VTAG 2-0 (TLB Word 0 bits 17-15)
1kb AAA
2 kb AAQ
4 kb A00
8 kb 000

Bit 14: Valid Entry (VE)—If this bit is 1, the associated
TLB entry is valid; if it is 0, the entry is invalid.

Bit 13: Supervisor Read (SR)—If the SR bit is 1, Su-
pervisor-mode load operations from the virtual page are
allowed; if it is 0, Supervisor-mede loads are not
allowed.

Bit 12: Supervisor Write (SW)—If the SW bit is 1, Su-
pervisor-mode store operations to the virtual page are
allowed; if it is 0, Supervisor-mode stores are not
allowed.

Bit 11: Supervisor Execute (SE)—If the SE bitis 1, Su-
pervisor-mode instruction accesses to the virtual page
are allowed; if it is 0, Supervisor-mode instruction
accesses are not allowed.

Bit 10: User Read (UR)—If the UR bit is 1, User-mode
load operations from the virtual page are allowed; if it is
0, User-mode loads are not aliowed.

Bit 9: User Write (UW)—If the UW bit is 1, User-mode
store operations to the virtual page are allowed; if itis 0,
User-mode stores are not allowed.

Bit 8: User Execute (UE)—if the UE bitis 1, User-mode
instruction accesses to the virtual page are allowed; if it
is 0, User-mode instruction accesses are not allowed.

Bits 7-0: Task identifier (TID)}—When the TLB is
searched for an address translation, the TID must match
the Process Identifier (PiD) in the MMU Configuration
Register for the translation to be successful. This field is
allows the TLB entry to be associated with a particutar
process.

TLB Entry Word 1
The TLB Entry Word 1 register is shown in Figure 35.

Bits 31-10: Real Page Number (RPN)—The RPN field
gives the most significant 22, 21, 20, or 19 bits of the
physical address of the page for page sizes of 1, 2, 4,
and 8 kb, respectively. It is concatenated to bits 9-0,
10-0, 11-0, or 12-0 of the address being translated—
for 1-, 2-, 4-, and 8-kb page sizes, respectively—to form
the physical address for the access.

When software loads a TLB entry with an address trans-
lation, the most significant 19 bits of the Real Page Num-
ber are set with the most significant 19 bits of the physi-
cal address associated with the translation. The remain-
ing 3 bits of the Real Page Number must be set either to
the corresponding bits of the physical address, or to 0s,
depending onthe page size, as foilows (“A”refersto cor-
responding address bits):

Page Size RPN 2-0 (TLB Word 1 bits 12-10)
1kb AAA
2kb AAO
4 kb AOO
8 kb 000

Bits 7-6: User Programmable (PGM)—These bits are
placed on the MPGM1—-MPGMo outputs when the ad-

RPN

31 23 15
REERRERRERERRERRRRRER R

B

res [PGM res [U

Figure 35. TLB Entry Word 1 10

1-55

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

dress is transmitted for an access. They have no
predefined effect on the access; any effecl is defined by
logic external to the processor.

Bit 1: Usage (U)—This bit indicates which entry in a
given TLB line was least recently used to performan ad-
dress translation. If this bitis a 0, then the entry in Set 0
inthe line is least recently used; if it is 1, then the entry in
Set 1 is least recently used. This bit has an equal value
for both entries in a line. Whenever a TLB entry is used

to translate an address, the Usage bit of both entries in
the {ine used for translation are set accordingtothe TLB
set containing the translation. This bit is set whenever
the translation is valid, regardless of the outcome of
memory-protection checking.

Bit 0: Input/Output (I0)—The IO bit determines
whether the access is directed to the instruction/data
memory (IO =0) or the input/output (IO=1) address
space.

1-56

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

INSTRUCTION SET

The Am29000 implements 117 instructions. All instruc-
tions execute in a single cycle except for IRET,
IRETINV, LOADM, STOREM, and the trapping arithme-
tic instructions such as floating-point instructions.

Most instructions deal with general-purpose registers
for operands and results; however, in most instructions,
an 8-bit constant can be used in place of a register-
based operand. Some instructions deal with special-
purpose registers, TLB registers, external devices and
memories, and coprocessors.

This section describes the nine instruction classes inthe
Am29000, and provides a brief summary of instruction
operations.

It the processor attempts to execute aninstruction thatis
not implemented, an illegal Opcode trap occurs.

integer Arithmetic

The Integer Arithmetic instructions perform add, sub-
tract, multiply, and divide operations on word-length in-
tegers. Cenrtain instructions in this class cause traps if
signed or unsigned overfiow occurs during the execu-
tion of the instruction. There is support for multi-preci-
sion arithmetic on operands whose lengths are multi-
ples of words. All instructions in this class set the ALU
Status Register. The integer arithmetic instructions are
shown in Figure 36.

The instructions MULTIPLU, MULTMU, MULTIPLY,
MULTM, DIVIDE, and DIVIDU are not implemented di-
rectly by processor hardware, but cause traps to occur
in instruction-emulation routines.

Compare

The Compare instructions test for various relationships
between two values. For all Compare instructions
except the CPBYTE instruction, the comparisons are
performed on word-length signed or unsigned integers.
There are two types of Compare instructions. The first
type places a Boolean value reflecting the outcome of
the compare into a general-purpose register. For the
second type (assert instructions), instruction execution
continues only if the comparison is true; otherwise a
trap occurs. The assert instructions specity a vector for
the trap.

The assert instructions support run-time operand
checking and operating-system calls. If the trap occurs
in the User mode and a trap number between 0 and
63 is specified by the instruction, a Protection Violation
trap occurs. The Compare instructions are shown in
Figure 37.

Logical

The Logical instructions perform a set of bit-by-bit
Boolean functions on word-length bit strings. Alt instruc-
tions in this class setthe ALU Status Register. These in-
siructions are shown in Figure 38.

Shift

The Shift instructions (Figure 39) perform arithmetic
and logical shifts. All but the Extract instruction operate
on word-length data and produce a word-length result.
The Extract instruction operates on double-word data
and produces a werd-length resutt. If both parts of the
double word for the Extract instruction are from the
same source, the Extract operation is equivalent to a ro-
tate operation. For each operation, the shift count is a
5-bit integer, specifying a shift amount in the range of 0
to 31 bits.

Data Movement

The Data Movement instructions (Figure 40) move
bytes, half-words, and words between processor regis-
ters. In addition, they move data between general-
purpose registers and external devices, memories, and
the coprocessor.

Constant

The Constant instructions {Figure 41) provide the ability
to place half-word and word constants into registers.
Mostinstructions inthe instruction set allow an 8-bit con-
stant as an operand. The Constant instructions allow the
construction of larger constants.

Floating-Point

The Floating-Point instructions (Figure 42) provide op-
erations on single-precision (32-bit) or double-precision
(64-bit) floating-point data. in addition, they provide con-
versions between single-precision, double-precision,
and integer number representations. In the current pro-
cessor implementation, these instructions cause traps
to occur in routines that perform the floating-point op-
erations.

Branch

The Branch instructions (Figure 43) control the execu-
tion flow of instructions. Branch target addresses may
be absolute, relative to the Program Counter (with the
offset given by a signed instruction constant), or con-
tained in a general-purpose register. For conditional
jumps, the outcome of the jump is based on a Boolean
value in a general-purpose register. Procedure calls are
unconditional and save the return address in a general-
purpose register. All branches have a delayed effect;
the instruction sequence following the branch is exe-
cuted regardless of the outcome of the branch.

Miscellaneous

The Miscellaneous instructions (Figure 44) perform
various operations that cannot be grouped into other in-
struction classes. In certain cases, these are control
functions available only to Supervisor-mode programs.

1-57

Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

Mnemonic Operation Description
ADD DEST <-SRCA + SRCB
ADDS DEST <-SRCA + SRCB

IF signed overflow THEN Trap (Out Of Range}
ADDU DEST <-SRCA + SRCB

IF unsigned overflow THEN Trap (Out Of Range)
ADDC DEST <-SRCA + SRCB + C
ADDCS DEST «-SRCA + SRCB + C

IF signed overtiow THEN Trap (Out Of Range)
ADDCU DEST <-SRCA + SRCB + C

IF unsigned overflow THEN Trap {Out Of Range)
SuB DEST <-SRCA - SRCB
sSuUBS DEST <-SRCA - SRCB

IF signed overfiow THEN Trap (Out Of Range)
suBU DEST <-SRCA - SRCB

IF unsigned underflow THEN Trap (Out Of Range)
SUBC DEST <-SRCA-SRCB-1+C
SUBCS DEST <-SRCA - SRCB -1 +C

IF signed overflow THEN Trap (Out Of Range)
suBcuU DEST <-SRCA -SRCB-1+C

IF unsigned underflow THEN Trap (Out Of Range)
SUBR DEST <-SRCB - SRCA
SUBRS DEST <-SRCB - SRCA

IF signed overflow THEN Trap (Out Of Range)
SUBRU DEST <-SRCB - SRCA

IF unsigned underflow THEN Trap (Out Of Range)
SUBRC DEST <-SRCB ~SRCA-1+C
SUBRCS DEST <-SRCB - SRCA -1 +C

IF signed overflow THEN Trap (Out Of Range)
SUBRCU DEST <-SRCB - SRCA-1+C

IF unsigned underflow THEN Trap (Out Of Range)
MULTIPLU DEST <-SRCA * SRCB (unsigned)
MULTIPLY DEST <-SRCA * SACB (signed)
MUL Perform 1-bit step of a multiply operation (signed)
MULL Complete a sequence of multiply steps
MULTM DEST <-SRCA * SRCB (signed), most-significant bits
MULTMU DEST <-SRCA * SRCB (unsigned), most-significant bits
MULU Perform 1-bit step of a multiply operation (unsigned)
DIVIDE DEST <-(Q//SRCA)/SRCB (signed) Q <-Remainder
DIVIDU DEST <-(Q//SRCA)/SRCB (unsigned) Q <-Remainder
DIvo Initialize for a sequence of divide steps {unsigned)
DIv Perform 1-bit step of a divide operation {unsigned)
DIVL Complete a sequence of divide steps (unsigned)
DIVREM Generate remainder for divide operation (unsigned)

Figure 36. Integer Arithmetic Instructions

This Materia

Copyrighted By Its Respective Manufacturer

Am29000

Mnemonic

Operation Description

CPEQ

IF SRCA = SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPNEQ

IF SRCA <> SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPLT

IF SRCA < SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPLTU

IF SRCA < SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE

CPLE

IF SRCA <= SRCB THEN DEST <-TRUE
ELSE DEST <- FALSE

CPLEU

IF SRCA <= SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE

CPGT

IF SRCA > SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPGTU

IF SRCA > SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE

CPGE

IF SRCA >= SRCB THEN DEST <-TRUE
ELSE DEST <-FALSE

CPGEU

IF SRCA >= SRCB (unsigned) THEN DEST <-TRUE
ELSE DEST <-FALSE

CPBYTE

IF (SRCA.BYTEO = SRCB.BYTEO) OR
{SRCA.BYTE1 = SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3 = SRCB.BYTE3)THEN DEST <-TRUE
ELSE DEST <-FALSE

ASEQ

IF SRCA = SRCB THEN Continue
ELSE Trap (VN)

ASNEQ

IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)

ASLT

IF SRCA < SACB THEN Continue
ELSE Trap (VN)

ASLTU

IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)

ASLE

IF SRCA <= SRCB THEN Continue
ELSE Trap (VN)

ASLEU

IF SRCA <= SRCB (unsigned) THEN Continue
ELSE Trap {VN)

ASGT

IF SRCA > SRCB THEN Continue
ELSE Trap (VN)

ASGTU

IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)

ASGE

IF SRGA >= SRCB THEN Continue
ELSE Trap (VN)

ASGEU

IF SRCA >= SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Figure 37. Compare Instructions

This Material Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

Mnemonic Operation Description
AND DEST <-SRCA & SRCB
ANDN DEST <-SRCA & ~ SRCB
NAND DEST <-~ (SRCA & SRCB)
OR DEST <-SRCA | SRCB
NOR DEST <-~ (SRCA | SRCB)
XOR DEST <-SRCA # SRCB
XNOR DEST <-~ (SRCA * SRCB)
Figure 38. Loglcal Instructions
Mnemonic Operation Description
SLL DEST <-SRCA << SRCB (zero fill)
SRL DEST <-SRCA >> SRCB (zero filt)
SRA DEST <-SRCA >> SRCB (sign fill)
EXTRACT DEST <-high-order word of (SRCA//SRCB << FC}

Figure 39. Shift Instructions

Reserved Instructions

Sixteen Am29000 operation codes are reserved for These instructions are intended for future processor
instruction emulation. These instructions cause traps, enhancements, and users desiring compatibility with fu-
much like the floating-point instructions, but currently ture processor versions should not use them for any
have no specified interpretation. The relevant operation purpose.

codes and the corresponding trap vectors are:

Operation Codes
{hexadecimal)

Trap Vector
Numbers (decimal)

D8-DD
E7-E9
F8
FA-FF

24-29
3941
56

58-63

1-60

This Material Copyrighted By Its Respective Manufacturer

Am29000

Mnemonic Operation Description
LOAD DEST <-EXTERNAL WORD [SRCB]
LOADL DEST <-EXTERNAL WORD [SRCB]
assert *“LOCK output during access
LOADSET DEST <-EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] <-W'FFFFFFFF’,
assert LOCK output during access
LOADM DEST.. DEST + COUNT <-
EXTERNAL WORD [SRCBH] ..
EXTERNAL WORD [SRCB + COUNT * 4]
STORE EXTERNAL WORD [SRCB] <-SRCA
STOREL EXTERNAL WORD [SRCB] <-SRCA
assert LOCK output during access
STOREM EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNTY * 4] <-
SACA .. SRCA + COUNT
EXBYTE DEST <-SRCB, with low-order byte replaced
by byte in SRCA selected by BP
EXHW DEST <-SRCB, with low-order half-word replaced
by half-word in SRCA selected by BP
EXHWS DEST <- half-word in SRCA selected by BP,
sign-extended to 32 bits
INBYTE DEST <-SRCA, with byte selected by BP replaced
by low-order byte of SRCB
INHW DEST <-SRCA, with half-word selected by BP replaced
by low-order half-word of SRCB
MFSR DEST <-SPECIAL
MFTLB DEST <-TLB [SRCA]
MTSR SPDEST <-SRC8B
MTSRIM SPDEST <- 0116
MTTLB TLB [SRCA] <-SRCB
Figure 40. Data Movement Instructions
Mnemonic Operation Description
CONST DEST «<-0116
CONSTH Replace high-order half-word of SRCA by 116
CONSTN DEST <-1116

Figure 41. Constant Instructions

This Material Copyrighted By Its Respective Manufacturer

1-61

29K Family CMOS Devices

Mnemonic

Operation Description

FADD

DEST (single-precision) <-SRCA (single-precision)
+ SRCB (single-precision)

DADD

DEST (double-precision) <-SRCA (double-precision)
+ SRCB (double-precision)

FSUB

DEST (single-precision) <-SRCA (single-precision)
-SRCB (single-precision)

psuB

DEST (double-precision) <-SRCA {double-precision)
-SRCB (double-precision)

FMUL

DEST (single-precision) <-SRCA (single-precision}
* SRCB (single-precision)

FDMUL

DEST (double-precision) <-SRCA (single-precision)
* SRCB (single-pracision)

DMUL

DEST (double-precision) <-SRCA {double-precision)
* SRCB (double-precision)

FDIV

DEST (single-precision) <-SRCA (singla-precision)/
SRCB (single-precision)

DDIV

DEST (double-precision) <-SRCA (double-precision)/
SRCB (double-precision)

FEQ

IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE

DEQ

IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE

FGE

IF SRCA (single-precision) >= SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE

DGE

IF SRCA (double-precision) >= SRCB (double-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE

FGT

IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE

DGT

IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST <-TRUE
ELSE DEST <-FALSE

SQRT

DEST (single-precision, double-precision, extended-precision)
<-SQRT[SRCA (single-precision, double-precision, extended-precision)]

CONVERT

DEST (integer, single-preacision, double-precision)
<-SRCA (integer, single-precision, double-precision)

CLASS

DEST (single-precision, double-precision, extended-precision)
<-CLASS[SRCA (single-precision, double-precision, extended-precision))

Figure 42. Floating-Point Instructions

1-62

This Material Copyrighted By Its Respective Manufacturer

Am29000

Mnemonic Operation Description

CALL DEST <-PC//00 + 8
PC <-TARGET
Execute delay instruction
CALLI DEST <-PC//00 + 8
PC <-SRCB
Execute delay instruction
JMP PC <-TARGET
Execute delay instruction
JMPI PC <-SRCB
Execute delay instruction
JMPT IF SRCA = TRUE THEN PC <-TARGET
Execute delay instruction
JMPTI IF SRCA = TRUE THEN PC <-SRCB
Execute delay instruction
JMPF IF SRCA = FALSE THEN PC <-TARGET
Execute delay instruction
JMPFI IF SRCA = FALSE THEN PC <-SRCB
Execute delay instruction
JMPFDEC IF SRCA = FALSE THEN
SRCA <-SRCA -1
PC <-TARGET
ELSE
SRCA <-SRCA -1
Execute delay instruction

Figure 43. Branch Instructions

Mnemonic Operation Description
cLZ Determine number of leading zeros in a word
SETIP Set IPA, IPB, and IPC with operand register numbers
EMULATE Load IPA and IPB with operand register numbers, and Trap (VN)
INV Reset all Valid bits in Branch Target Cache to zeros
IRET Perform an interrupt return sequence
IRETINV Perform an interrupt return sequence, and reset all Valid bits
in Branch Target Cache to zeros
HALT Enter Halt mode on next cycle

Figure 44. Miscellaneous Instructions

1-63

This Material Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

DATA FORMATS AND HANDLING

This section describes the various data types supported
by the Am23000, and the mechanisms for accessing
data in external devices and memories. The Am29000
includes provisions for the external access of bytes,
half-words, unaligned words, and unaligned half-words,
as described in this section.

Integer Data Types

Most Am29000 instructions deal directly with word-
length integer data; integers may be either signed or un-
signed, depending on the instruction. Some instructions
(e.g., AND) treat word-length operands as strings of
bits. In addition, there is support for character, half-
word, and Boolean data types.

Byte Operations

The processor supports character data through load,
store, extraction, and insertion operations on word-
length operands, and by a compare operation on byte-
length fields within words. The format for unsigned and
signed characters is shown in Figure 45; for signed
characters, the sign bit is the most-significant bit of the
character. For sequences of packed characters within
words, bytes are ordered either left-to-right or right-to-
left, depending on the BO bit of the Configuration Regis-
ter (see Special Floating-Point Values section).

If the Data Width Enable (DW) bit of the Configuration
Registeris 1, the Am29000 is enabled to load and store
byte data. On a load, an external packed byte is con-
verted to one of the character formats shown in
Figure 45. On a store, the low-order byte of a word is
packed into every byte of an external word. The External
Data Accesses section describes external byte ac-
cesses in more detail.

The Extract Byte (EXBYTE) instruction replaces the
low-order character of a destination word with an arbi-
trary byte-aligned character from a source word. For the
EXBYTE instruction, the destination word can be a zero
word, which effectively zero-extends the character from
the source operand.

The Insert Byte (INBYTE) instruction replaces an arbi-
trary byte-aligned character in a destination word with

the low-order character of a source word. For the IN-
BYTE instruction, the source operand can be a charac-
ter constant specified by the instruction.

The Compare Bytes (CPBYTE) instruction compares
two word-length operands and gives a result of True if
any corresponding bytes within the operands have
equivalent values. This allows programs to detect char-
acters within words without first having to extract individ-
ual characters, one at a time, from the word of interest.

Haif-Word Operations

The processor supports half-word data through load,
store, insertion, and extraction operations on word-
length operands. The format for unsigned and signed
half-words is shown in Figure 46; for signed half-words,
the sign bit is the most-significant bit of the half-word.
For sequences of packed half-words within words, half-
words are ordered either left-to-right or right-to-left, de-
pending on the Byte Order (BO) bit of the Configuration
Register (see Addressing and Alignment section).

If the Data Width Enable (DW) bit of the Configuration
Register is 1, the Am29000 is enabled to load and store
half-word data. On a load, an external packed half-word
is converted to one of the formats shown in Figure 46.
On a store, the low-order half-word of a word is packed
into every haif-word of an external word.

The Extract Half-Word (EXHW}) instruction replaces the
low-order half-word of a destination word with either the
low-order or high-order half-word of a source word. For
the EXHW instruction, the destination word can be a
zero word, which effectively zero-extends the half-word
from the source operand.

The Extract Hal-Word, Sign-Extended (EXHWS) in-
struction is similar to the EXHW instruction, except that
it sign-extends the half-word in the destination word
(i.e., it replaces the most-significant 16 bits of the desti-
nation word with the most-significant bit of the source
half-word).

The Insert Half-Word (INHW) instruction replaces either
the low-order or high-order half-word in a destination
word with the low-order half-word of a source word.

Unsigned:

31 23 15 7 0
EERRRERRREEREERRRRRRREREERREEE
000000000000 O0CO0O0O0OGCOODOOOGOCO data
Signed:

31 23 15 7 0
FTTTTTTTTTITTTTITTTITTITT REREA
S S S S S S S S S S S SSSSSSSS S s s s s|s data

Flgure 45. Character Format

1-64

Copyrighted By Its Respective Manufacturer

Am29000

Unsigned:

00000O0CO0O0O0O0OOOOCGOO

A EREREREENRRRERERRERERERERRRRERE

data

Signed:
15

31 23
[TTTITTITier el

S § S S S S 8 S S S S S S s S s|s

EEBEREERERRRES

data

Figure 46. Half-Word Format

Boolean Data

Some instructions in the Compare class generate word-
length Boolean results. Also, conditional branches are
conditional upon Boolean operands. The Boolean for-
mat used by the processor is such that the Boolean
values True and False are represented by a 1 or 0,
respectively, in the most-significant bit of a word. The
remaining bits are unimportant; for the compare instruc-
tions, they are reset. Note that twos-complement
negative integers are indicated by the Boolean value
True in this encoding scheme.

Floating-Point Data Types

The Am29000 defines single- and doubile-precision
floating-point formats that comply with the IEEE Stan-
dard for Binary Floating-Point Arithmetic (ANSVIEEE
Std. 754-1985). These data types are not supported di-
rectly in processor hardware, but can be implemented
by a virtual floating-point interface provided in the
Am29000.

Inthis section, the following nomenclature is usedto de-
note fields in a tloating-point value:

¥ s: sign bit

® bexp: biased exponent
® frac: fraction

B sig: significand

Single-Precision Floating-Point

The format for a single-precision floating-point value is
shown in Figure 47.

Typically, the value of a single-precision operand is ex-
pressed by:

(-1)**s * 1.frac * 2**{bexp—127).

The encoding of special floating-point values is given in
the Special Floating-Point Values section.

Double-Precision Floating-Point

The format for a double-precision floating-point value is
shown in Figure 48.

Typically, the value of a double-precision operand is ex-
pressed by:

(—-1)**s * 1.frac * 2"*(bexp—~1023).

The encoding of special floating-point vaiues is given in
the Special Floating-Point Values section.

In order to be properly referenced by a floating-point
instruction, a double-precision floating-point value must
be double-word aligned. The absolute register number
of the register containing the first word (labeled “0" in
Figure 48) must be even. The absolute register number
of the register containing the second word (labeled “1”in
Figure 48) must be odd. if these conditions are not met,
the results of the instruction are unpredictable. Note that
the appropriate registers for a double-precision value
in the local registers depend on the value of the Stack
Pointer.

31

s bexp

EEREEERREEEEEEREEREREEERRREREE

frac

Figure 47. Single-Precision Floating-Point Format

1-65

This Material Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

31

23
HERRRERER

s bexp

15 7 0
EERRRRRRERRRRRERRE

frac... 0

RERRRERRR

ERRERERRERERRREEEE

...frac 1

Figure 48. Double-Precision Floating-Point Format

Special Floating-Point Values

The Am29000 defines floating-point values that are en-
coded for special interpretation. The values are de-
scribed in this section.

Not-a-Number

A Not-a-Number (NaN) is a symbolic value used to re-
port certain floating-point exceptions. it also can be
used to implement user-defined extensions to floating-
point operations. ANaN comprises a fioating-point num-
ber with maximum biased exponent and non-zero frac-
tion. The sign bit can be either 0 or 1 and has no signifi-
cance. There are two types of NaN: signaling NaNs and
quiet NaNs. A signaling NaN causes an Invalid Opera-
tion exception if used as an input operand to a floating-
point operation; a quiet NaN does not cause an excep-
tion. The Am28000 distinguishes signaling and quiet
NaNs by the most-significant bit of the fraction: a 1 indi-
cates a quiet NaN, and a 0 indicates 2 signaling NaN.

An cperation never generates a signaling NaN as a re-
sult. A quiet NaN result can be generated in one of two
ways:

B as the result of an invalid operation that can-
not generate a reasonable resutt, or

¥ as the result of an operation for which one or
more input operands are either signaling or
quiet NaNs.

In either case, the Am29000 produces a quiet NaN hav-
ing a fraction of 11000.. . 0; that is, the two most-signifi-
cant bits of the fractionare 11, and the remaining bits are
0. If desired, the Reserved Operand exception can be
enabled to cause a Floating-Point Exception trap. The
trap handler in this case can implement a scheme
whereby user-defined NaN values appear to pass
through operations as results, providing overall status
for a series of operations.

Infinity

Infinity is an encoded value used to represent a value
that is too large to be represented as a finite number in
a given floating-point format. Infinity comprises a float-
ing-point number with maximum biased exponent and
zero fraction. The sign bit of an infinity distinguishes +o
from —oo,

Denormalized Numbers

The {EEE Standard specifies that, wherever possible, a
result that is too small to be represented as a normalized
number be represented as a denormalized number. A
denormalized number may be used as an input operand
to any operation. For single- and double-precision for-
mats, a denomalized number comprises a floating-
point number with a biased exponent of 0 and a non-
zero fraction field; the sign bit can be either 1 or 0. The
value of a denormalized number is expressed by:

(-1)*"*s * O.frac * 2**(—bias + 1),

where ‘bias” is the exponent bias for the format in
question.

Zero

A zero comprises a floating-point number with a biased
exponent of 0 and a zero fraction field. The sign bit of a
zero can be either 0 or 1; however, positive and negative
zero are both exactly zero, and are considered equal by
comparison operations.

External Data Accesses

All processor external accesses occur between
general-purpose registers and external devices and
memories. Accesses occur as the result of the execu-
tion of load and store instructions. The load and store in-
structions specify which general-purpose register re-
ceives the data (for a load) or supplies the data (for a
store). The format of the load and store instructions is
shown in Figure 49.

Addresses for accesses are given either by the content
of a general-purpose register or by a constant value
specified by the load or store instruction. The load and
store instructions do not perform address computation
directly. Any required address computations are per-
formed explicitly by other instructions.

Inthe load or store instruction, the Coprocessor Enable
(CE) bit (bit 23) determines whether or not the access is
directed to the coprocessor. If the CE bit is 0, the access
is directed to an external device or memory. If the CE bit
is 1, data is transferred to or from the coprocessor. The
CE bit affects the interpretation of the Control (CNTL)
field as well as the channel protocol. This section deals

1-66

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

<3l 23

HERER

CNTL

XXX XXX XM

TTTTTTT

TTTTTTT

RA RBorl

CE

Figure 49. Load/Store instruction Format

with all external accesses other than coprocessor
accesses.

The format of the instructions that do not perform
coprocessor data transfers (i.e., in which the CE bit is 0)
is shown in Figure 50.

Inload and store instructions, the “RB or |” field specifies
the address for access. The address is either the con-
tent of a general-purpose register, with register number
RB, or a constant with a value | (zero-extended to 32
bits). The M bit determines whether the register or the
constant is used.

The data for the access is written into the general-
purpose register RA for a load, and is supplied by regis-
ter RA for a store.

The definitions for other fields in the load or store in-
struction are given below:

Bit 23: Coprocessor Enable (CE)—The CE bit is 0 for
a non-coprocessor load or store.

Bit 22: Address Space (AS)—If the AS bit is 0 for an
untransiated load or store, the access is directed to in-
struction/data memory. If the AS bit is 1 for an untrans-
lated load or store, the access is directed to input/output.
The AS bit must be 0 for a translated load or store; if the
AS bitis 1for a translated load or store, a Protection Vio-
lation trap occurs. The address space for a translated
load or store is determined by the Input/Output (10) bit of
the associated TLB entry.

Bit 21: Physical Address (PA)—The PA bit may be
used by a Supervisor-mode programto disable address
translation for an access. If the PA bitis 1, then address
translation is not performed for the access, regardliess of
the value of the Physical Addressing/Data (PD) bit inthe

Current Processor Status Register. if the PA bit is 0, ad-
dress translation depends on the PD bit.

The PA bit may be 1 only for Supervisor-mode instruc-
tions. If it is 1 for a User-mode instruction, a Protection
Violation trap occurs.

Bit 20: Set Byte Pointer/Sign Bit (SB)—If the Data
Width Enable (DW) bit of the Configuration Register is 0
and the SB bit is 1, the Byte Pointer Register is written
with the two least-significant bits of the address for the
access. These address bits can control subsequent
character and half-word operations. If the BP bitis 0, the
Byte Pointer Register is not affected.

if the Data Width Enable (DW) bit of the Configuration
Register is 1 and the SB bit is 1 for a load, the loaded
byte or half-word is sign-extended inthe destination reg-
ister; if the SB bit is 0, the byte or half-word is zero-ex-
tended. If the DW bit is 1 and the SB bit is 1 for either a
load or store, then each hit of the Byte Pointer Register
is written with the complement of the Byte Order bit of
the Configuration Register. The Byte Pointer Register is
set in this case to provide software compatibility across
different types of memory systems. If the SB bit is 0, the
Byte Pointer Register is not affected.

Bit 19;: User Access (UA)—The UA bit allows pro-
grams executing in the Supervisor mode to emulate
User-mode accesses. This allows checking of the
authorization of an access requested by a User-mode
program. It also causes address transiation (if applica-
ble) to be performed using the PID field of the MMU
Configuration Register, rather than the fixed Supervi-
sor-mode process identifier zero.

If the UA bit is 1 for a Supervisor-mode load or store, the
access associated with the instruction is performed in

23 15 7 0
FTTTHI FTTTTTTTTT T T h
XXX XXXXM |0 OPT RA RBor |
R
CE!PA: Ua
As sB

Figure 50. Non-Coprocessor Load/Store Format

1-67

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

the User mode. In this case, the User mode affects only
TLB protection checking, the SUP/US output, and the
use of the PID field in translation; it has no effect on the
registers that can be accessed by the instruction. If the
UA bit is 0, the program mode for the access is con-
trolled by the SM bit.

Ifthe UAbitis 1 for a User-mode load or store, a Protec-
tion Violation trap occurs.

Bits 18-16: Option (OPT)—This field is placed on the
OPT=—OPTo outputs during the address cycle of the ac-
cess. There is a one-to-one correspondence between
the CPT field and the OPT=—OPTo outputs; that is, the
most-significant OPT bit is placed on OPT2, and so on.

The OPT field controls system functions as described
below.

Bits 15-8: (RA)—The data for the access is written into
the general-purpose register RA for a load, and is sup-
plied by register RA for a store.

Bits 7-0: (RB or I)—In load and store instructions, the
“RB or I” field specifies the address for the access. The
address is either the content of a general-purpose reg-
ister with register number RB, or a constant value |
(zero-extended to 32 bits). The M bit of the operation
code (bit 24) determines whether the register or the con-
stant is used.

Load and store operations are overlapped with the exe-
cution of instructions that follow the load or store instruc-
tion. Only one load or store may be in progress on any
given cycle. If a load or store instruction is encountered
while another load or store operation is in progress, the
processor enters the Pipeline Hokd mode until the first
operation is completed. However, the address for the
second operation may appear on the address bus if the
first operation is to a device or memory that supports
pipelined operations (see Pipelined Accesses section).

Load Operations

The processor provides the following instructions for
performing load operations: Load (LOAD), Load and
Lock {LOADL), Load and Set (LOADSET), and Load
Multipie (LOADM). All of these instructions transfer data
from an external device or memory into one or more
general-purpose registers.

The LOADL instruction supports the implementation of
device and memory interlocks in a muitiprocessor con-
figuration. It activates the LOCK output during the ad-
dress cycle of the access.

The LOADSET instruction implements a binary sema-
phore. it loads a general-purpose register and automati-
cally writes the accessed location with a word that has 1
in every bit position (that is, the write is indivisible from
the read). The LOCK output is asserted during both the
read and write accesses. Note that, if address transla-
tion is enabled for the LOADSET instruction, the TLB
memory-protection bits must allow both the read and

write accesses. If either the read or write access is not
allowed, neither access is performed.

The LOADM loads a specified number of registers from
sequential addresses, as explained below.

Load operations are overlapped with the execution of in-
structions that follow the load instruction. The processor
detects any dependencies on the loaded data that sub-
sequent instructions may have, and, if such a depen-
dency is detected, enters the Pipeline Hold mode until
the data are returned by the external device or memory.
If a register that is the target of an incomplete load is
written with the result of a subsequent instruction, the
processor does not write the returning data into the reg-
ister when the load is completed; the Not Needed (NN}
bit in the Channel Control Register is set in this case.

Store Operations

The processor provides the following instructions for
performing store operations: Store (STORE), Store and
Lock (STOREL), and Store Multiple (STOREM). All of
these instructions transfer data from one or more
general-purpose registers 10 an external device or
memory.

The STOREL instruction supports the implementation
of device and memory interlocks in a multiprocessor
configuration. it activates the LOCK output during the
address cycle of the access.

The STOREM instruction stores a specified number of
registers to sequential addresses, as explained below.

Store operations are overlapped with the execution of
instructions that follow the store instruction. However,
no data dependencies can exist since the store prevents
any subsequent accesses until it is compieted.

Multiple Accesses

Load Muttiple (LOADM) and Store Multiple (STOREM)
instructions move contiguous words of data between
general-purpose registers and external devices and
memories. The number of transfers is determined by the
Load/Store Count Remaining Register.

The Load/Store Count Remaining (CR) field in the Load/
Store Count Remaining Register specifies the number
of transfers to be performed by the next LOADM or
STOREM executed inthe instruction sequence. The CR
fieldis inthe range of 0 1o 255 and is zero-based; a count
value of 0 represents one transfer, and a count value of
255 represents 256 transfers. The CR field also appears
in the Channel Control Register.

Before a LOADM or STOREM is executed, the CR field
is set by a Move To Special Register. A LOADM or
STOREM uses the most recently written value of the CR
field. It an attempt is made to alter the CR field and the
Channel Control Register contains information for an
external access that has not yet been completed, the
processor enters the Pipeline Holkd mode until the

1-68

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

access is completed. Note that since the CR is set inde-
pendently of the LOADM and STOREM, the CR field
may represent a valid slate of an interrupted program
even # the Contents Valid (CV) bit of the Channel
Control Register is 0.

Because of the pipelined implementation ot LOADM
and STOREM, at least one instruction (e.g., the instruc-
tion that sets the CR field) must separate two succes-
sive LOADM and/or STOREM instructions.

Atter the CR field is set, the execution of a LOADM or
STOREM begins the data transfer. As with any other
load or store operation, the LOADM or STOREM waits
until any pending load or store operation is complete
before starting. The LOADM instruction specifies
the starting address and starting destination general-
purpose register. The STOREM instruction specifiesthe
starting address and the starting source general-

purpose register.

During the execution of the LOADM or STOREM
instruction, the processor updates the address and reg-
ister number after every access, incrementing the
address by 4 and the register number by 1. This contin-
ues until either all accesses are completed or an inter-
rupt or trap is taken.

For aLoad Muttiple or Store Multiple address sequence,
addresses wrap from the largest possible value (hexa-
decimal FFFFFFFC) to the smallest possible value
(hexadecimal 00000000).

The processor increments absolute register numbers
duringthe Load Multiple or Store Multiple sequence. Ab-
solute register numbers wrap from 127 to 128, and from
255 to 128. Thus, a sequence that begins in the global
registers may make a transition to the local registers, but
a sequence that begins in the local registers remains in
the local registers. Aiso, note that the local registers are
addressed circularly.

The normal restrictions on register accesses apply for
the Load Multiple and Store Multiple sequences. For ex-
ample, it a protected general-purpose register is en-
countered in the sequence for a User-mode program, a
Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Ad-
dress Register, and register numbers are stored in the
Target Register (TR) field of the Channe! Control Regis-
ter. For the STOREM instruction, the data for every
access is stored in the Channel Data Register (this
register also is set during the execution of the LOADM
instruction, but has no interpretation in this case). The
CRtield is updated on the completion of every access so
that it indicates the number of accesses remaining in the
sequence.

Load Muitiple and Store Multiple operations are indi-
cated by the Multiple Operation (ML) bit in the Channel

Control Register. This bit may be 1 even though the CR
field has a value of O (indicating that one transfer
remains to be performed). The ML bit is used to restarta
multiple operation on an interrupt return; if it is set
independently by a Move To Special Register before a
load or store instruction is executed, the results are
unpredictable.

While a multiple load or store is executing, the processor
is in the Pipeline Hold mode, suspending any subse-
guent instruction execution until the multiple access is
completed. If an interrupt or trap is taken, the Channel
Address, Channel Data, and Channel Control registers
contain the state of the multiple access at the point of in-
terruption. The multiple access may be resumed at this
point, at a later time, by an interrupt return.

The processor attempts to complete multipie accesses
using the burst-mode capability of the channel {see
Burst-Mode Accesses section). For this reason, multiple
accesses of individual bytes and half-words are not sup-
ported. If the burst-mode access is preempted, the pro-
cessor retransmits the address at the point of preemp-
tion. If the external device or memory cannot support
burst-mode accesses, the processor transmits an ad-
dress for every access. If the address sequence causes
a vintual page-boundary crossing, the processor
preempts the burst-mode access, translates the ad-
dress for the new page, and reestablishes the burst-
mode access using the new physical address.

The last load or store is executed as a simple access.
The processor will preempt burst-mode transfer imme-
diately prior to the last word of the transfer.

Option Bits

The Option field in the load and store instructions sup-
ports system funclions, such as byte and half-word ac-
cesses. The definition of this field for a load or store, de-
pending on the AS bit of the instruction, is as follows:

AS OPT, OPT, OFPT,

X

Meaning

Word-length access
Byte access
Half-word access
Instruction ROM
access (as data)
Cache control
ADAPT29K accesses
Reserved

0 ¢}
0 o
0 1
1 ¢}

00 —=+0

X
X
o
1

1
-all others -

oo
- O
O =

Note that some of these encodings do not affect proces-
sor operation, and could have other interpretations in a
particular system. For example, the OPT values 000,
001, and 010 affect processor operation only if the DW
bit of the Configuration Register is 1. However, non-
standard uses of the OPT field have an implication on
the portability of software between different systems.

1-69

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

Addressing and Alignment

Address Spaces

External instructions and data are contained in one of
four 32-bit address spaces:

1. Instruction/Data Memory

2. Input/Output

3. Coprocessor

4. Instruction Read-Only Memory (instruction

ROM).

An address in the instruction/data memory address
space may be treated as virtual or physical, as deter-
mined by the Current Processor Status Register. Ad-
dress transiation for data accesses is enabled sepa-
rately from address transiation for instruction accesses.
A program in the Supervisor mode may temporarily dis-
able address transiation for individual loads and stores;
this permits load-real and store-real operations.

Itis possible to partition physical instruction and data ad-
dresses into two separate physical address spaces.
However, virtual instruction and data addresses appear
in the same virtual address space (i.e., instruction/data
memory).

The coprocessor address space is not an address
space in the strictest sense. The coprocessor address
space is defined so that transfers of operands and op-
eration codes to the coprocessor do not interfere with
other external devices and memories.

The processor does not directly support the access of
the instruction ROM address space using loads and
stores; this capability is defined as a system option re-
quiring external hardware.

For untranslated data accesses, bits contained in load
and store instructions distinguish between the instruc-
tion/data memory, input/output, and coprocessor ad-
dress spaces. For transiated data accesses, the Input/
Output bit of the associated TLB entry distinguishes
between the instruction/data memory and input/output
address spaces.

For instruction fetches, the ROM Enable (RE) bit of the
Current Processor Status Register distinguishes be-
tween the instruction/data and instruction ROM address
spaces.

Byte and Half-Word Addressing

The Am29000 generates word-oriented byte addresses
for accesses to external devices and memories. Ad-
dresses are word-oriented because loads, stores, and
instruction fetches access words. However, addresses
are byte addresses because they are sufficient to select
bytes packed within accessed words. Forload and store
operations, the processor provides means for using the
least-significant address bits to access bytes and half-
words within external words.

The selection of a byte within a word is determined by
the two least-significant bits of an address and the Byte
Order (BO) bit of the Configuration Register. The selec-
tion of a half-word within a word is determined by the
next-to-least-significant bit of an address and the BO bit.
Figure 51 illustraies the addressing of bytes and halif-
words when the BO bit is 0, and Figure 52 illustrates the
addressing of bytes and half-words when the BO bitis 1.
In Figure 51 and Figure 52, addresses are represented
in hexadecimal notation.

in the processor, the two least-significant bits of an ex-
ternal address can be refiected in the Byte Pointer (BP)
field of the ALU Status Register when the DW bit of the
Contiguration Register is 0. Alternatively, the two least-
significant bits of the address can be used to controtbyte
and half-word accesses whenthe DWbitis 1. The BO bit
affects only the interpretation of the BP field and the two
least-significant address bits.

it the BO bit is 0, bytes are ordered within words such
that a 00 in the BP field or in the two least-significant ad-
dress bits selects the high-order byte of aword, and a 11
selects the low-order byte. if the BO bit is 1, a 00 in the
BP field or in the two least-significant address bits se-
lects the low-order byte of a word, and a 11 selects the
high-order byte.

If the BO bit is 0, half-words are ordered within words
such that a 0 in the most-significant bit of the BP field or
the next-to-least-significant address bit selects the high-
order half-word, and a 1 selects the low-order half-word.
I the BO bit is 1, a 0 in the most-significant bit of the BP
field or the next-to-least-significant address bit selects
the low-order half-word of a word, and a 1 selects the
high-order half-word. Note that since the least-signifi-
cant bit of the BP field or an address does not participate
in the selection of half-words, the alignment of ha¥f-
words is forced to half-word boundaries in this case.

Alighment of Words and Half-Words

Since only byte addressing is supported, it is possible
that an address for the access of a word or half-word is
not aligned to the desired word or half-word. The
Am29000 either ignores or forces alignment in most
cases. However, some systems may require that un-
aligned accesses be supported for compatibility rea-
sons. Because of this, the Am29000 provides an option
that creates a trap when a nonaligned access is at-
tempted. This trap allows software emulation of the non-
aligned accesses in a manner that is appropriate for the
particular system.

The detection of unaligned accesses is aclivated by a 1
in the Trap Unaligned Access (TU) bit of the Current
Processor Status Register. Unaligned access detection
is based on the data length as indicated by the OPT fiekd
of aload or store instruction, and on the two least-signifi-
cant bits of the specified address. Only addresses for
instruction/data memory accesses are checked; align-

1-70

Copyrighted By Its Respective Manufacturer

Am29000

31 23 15 7 0
TTTTTTTTTTIT I ITI I T i T ETTI i r iyl

Word 00000000

Half-Word 00000000 Half-Word 00000002
Byte 00000000 Byte 00000001 Byte 00000002 Byte 00000003
REBRRRERRERERRRRREARARRERERRRN
Word 00000004
Half-Word 00000004 Hatlf-Word 00000008
Byte 00000004 Byte 00000005 Byte 00000006 Byte 00000007
RERERRERERRRRRRERRRRRRERRRRR R
Word FFFFFFF8
Half-Word FFFFFFF8 Half-Word FFFFFFFA
Byte FFFFFFF8 Byte FFFFFFF9 Byte FFFFFFFA Byte FFFFFFFB
BERERRRERERRERRERRRRERRRERRRRR
Word FFFFFFFC
Half-Word FFFFFFFC Hali-Word FFFFFFFE
Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF

Figure 51. Byte and Half-Word Addressing with BO =0

31

EERREEEEEEERSRRRERERRRRERERRER

Word 00000000
Half-Word 00000002 Half-Word 00000000

Byte 00000003 Byte 00000002 Byte 00000001 Byte 00000000

ERRRRRRRRRRRENRNNNERRRRRRRRR R

Word 006000
Half-Word 00000006 Half-Word 00000004

Byte 00000007 Byte 00000006 Byte 00000005 Byte 00000004

NERERERRRERRERRENRRARRA AR RN

Word FFFFFFF8

Half-Word FFFFFFFA Half-Word FFFFFFF8
Byte FFFFFFFB Byte FFFFFFFA Byte FFFFFFF9 Byte FFFFFFF8
TTTTITTTTITTIT I I I I T T i errl
Word FFFFFFFC
Half-Word FFFFFFFE Half-Word FFFFFFFC
Byte FFFFFFFF Byte FFFFFFFE Byte FFFFFFFD Byte FFFFFFFC

Figure 52. Byte and Half-Word Addressing with BO = 1

This Materia

Copyrighted By Its Respective Manufacturer

1-71

This Materi al

29K Family CMOS Devices

ment is ignored for input/output accesses and copro-
cessor transfers.

An Unaligned Access trap occurs only if the TU bit is 1
and any of the following combinations of OPT field and
address bits is detected for a load or store to instruction/
data memory:

OPT, OPT, OPT, A, A,

o 0 [1 0 Unaligned

o 0 0 [} 1 word access

(o]] 0 1 1

(o] 1 0 0 1 Unaligned

(o] 1 4] 1 1 half-word access

The trap handier for the Unaligned Access trap is
responsible for generating the correct sequence of
aligned accesses and performing any necessary shift-
ing, masking and/or merging. Note that a virtual page-
boundary crossing also may have to be considered.

Alighment of Instructions

Inthe Am23000, all instructions are 32 bits in length, and
are aligned on word-address boundaries. The proces-
sor's Program Counter is 30 bits in length, and the least-
significant 2 bits of processor-generated instruction ad-
dresses are always 00. An unaligned address can be
generated by indirect jumps and calls. However, align-
ment is ignored by the processor in this case, and it ex-
pects the system to force alignment (i.e., by interpreting
the two least-significant address bits as 00, regardless
of their values).

Accessing Instructions as Data

To aid the external access of instructions and data on
separate buses, the processor distinguishes between
instruction and data accesses. However, it does not
support a logical distinction between instruction and
data address spaces (except in the case of instruction
read-only memory). In particular, address translation in
the Memory Management Unit is in no way affected by
this distinction (although memory protection is).

In systems where it is necessary to access instructions
as data, this function should be performed via the
shared address space. The OPT field provides a means
for loads to access instructions in the instruction read-
only memory (ROM) address space. The Am29000
does nottake any actionto prevent a store to the instruc-
tion ROM address space.

Byte and Half-Word Accesses

The Am29000 can perform byte and half-word accesses
in either software or hardware under control of the Data
Width Enable (DW) bit of the Configuration Register.
Software byte and half-word accesses are selected by a
DW bit of 0, and hardware byte and half-word accesses
are selected by a DW bit of 1. Software byte and half-
word accesses are less efficientthan hardware byte and

half-word accesses, but hardware accesses require that
the system be able to selectively write individual byte
and half-word positions within external devices and
memories. The software-only technique is compatible
with systems designed to provide hardware support for
byte and half-word accesses.

This section describes the operation of both software
and hardware byte and half-word accesses. Byte and
half-word accesses operate as described here formem-
ory and input/output accesses, but not for coprocessor
transfers. Coprocessor transfers are unaffected by the
DW bit.

The DW bit is cleared by a processor reset. It must ex-
plicitly be set to 1 by software before hardware byte and
half-word accesses can be performed.

Software Byte and Half-Word Accesses

If the DW bit is 0, the Am29000 aliows the Byte Pointer
Register to be set with the least-significant bits of an ad-
dress specified by any load or store instruction, except
those that transfer information to and from the coproces-
sor. Insert and extract instructions can then be used to
access the byte or half-word of interest, after the exter-
nal word has been accessed. This provides a general-
purpose mechanism for manipulating external byte and
half-word data, without the need for external hardware
support.

To load a byte or half-word, a word load is first per-
formed. This load sets the BP field with the two least-
significant bits of the address. A subsequent EXBYTE,
EXHW, or EXHWS instruction extracts the byte or half-
word of interest from the accessed word.

To store a byte or half-word, a load is first performed,
setting the BP field with the two least-significant bits of
the address. A subsequent INBYTE or INHW instruction
inserts the byte or half-word of interest into the accessed
word, and the resulting word is then stored.

Software that relies on loads and stores setting the BP
field cannot operate correctly when the Freeze (F2) bit
of the Current Processor Status Register is 1, because
the ALU Status Register is frozen.

Hardware Byte and Half-Word Accesses

if the DW bitis 1 on a load, the Am29000 selects a byte
or half-word from the loaded word depending on the Op-
tion {OPT) bits of the load instruction, the Byte Order
(BO) bit of the Configuration Register, and the two least-
significant bits of the address (for bytes) or the next-to-
least-significant bit of the address (for half-words). The
selected byte or half-word is right-justified within the
destination register. If the SB bit of the load instruction is
0, the remainder of the destination register is zero-
extended. if the SB bit is 1, the remainder of the destina-
tion register is sign-extended with the sign bit of the se-
lected byte or half-word.

Ifthe DW bit is 1 on a store, the Am23000 replicates the
low-order byte or haif-word in the source register into

1-72

Copyrighted By Its Respective Manufacturer

This Materi al

Am238000

every byte and half-word position of the stored word.
The system is responsible for generating the appropri-
ate byte and/or half-word strobes, based on the OPT=—
OPTo signals and the two least-significant bits of the ad-
dress, to write the appropriate byte or half-word in the
selected device or memory (the system byte order must
also be considered). The SB bit does not affect the op-
eration of a store, except for setting the BP field as de-
scribed below.

Ifthe SBbitis 1 for either a load or store and the DW bit is
also 1, both bits of the BP field are set to the complement
of the BO bit when the load or store is executed. This
does not directly affect the load or store access, but
supports compatibility for software developed for word-
write-only systems. Hardware byte and hatlf-word
accesses—in contrast to software byte and half-word
accesses—can be performed when the FZ bitis 1, be-
cause these accesses do not rely on the BP field.

System Alternatives and Compatibility

The two mechanisms for performing byte and haif-word
accesses create the possibility of two types of systems.
These are named for convenience:

® Type 1: simple, word-only accesses in exter-
nal devices and memories; software byte and
half-word accesses.

B Type 2:byte/half-word strobes in external de-
vices and memories; hardware byte and half-
word accesses by the Am23000.

The provision for hardware byte and half-word accesses
encourages Type 2 systems. Software for Type 1 sys-
tems can execute on Type 2 systems, but the reverse is
not true. Software compatibility is possible primarily be-
cause of the DW bit and because the Am29000 sets the
BP field with an appropriate byte pointer even when it
performs byte and half-word accesses with internal
hardware. Also, the system must return a full word in
either type of system, regardless of the access data-
width. The DW bit must be 0 in Type 1 systems and must
be 1 in Type 2 systems. To illustrate compatibility be-
tween systems, consider the following steps of an un-
signed byte load compiled for a Type 1 system, but exe-
cuting on a Type 2 system:

1. Perform a load with OPT =001 and SB=1.

¥ Type 1 system: The addressed word is ac-
cessed and placed into the destination regis-
ter. The BP field is set with the two least-sig-
nificant bits of the address.

B Type 2 system: The addressed byte is ac-
cessed, aligned, padded, and placed into the
destination register. The BP field is set to point
to the low-order byte, reflecting the alignment
that has been performed (the pointer depends
on the value of the BO bit).

2. Perform a byte extract on the ioaded word.

® Type 1 system: The byte selected by the BP
field is aligned to the low-order byte of the des-
tination register and the remainder of the word
is zero-extended. The selected byte maybein
any byte position.

® Type 2 system: The byte selected by the BP
tield (set to point to the low-order byte) is
aligned to the low-order byte of the destination
register and the remainder of the word is zero-
extended. (Note that the selected byte was al-
ready in the low-order byte position. This op-
eration does not change the program state
but merely allows software compatibility.)

The recommended instruction sequences for all types of
byte and half-word accesses and for both types of sys-
tems are enumerated below. Compatibility between
these systems follows the above example, but for brev-
ity, compatibility is not described in detail here.

Byte read, unsigned:

Iype1 = Comments

load 0,17 temp,addr ; OPT=001,SB=1
exbyte temp,temp,0 ; get byte

Type2 Comments
load 0,1,temp,addr ; OPT=001,5SB=0

Byte read, signed:

Type1l Comments
load 0,17 temp,addr ; OPT=001, SB=1

exbyte temp,temp,0 ; get byte

sll temp,temp,24 ; sign extend

sra temp,temp,24

Iype2 Comments

load 0,17 temp,addr ; OPT=001,SB=1

(sign extended)

Byte Write:

Type1 Comments

load 0,17 temp,addr ; OPT=001,SB=1

inbyte temp,temp, ; insert byte
data

store 0,1,temp,addr ; store
Type2 Comments

store 0,1,data,addr ; OPT=001,SB=0

1-73

Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

Half-word read, unsigned:

Type 1 Comments

load 0,18,temp,addr ; OPT=010,SB=1

exhw temp,temp,0 ; get half-word un-
signed

Type2 Comments

load 0,2,temp,addr ;OPT=010,SB=0

Half-word read, signhed:

Typet Comments

load 0,18,temp,addr ; OPT=010,SB=1

exhws temp,temp ; get half-word sign-
extend

Type2 Comments

load 0,18,temp,addr ; OPT=010,SB=1,
(sign-extend)

Half-word write:

Type1
load 0,18,temp,addr

Comments
;OPT=010,SB=1

inhw temp temp,data ; insert half-word

store 0,2,temp,addr

Type2
store 0,2,data,addr

; store

Comments
;OPT=010,SB=0

1-74

This Materi al

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

INTERRUPTS AND TRAPS

Interrupts and traps cause the Am23000 to suspend the
execution of an instruction sequence and to begin the
execution of a new sequence. The processor may or
may not later resume the execution of the original in-
struction sequence.

The distinction between interrupts and traps is largely
one of causation and enabling. Interrupts allow external
devices and the Timer Facility to control processor exe-
cution, and are always asynchronous to program execu-
tion. Traps are intended to be used for certain excep-
tional events that occur during instruction execution,
and are generally synchronous to program execution.

Throughout this manual, a distinction is made between
the point at which an interrupt or trap occurs and the
point at which it is taken. An interrupt or trap is said to
occur when all conditions that define the interrupt ortrap
are met. However, an interrupt or trap that occurs is not
necessarily recognized by the processor, either be-
cause of various enables or because of the processor’s
operational mode (e.g., Halt mode). An interrupt ortrap
is taken when the processor recognizes the interrupt or
trap and alters its behavior accordingly.

Interrupts

Interrupts are caused by signals applied to any of the ex-
ternal inputs INTR=—INTRo, or by the Timer Facility. The
processor may be disabled from taking certain inter-
rupts by the masking capability provided by the Disable
All Interrupts and Traps {DA) bit, Disable Interrupts (DI}
bit, and Interrupt Mask (IM) field in the Current Proces-
sor Status Register.

The DA bit disables all interrupts and most traps. The DI
bit disables external interrupts without affecting the rec-
ognition of traps and Timer interrupts. The 2-bit IM field
selectively enables external interrupts as follows:

IM Value Result
00 INTR, enabled
o1 INTR,-INTR, enabled
10 INTR,-INTR, enabled
11 INTR,-INTR, enabled

Note that the INTRo interrupt cannot be disabled by the
IM field. Also, note that no externat interrupt is taken if
either the DA or DI bit is 1. The Interrupt Pending bit in
the Current Processor Status indicates that one or more
of the signals INTRs—INTR is active, but that the corre-
sponding interrupt is disabled due to the value of either
DA, DI, or IM.

Traps

Traps are caused by signals applied 1o one of the inputs
TRAP:—TRAPs, or by exceptional conditions such as
protection violations. Except for the Instruction Access
Exception, Data Access Exception, and Coprocessor
Exception traps, traps are disabled by the DA bit in the

Current Processor Status; a 1 in the DA bit disables
traps, and a 0 enables traps. It is not possible to selec-
tively disable individual traps.

Wait Mode

A wait-for-interrupt capability is provided by the Wait
mode. The processor is in the Wait mode whenever
the Wait Mode (WM) bit of the Current Processor Status
is 1. While in Wait mode, the processor neither fetches
nor executes instructions and performs no external
accesses. The Wait mode is exited when an interrupt or
trap is taken.

Note that the processor can take only those interrupts or
traps for which it is enabled, even in the Wait mode. For
example, if the processor is in the Wait mode with a DA
bit of 1, it can leave the Wait mode only via the Reset
mode or a WARN trap.

Vector Area

interrupt and trap processing rely on the existence of a
user-managed Vector Area in external instruction/data
memory or instruction read-only memory (instruction
ROM). The Vector Area begins at an address specified
by the Vector Area Base Address Register, and pro-
vides for as many as 256 different interrupt andtrap han-
dling routines. The processor reserves 24 routines for
system operation and 40 routines for instruction emula-
tion. The number and definition of the remaining 192
possible routines are system-dependent.

The Vector Area has one of two possible structures as
determined by the Vector Fetch (VF) bit in the Configu-
ration Register. The first structure, as described below,
requires less external memory than the second, but
imposes the performance penaity of the vector-table
lookup.

If the VF bit is 1, the structure of the Vector Area is ata-
ble of vectors in instruction/data memory. The layout of
a single vector is shown in Figure 53. Each vector gives
the beginning word-address of the associated interrupt
or trap handling routine, and specifies, by the R bit,
whether the routine is contained in instruction/data
memory (R = 0) or instruction ROM (R = 1).

Ifthe VF bitis 0, the structure of the Vector Areais a seg-
ment of contiguous blocks of instructions in instructiorv/
data memory or instruction ROM. The ROM Vector Area
(RV) bit of the Configuration Register determines
whether the Vector Area is in instruction/data memory
(RV = 0) or instruction ROM (RV = 1). A 64-instruction
block contains exactly one interrupt or trap handling rou-
tine, and blocks are aligned on 64-instruction address
boundaries.

Vector Numbers

When an interrupt or trap is taken, the processor deter-
mines an 8-bit vector number associated with the inter-
rupt or trap. The vector number gives either the number

178

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

31 23 15 7
HERRRRRRRRERRRRRRRERREEN R

Handler Starting Address

Figure 53. Vector Table Entry

of a vector table entry or the number of an instruction
block, depending on the value of the VF bit.

Ifthe VF bit is 1, the physical address of the vector table
entry is generated by replacing bits 9-2 of the value in
the Vector Area Base Address Register with the vector
number.

If the VF bit is 0, the physical address of the first instruc-
tion of the handling routine is generated by replacing bits
15-8 of the value in the Vector Table Base Address
Register with the vector number.

Vector numbers are either predefined or specified by an
instruction causing the trap. The assignment of vector
numbers is shown in Figure 54 (vector numbers are in
decimal notation). Vector numbers 64 to 255 are for use
by trapping instructions; the definition of the routines as-
sociated with these numbers is system-dependent.

Interrupt and Trap Handling

interrupt and trap handling consists of two distinct op-
erations: taking the interrupt or frap, and returning from
the interrupt or trap handler. If the interrupt or trap
handler retums directly to the interrupted routine, the
interrupt or trap handler need not save and restore
processor state.

Taking an Interrupt or Trap

The following operations are performed in sequence by
the processor when an interrupt or trap is taken:

1. Instruction execution is suspended.
2. instruction fetching is suspended.

3. Any in-progress load or store operation is com-
pleted. Any additional operations are canceled
in the case of Load Multiple and Store Multiple.

4. The contents of the Current Processor Status
Register are copied into the Old Processor
Status Register.

5. The Current Processor Status register is modi-
fied as shown in Figure 55 {the value “u” means
unaffected}. Note that setting the Freeze (FZ) bit
freezes the Channel Address, Channel Data,
Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and ALU Status
Registers.

6. The address of the first instruction of the inter-
rupt or trap handler is determined. if the VF bit of

the Configuration Register is 1, the address is
obtained by accessing a vector from instructiorv
data memory, using the physica! address ob-
tained from the Vector Area Base Address Reg-
ister and the vector number. This access ap-
pears on the channel as a data access, and the
OPT=-OPTo signals indicate a word-length ac-
cess. If the VF bit is 0, the instruction address is
given directly by the Vector Area Base Address
Register and the vector number.

7. lithe VF bitis 1, the R bit in the vector fetched in
Step 6 is copied into the RE bit of the Current
Processor Status Register. If the VF bit is 0, the
RV bit of the Configuration Register is copied
into the RE bit. This step determines whether or
not the first instruction of the interrupt handler is
in instruction ROM.

8. Aninstruction tetch is initiated using the instruc-
tion address determined in Step 6. At this point,
normal instruction execution resumes.

Note that the processor does not explicitly save the con-
tents of any registers when aninterrupt is taken. If regis-
ter saving is required, it is the responsibility of the inter-
rupt or trap-handling routine. For proper operation, reg-
isters must be saved before any further interrupts or
traps may be taken. The FZ bit must be reset at leasttwo
instructions before interrupts or traps are reenabled to
allow the program state o be reflected properly in pro-
cessor registers if an interrupt or trap is taken.

Returning from an Interrupt or Trap

Two instructions are used to resume the execution of an
interrupted program: interrupt Return (IRET), and Inter-
rupt Return and invalidate (IRETINV). These instruc-
tions are identical except in one respect: the IRETINV
instruction resets all Valid bits in the Branch Target
Cache, whereas the IRET instruction does not affect the
Valid bits.

In some situations, the processor state must be set
properly by software before the interrupt return is exe-
cuted. The following is alist of operations normally per-
formed in such cases:

1. The Current Processor Status is configured as
shown in Figure 55 (the value “x” is a “don't
care”). Note that setting the FZ bit freezes the
registers listed below so that they may be set for
the interrupt return.

1-76

Copyrighted By Its Respective Manufacturer

Am238000

Number

Type of Trap or Interrupt

Cause

WRNOOOHWN-O

64-255

lllegal Opcode

Unaligned Access

Out of Range

Coprocessor Not Prasent
Coprocessor Exception

Protection Violation

Instruction Access Exception

Data Access Exception

User-Mode Instruction TLB Miss
User-Mode Data TLB Miss
Supervisor-Mode Instruction TLB Miss
Supervisor-Mode Data TLB Miss
Instruction TLB Protection Viclation
Data TLB Protection Violation

=
g3
22

E

333

o

23

1

Floating-Point Exception
reserved

reserved for instruction emulation
(op codes D8-DD)

MULTM

MULTMU

MULTIPLY

DIVIDE

MULTIPLU

reserved for instruction emulation
{op codes E7-E9)

FEQ

DEQ

FGT

DGT

FGE

DGE

FADD

DADD

FSUB

DSUB

FMUL

OMUL

FDIV

DDIV

reserved for instruction emulation
{op code F8)

FOMUL

reserved for instruction emulation
(op codes FA-FF)

Assert and EMULATE instruction traps
(vector number specified by instruction)

executing undefined instruction
acoess on unnatural boundary, TU=1
overflow or underflow
coprocessor access, CP =0
coprocessor DERR response
invalid User-mode operation
1ERR response

response, not coprocessor
no TLB entry for translation

”

TLB UE/SE=0

TLB UR/SR =0, UW/SW =0 on write
Timer Facility

Trace Facility

INTR, input

INTR, input

INTR, input

INTR, input

TRAP, input

TRAP, input

unmasked floating-point exception

MULTM instruction
MULTMU instruction
MULTIPLY instruction
DIVIDE instruction
MULTIPLU instruction
DIVIDU instruction
CONVERT instruction
SQRT instruction
CLASS instruction

FEQ instruction
DEQ instruction
FGT instruction
DGT instruction
FGE instruction
DGE instruction
FADD instruction
DADD instruction
FSUB instruction
DSUB instruction
FMUL instruction
DMUL instruction
FDIV instruction
DDV instruction

FDMUL instruction

Figure 54. Vector Number Assignments

This Material Copyrighted By Its Respective Manufacturer

1-77

29K Family CMOS Devices

31 23 15 7 0
ITTTTITTTTIIIT i
0000000000000 0 0 Ofu[ulofolo]ro]ujofrit]t]u uft]d
N ~ M
Reserved E:::E::::::: o
;'P:TP;FZ:REEPD:SM M DA
CA TE TU LK WM PI DI

Figure 55. Current Processor Status after an interrupt or Trap

. The Old Processor Status is set to the value of

the Current Processor Status for the target
routine.

. The Channel Address, Channe! Data, and

Channel Control registers are set to restart orre-
sume uncompieted channel operations of the
target routine.

. The Program Counter 1 and Program Counter 0

registers are set to the addresses of the first and
second instructions, respectively, to be exe-
cuted in the target routine.

. Other registers are set as required. These may

include registers such as the ALU Status, Q, and
so forth, depending on the particular situation.
Some of these registers are unaffected by the
FZ bit, so they must be setin such a manner that
they are not modified unintentionally before the
interrupt return.

Once the processor registers are configured properly,
as described above, an interrupt return instruction
{IRET or IRETINV) performs the remaining steps neces-
sary o return to the target routine. The following opera-
tions are performed by the interrupt return instruction:

. Any in-progress load or store operation is com-

pleted. !f a Load Multiple or Store Mulitiple se-
quence is in progress, the interrupt return is not
executed until the sequence is completed.

. Interrupts and traps are disabled, regardless of

the settings of the DA, DI, and IM fields of the

Current Processor Status, for Steps 3 through
10.

If the interrupt return instruction is an IRETINV,
all Valid bits in the Branch Target Cache are
reset.

The contents of the Old Processor Status Regis-
ter are copied into the Current Processor Status
Register. This normally resets the FZ bit aliow-
ing the Program Counter 0, 1, 2, Channel Ad-
dress, Data, Control, and ALU Status registers
to update normally. Since certain bits of the Cur-
rent Processor Status Register always are up-
dated by the processor, this copy operation may
be irrelevant for certain bits (e.g., the interrupt
Pending bit).

. If the Contents Valid (CV) bit of the Channel

Control Register is 1, and the Not Needed (NN)
and Multipie Operation (ML) bits are both 0, an
external access is started. This operation is
based on the contents of the Channel Address,
Channel Data, and Channel Control registers.
The Current Processor Status Register condi-
tions the access—as is normally the case. Note
that Load Multiple and Store Multiple operations
are not restarted at this point.

The address in Program Counter 1 is used to
fetch an instruction. The Current Processor
Status Register conditions the fetch. This step is
treated as a branch inthe sense that the proces-

31 23 15 7 0
HERRRERREREREE

00000000000 0000 OfXIx{Oj0Ix1|x[xjoptptt|xx |
\ ,::;|'::|lll' T T,
V N

Reserved R I L T R N I
¢ PyTP: FZ: RE:PDISM IM . DA

CA TE TU LK WM P Di

Figure 56. Current Processor Status Before Interrupt Return

1-78

This Materi al

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

sor searches the Branch Target Cache for the
target of the fetch.

7. The instruction fetched in Step 6 enters the de-
code stage of the pipeline.

8. The address in Program Counter 0 is used to
fetch an instruction. The Current Processor
Status Register conditions the fetch. This stepis
treated as a branch in the sense that the proces-
sor searches the Branch Target Cache for the
target of the fetch.

9. The instructionfetched in Step 6 enters the exe-
cute stage of the pipeline, and the instruction
fetched in Step 8 enters the decode stage.

10. If the CV bitin the Channel Control Register is a
1,the NN bitis 0, and the ML bitis 1, a Load Mul-
tiple or Store Multiple sequence is started,
based on the contents of the Channel Address,
Channe! Data, and Channel Control registers.

11. Interrupts and traps are enabled per the ap-
propriate bits in the Current Processor Status
Register.

12. The processor resumes normal operation.

Fast Interrupt Processing

The registers affected by the FZ bit of the Current Pro-
cessor Status Register are those that are modified by ai-
most any usual sequence of instructions. Since the FZ
bit is set by aninterrupt or trap, the interrupt or trap han-
dier is able to execute while not disturbing the state of
the interrupted routine, though its execution is some-
what restricted. Thus, it is not necessary inmany cases
for the interrupt or trap handler to save the registers that
are affected by the FZ bit.

The processor provides an additional benefit if the Pro-
gram Counter 0 and Program Counter 1 registers are
not modified by the interrupt or trap handler. If Program
Counters 0 and 1 contain the addresses of sequential in-
structions when an interrupt or trap is taken, and if they
are not modified before an interrupt return is executed,
Step 8 of the interrupt return sequence above occurs as
a sequential fetch—instead of a branch—for the inter-
rupt return. The performance impact of a sequential
fetch is normaily less than that of a nonsequential fetch.

Because the registers affected by the FZ bit are some-
times required for instruction execution, it is not possible
for the interrupt or trap handler to execute all instruc-
tions unless the required registers are first saved else-
where {e.g., in one or more global registers). Most of the
restrictions due to register dependencies are obvious
(e.g., the Byte Pointer for byte extracts), and will not be
discussed here. Other less obvious restrictions are
listed below:

1. Load Multiple and Store Muttiple. The Channel
Address, Channel Data, and Channel Control
registers are used to sequence Load Multiple

and Store Multiple operations, so these instruc-
tions cannot be executed while the registers are
frozen. However, note that other external
accesses may occur; the Channel Address,
Channel Data, and Channel Control registers
are required only to restart an access after an
exception, and the interrupt or trap handter is not
expected to encounter any exceptions.

2. Loads and stores that set the Byte Pointer. if the
Set Byte Pointer (SB) of a load or store instruc-
tionis 1 and the FZ bit is also 1, there is no effect
on the Byte Pointer. Thus, the execution of ex-
ternal byte and half-word accesses using this
mechanism is not possible.

3. Extended arithmetic. The Carry bit of the ALU
Status Register is not updated while the FZ bit
is1.

4. Divide step instructions. The Divide Flag of the
ALU Status Register is not updated whenthe FZ
bitis 1.
If the interrupt or trap handler does not save the state of
the interrupted routine, it cannot allow additionat inter-
rupts and traps. Also, the operation of the interrupt or
trap handler cannot depend on any trapping instruc-
tions (e.g., Floating-Point instructions, illegal operation
codes, arithmetic overfiow, etc.) since these are dis-
abled. There are certain cases, however, where traps
are unavoidable; these are discussed in the Arithmetic
Exceptions section.

WARN Trap

The processor recognizes a special frap, caused by the
activation of the WARN input, that cannot be masked.
The WARN trap is intended to be used for severe sys-
tem-error or deadlock conditions. It aliows the processor
to be placed in a known, operable state, while preserv-
ing much of its original state for error reporting and pos-
sible recovery. Therefore, it shares some features in
common with the Reset mode as well as features com-
moon to other traps described in this section.

The major differences between the WARN trap and
other traps are:

1. The processor does not wait for an in-progress
external access to be completed before taking
the trap, since this access might not be com-
pleted. However, the information related to any
outstanding access is retained by the Channel
Address, Channel Data, and Channei Control
registers when the trap is taken.

2. The vector-fetch operation is not performed, re-
gardiess of the VF bit of the Configuration Regis-
ter, when the WARN trap is taken. Instead, the
ROM Enable (RE) bit in the Current Processor
Status is set, and instruction fetching begins im-
mediately at Address 16 in the instruction ROM.

1-79

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

The trap handler executes directly from the in-
struction ROM without the need to access
external (and possibly nonfunctional or invalid)
instruction/data memory.

Note that WARN trap may disrupt the state of the routine
that is executing when it is taken, prohibiting this routine
from being restarted.

Sequencing of Interrupts and Traps

On every cycle, the processor decides eitherto execute
instructions or to take an interrupt or trap. Since there
are multiple sources of interrupts and traps, more than
one interrupt or trap may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken ac-
cording to the priority shown in Figure 57. In this table,
interrupts and traps are listed in order of decreasing pri-
ority. This section discusses the first three columns of
Figure 57. The last two columns are discussed in the
Exception Reporting and Restarting section.

In Figure 57, interrupts and traps fall into one of two
categories depending on the timing of their occurrence
relative to instruction execution. These categories are
indicated in the third column by the labels “inst” and
“async.” These labels have the following meanings:

1. Inst—Generated by the execution or attempted
execution of an instruction.

2. Async—Generated asynchronous to and inde-
pendent of the instruction being executed, ai-
though it may be a result of an instruction exe-
culed previously.

The principle forinterrupt and trap sequencing is that the
highest priority interrupt or trap is taken first. Other
interrupts and traps remain active until they can be
taken, or are regenerated when they can be taken. This
is accomplished, depending on the type of interrupt or
trap, as follows:

1. Alltrapsin Figure 57 with Priority 13 0or 14 are re-
generated by the re-execution of the causing in-
struction.

2. Most of the interrupts and traps of Priorities 4
through 12 must be held by external hardware
until they are taken. The exceptions to this are
listed in {3) below.

3. The exceptions to (2) above are the Data Access
Exceptiontrap, the Coprocessor Exception trap,
the Timer interrupt, and the Trace trap. These
are caused by bits in various registers in the
processor and are held by these registers until
taken or cleared. The relevant bits are: the
Transaction Faulted (TF) bit of the Channel Con-
trol Register for Data Access Exception and
Coprocessor Exception traps, the Interrupt (IN)
bit of the Timer Reload Register for Timer inter-

rupis, and the Trace Pending (TP) bit of the Cur-
rent Processor Status Register for Trace traps.

4. Alltraps of Priorities 2 and 3 in Figure 57, except
for the Unaligned Access trap, are not regener-
ated. These traps are mutually exclusive and are
given high priority because they cannot be re-
generated; they must be taken if they occur. If
one of these traps occurs at the same time as a
reset or WARN trap, it is not taken, and its occur-
rence is lost.

5. The Unaligned Access trap is regenerated inter-
nally when an external access is restarted by the
Channel Address, Channel Data, and Channel
Control registers. Note that this trap is not nec-
essarily exclusive to the traps discussed in (4)
above.

Note that the Channel Address, Channel Data, and
Channel Control registers are set fora WARN trap only if
an external access is in progress whenthe trap is taken.

Exception Reporting and Restarting

When an instruction encounters an exceptional condi-
tion, the Program Counter 0, Program Counter 1, and
Program Counter 2 registers report the relevant instruc-
tion address(es), and allow the instruction sequence to
be restarted once the exceptional condition has been
remedied (if possible). Similarly, when an external ac-
cess or coprocessor transfer encounters an exceptional
condition, the Channel Address, Channel Data, and
Channel Control registers report information on the ac-
cess ortransfer, and aliow it to be restarted. This section
describes the interpretation and use of these registers.

The “PC1” column in Figure 57 describes the value heid
inthe Program Counter 1 Register (PC1) whenthe inter-
rupt ortrap is taken. For traps in the “inst” category, PC1
contains either the address of the instruction causing
the trap, indicated by “curr,” or the address of the in-
struction following the instruction causing the trap, indi-
cated by “next.”

For interrupts and traps in the “async” category, PC1
contains the address of the first instruction, which was
not executed due to the taking of the interrupt or trap.
This is the next instruction to be executed upon interrupt
return, as indicated by “next” in the PC1 column.

Instruction Exceptions

Fortraps caused by the execution of aninstruction (e.g.,
the Out of Range trap), the Program Counter 2 Register
contains the address of the instruction causing the trap.
In all of these cases, PC1 is in the “next” category. The
Exception Opcode Register contains the operation code
of the instruction causing the trap.

The traps associated with instruction fetches (i.e., those
of Priority 13) occur only if the processor attempts the
execution of the associated instruction. An exception

1-80

Copyrighted By Its Respective Manufacturer

Am29000

Priority Type Of Interrupt Or Trap Inst/Async PC1 | Channel Regs
1 WARN async next see Note 1
(highest)
User-Mode Data TLB Miss inst next all
2 Supervisor-Mode Data TLB Miss inst next all
Data TLB Protection Violation inst next all
Unaligned Access inst next all
Coprocessor not Present inst next all
Out of Range inst next N/A
Floating-Point Exceptions inst next N/A
Assaert instructions inst next N/A
Floating-Point Instructions inst next N/A
3 MULTIPLY inst next N/A
MULTM inst next N/A
DIVIDE inst next N/A
MULTIPLU inst next N/A
MULTMU inst next N/A
DIVIDU inst next N/A
EMULATE inst next N/A
a Data Access Exception async next all
Coprocessor Exception async next all
5 TRAP, async next multiple
6 TRAP, async next multiple
7 INTR, async next multiple
8 INTR, async next multiple
9 INTR, async next multiple
10 INTR, async next multiple
" Timer async next multiple
12 Trace async next multiple
User-Mode Instruction TLB Miss inst curr N/A
13 Supervisor-Mode Instr. TLB Miss inst curr N/A
Instruction TLB Protection Violation inst curr N/A
Instruction Access Violation inst curr N/A
14 lllegal Opcode inst curr N/A
(lowest) Protection Violation inst curr N/A

Note: The Channel Address, Channel Data, and Channel Control registers are set for a WARN trap
only if an external access is in progress when the trap is taken.

Figure 57. Interrupt and Trap Priority Table

may be detected during an instruction prefetch, but the
associated trap does not occur if a nonsequential fetch
occurs before the processor attempts the execution of
the invalid instruction. This prevents the spurious indica-
tion of instruction exceptions.

Data Exceptions

The “Channel Regs” column of Figure 57 indicates the
cases for which the Channel Address, Channel Data,
and Channel Control registers contain information re-

1-81

This Material Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

lated to an external access or coprocessor transfer
(these registers collectively are termed “channel regis-
ters” in the following discussion). For the cases indi-
cated, the access or transfer was not completed be-
cause of some exceptional condition. Note that the
Channel Data Register contains relevant information
only in the case of a store.

Forthe WARN trap, the channel registers are valid only if
a load or store were in progress when the trap was
taken. Recall that the WARN trap does not wait for any
in-progress access to be completed.

For the traps with an “all” in the “Channel Regs” column
of Figure 57, the channel registers contain information
relevant to the trap in all cases. These traps are associ-
ated with exceptional events during external accesses
or coprocessor transfers.

For the traps with a “multiple” in the “Channel Regs” col-
umn, the channel registers might contain information for
restarting an interrupted Load Multiple or Store Multiple
operation. Inthese cases, the operation did not encoun-
ter an exception, but was simply canceled for latency
considerations.

The information contained in the channel registers al-
lows the processor to restart the related operation dur-
ing aninterrupt return sequence, without any special as-
sistance by software. Software must only ensure that
the relevant information is retained in, or restored to, the
channel registers before an interrupt return is executed.

Arithmetic Exceptions

Integer and floating-point instructions can cause Out of
Range or Floating-Point Exception traps, respectively, if
an exception is detected during the arithmetic operation.
This section describes the conditions under whichthese
traps occur and the additional operations performed be-
yond those described in the Interrupt and Trap Handling
section.

Integer Exceptions

Some integer add and subtract instructions—ADDS,
ADDU, ADDCS, ADDCU, SUBS, SUBU, SUBCS,
SUBCU, SUBRS, SUBRU, SUBRCS, and SUBRCU—
cause an Out of Range trap upon overfiow or underflow
of a 32-bit signed or unsigned result, depending on the
instruction.

Two integer multiply instructions—MULTIPLY and
MULTIPLU—cause an Out of Range trap upon overtiow
of a 32-bit signed or unsigned result, respectively, if the
MO bit of the Integer Environment Register is 0. If the
MO bit is 1, these multiply instructions cannot cause an
Out of Range trap.

Two integer divide instructions—DIVIDE and DIVIDU—
take the Cut of Range trap upon overflow of a 32-bit
signed or unsigned result, respectively, if the DO bit of
the integer Environment Register is 0. If the DO bit is 1,
the divide instructions cannot cause an Out of Range

trap unless the divisor is 0. if the divisor is 0, an Out of
Range trap always occurs, regardless of the DO bit.

In addition to the operations described in the Interrupt
and Trap Handling section, the following operations are
performed when an Out of Range trap is taken:

1. Theoperationcode of the instruction causing the
exception is placed in the 10P field of the Excep-
tion Opcode Register.

2. For the MULTIPLY, MULTIPLU, DIVIDE, and
DIVIDU instructions, the absolute register num-
bers of the excepting instruction’s source and
destination registers are placed into the Indirect
Pointer A, Indirect Pointer B, and indirect Pointer
C registers.

3. For the MULTIPLY, MULTIPLU, DIVIDE, and
DIVIDU instructions, the destination register or
registers are unchanged.

Floating-Point Exceptions

A Floating-Point Exception trap occurs when an excep-
tionis detected during a floating-point operation, and the
exception is not masked by the corresponding bit of the
Fioating-Point Mask Register. In this context, a floating-
point operation is defined as any operation that accepts
a floating-point number as a source operand, that pro-
duces afloating-point result, or both. Thus, for example,
the CONVERT instruction may create an exception
while attempting to convert a floating-point value to an
integer value.

In addition to the operations described in the Interrupt
and Trap Handling section, the foliowing operations are
performed when a Filoating-Point Exception trap is
taken:

1. Theoperationcode of the instruction causingthe
exception is placed in the IOP field of the Excep-
tion Opcode Register.

2. The status of the trapping operation is written
into the trap status bits of the Floating-Point
Status Register. The status bits that are written
do not depend on the values of the correspond-
ing mask bits in the Floating-Point Environment
Register.

3. The absolute register numbers of the excepting
instruction’s source and destination registers
are placed into the Indirect Pointer A, Indirect
Pointer B, and Indirect Pointer C registers. If the
RB or RC fields specify a function code, that
code is transferred to the corresponding indirect
pointer. Note that if the most-significant bit of the
this function code is 1, the value of the Stack

1-82

Copyrighted By Its Respective Manufacturer

This Materi al

Am238000

Pointer has been added to the RB field and must
be subtracted to recover the original field.

4. The destination register or registers are left un-
changed.

Exceptions During Interrupt
and Trap Handling

In most cases, interrupt and trap handling routines are
executed withthe DA bit inthe Current Processor Status
having a value of 1. It is assumed that these routines do
not create many of the exceptions possible in most other
processor routines, so most of these are ignored.

If the assumption of no exceptions is not valid for a par-
ticular interrupt or trap handler, it is important that the
handler save the state of the processor and reset the FZ
bit of the Current Processor Status, so that the handler
itselt may be restarted properly. This must be accom-
plished before any interrupts or traps can be taken. In
this case, the state {or the state of some other process)
must be restored before an interrupt return is executed.

Itis possible that errors reported via the IERR and DERR
signais are associated with hardware errors, indepen-
dent of any routine being executed. For this reason, the
Instruction Access Exception, Data Access Exception,
and Coprocessor Exception traps cannot be disabled by
the DA bit, and the processor may take one of these
traps even while handling another interrupt or trap.

If the processor does take an unmaskable trap while
handling another interrupt or trap, and the state of the
interrupt or trap handleris notreflected in processor reg-
isters, it is not possible to return to the point at which the
unmaskabile trap is taken. When the unmaskable trap is
taken, the processor state savedis that state associated
with the original interrupt or trap, not with the unmask-
able trap; however, the Old Processor Status Registeris
modified to reflect the Current Processor Status Regis-
ter of the inferrupt or trap handler. This situation, indi-
cated by the DA bit being 1 in the Old Processor Status
Register, may not be recoverable.

1-83

Copyrighted By Its Respective Manufacturer

This Materi al

29K Famlly CMOS Devices

MEMORY MANAGEMENT

The Am29000 incorporates a Memory Management
Unit (MMU) for performing virtual-to-physical address
transiation and memory access protection. This section
describes the logical operation of the Memory Manage-
ment Unit.

Address translation can be performed only for instruc-
tion/data memory accesses. No address translation is
performed for instruction ROM, input/output, coproces-
sor, or interrupt/trap vector accesses. However, an in-
struction/data memory access can be redirected to in-
put/cutput by the address-translation process.

Translation Look-Aside Buffer

The MMU stores the most recently performed address
translations in a special cache, the Transiation Look-
Aside Buffer (TLB). All virtual addresses generated by
the processor are translated by the TLB. Given a virtual
address, the TLB determines the corresponding physi-
cal address.

The TLB reflects information in the processor system
page tables, except that it specifies the translation for
many fewer pages; this restriction allows the TLB to be

incorporated on the processor chip where the per-
formance of address translation is maximized.

Adiagramof the TLB is shownin Figure 58. The TLBisa
table of 64 entries, divided into two equal sets, called Set
0 and Set 1. Within each set, entries are numbered 0 to
31. Entries in different sets that have equivalent entry
numbers are grouped into a unit called a line; there are
thus 32 lines in the TLB, numbered 0 to 31.

Each TLB entry is 64 bits long and contains mapping
and protection information for a single virtual page. TLB
entries may be inspected and modified by processor in-
structions executed in the Supervisor mode. The layout
of TLB entries is described in the Register Description
section.

The TLB stores information about the ownership of the
TLB entries in an 8-bit Task Identifier (TID) field in each
entry. This makes it possible for the TLB to be shared by
several independent processes without the need for in-
validation of the entire TLB as processes are activated.
It also increases system performance by permitting
processes to warm-start (i.e., to start execution on the

Entry TLB Set 0
#

Line 0 0
Line 1 1
Line 2 2
Line 3 3
Line 4 4

. L] .

» L4 L]

- L] L)
Line 31 31

‘ 64 bits .

Entry TLB Set 1
#
0
1
2
3
4
31
< 64 bits >

Figure 58. Translation Look-Aside Buffer Organization

1-84

Copyrighted By Its Respective Manufacturer

Am239000

processor with a certain number of TLB entries remain-
ing in the TL8 from a previous execution).

Each TLB entry contains a Usage bit to assist manage-
ment of the TLB entries. The Usage bit indicates which
set of the entry within a given line was least recently
used to perform an address translation. Usage bits for
two entries in the same line are equivalent.

The TLB contains other fields, described in the following
sections.

Address Translation

For the purpose of address translation, the virtual
instruction/data address space of a process is parti-
tioned into regions of fixed size, calied pages. Pages are
mapped by the address-translation process into equiva-
lent-sized regions of physical memory, called page
frames. All accesses to instructions or data contained
within a given page use the same virtual-to-physical
address transiation.

Virtual addresses are pattitioned into three fields for the
address-transiation process, as shown in Figure 59.
The partitioning of the virtual address is based on the
page size. Page sizes may be of 1, 2, 4, or 8 kb, as
specified by the MMU Configuration Register. The tields
shown in Figure 59 are described in the following
discussion.

Address Translation Controls

The processor attempts to perform address transiation
for the following external accesses:

1. Instruction accesses, if the Physicat Addressing/
Instructions (Pi) and ROM Enabie {RE) bits of
the Current Processor Status are both 0.

2. User-mode accesses to instruction/data mem-
ory if the Physical Addressing/Data (PD) bit of
the Current Processor Status is 0.

3. Supervisor-mode accesses to instruction/data
memory if the Physical Address (PA) bit of the
load or store instruction performingthe access is
0, and the PD bit of the Current Processor Status
is 0.

Address transtation also is controlled by the MMU Con-
figuration Register. This register specifies the virtual
page size and contains an 8-bit Process identifier (PID)
field. The PiD field specifies the process number associ-
ated with the currently running program, if this is a User-
mode program. Supervisor-mode programs are as-
signed a fixed process number of 0. The process num-
ber is compared with Task identifier (TID) fields of the
TLB entries during address translation. The TID field of
a TLB entry must match the process number for the
transiation to be valid.

1-kb Page Size:
3

1 23 15 7 4]

[TTT T T T T T T T T T T T T [LT T T T TTTT]
Virtual Tag Comparison Select Page Offset

2-kb Page Size:

31 23 15 7 0
TTTTTT T T T T T T I T [LI TTT T T TTT]
Virtual Tag Gomparison Select Page Offset

4-kb Page Size:

31 23 15 7 0
EEEEEEBRERERERRANSEERRRRRREREN

Virtual Tag Comparison Select Page Offset

8-kb Page Size:

31 23 15 7 o]
EEREEERRERERRETERARRERRRRRERRN

Virtual Tag Comparison Select Page Offset

Figure 59. Virtual Address for 1-, 2-, 4-, and 8-kb Pages

This Materi al

Copyrighted By Its Respective Manufacturer

1-85

This Materi al

29K Family CMOS Devices

Address Translation Process

The address-translation process is diagrammed in
Figure 60. Address translation is performed by the fol-
lowing fields in the TLB entry: the Virtual Tag (VTAG),
the Task Identifier (TID), the Valid Entry {VE) bit, the
Real Page Number (RPN) field, and the Input/Output
(10) bit. To perform an address translation, the proces-
sor accesses the TLB line whose number is given by
certain bits in the virtual address. The bits used depend
on the page size as follows:

Virtual Address Bits

Page Size {for Line Access)
1 kb 14-10
2 kb 15-11
4 kb 16-12
8 kb 17-13

The accessed line contains two TLB entries, which in
turn contain two VTAG fields. The VTAG fields are both
compared to bits inthe virtual address. This comparison
depends on the page size as follows (note that VTAG

bit-numbers are relative to the VTAG field, not the TLB
entry):

Page Size Virtual Address Bits VTAG Bits
1 kb 31-15 16-0
2kb 31-16 16-1
4 kb 31-17 16-2
8 kb 31-18 16-3

Certain bits of the VTAG field do not participate in the
comparison for page sizes largerthan 1 kb. These bits of
the VTAG field are required to be 0.

For an address translation to be valid, the following con-
ditions must be met:

1. The virtual address bits match corresponding
bits of the VTAG field as specified above.

2. ForaUser-mode access, the TIDfield inthe TLB
entry matches the PID field in the MMU Configu-

Virtual Address

TLB Set 0

TLB Set 1

N j o '
oo . o .
1 [[[' ’ 1 [
seioct L—s{[Vitual v, i TaskReal Page PGM,|{| VirtuakV, 1 TaskReal Page +PGM
Tag PROTID !Number U,10]}|Tag 'PROTID !Number !U, IO
t——+[select T ! . :
['] 1 1 [. .
L : L :
mﬁm ;g | :
MMU
Configuration ve !
'Yy Y Y l-bls_ele_cﬂ select
Control } +
‘______Elecll
TLB Miss Protection

Violation

Page Offset"

Merge

Physical Address

Real Page Number

MPGMO-1

Figure 60. Address Translation Process

1-86

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

ration Register. For a Supervisor-mode access,
the TID field is 0.

3. The VEbitinthe TLB entry is 1.

4. Only one entry in the line meets conditions 1, 2,
and 3 above. If this condition is not met, the re-
sults of the transtation may be treated as valid by
the processor, but the results are unpredictable.

It the address translation is valid for one TLB entry inthe
selected line, the RPN field in this entry is used to form
the physical address of the access. The RPN field gives
the portion of the physical address that depends on
the translation; the remaining portion of the virtual ad-
dress, called the Page Offset, is invariant with address
translation.

The Page Offset comprises the low-order bils of the vir-
tual address, and gives the location of a byte (because
of byte addressing) within the virtual page. This byte is
located at the same position in the physical page frame,
so the Page Offset aiso comprises the low-order bits of
the physicai address.

The 32-bit physical address is the concatenation of cer-
tain bits of the RPN field and Page Offset, where the bits
from each depend on the page size as follows (note that
RPN bit numbers are relative to the RPN field, not the
TLB entry):

Virtuatl Address Bits

Page Size RPN Bits for Page Offset
1kb 21-0 9-0
2kb 211 10-0
4kb 21-2 11-0
8 kb 21-3 12-0

Note that certain bits of the RPN field are not used in
torming the physical address for page sizes greaterthan
1 kb. These bits of the RPN are requiredto be 0. In addi-
tion, for certain instruction accesses, the Page Offset is
incremented by 16.

The address space of the physical address is deter-
mined by the Input/Qutput (10) bit of the TLB entry. If the
10 bit is 0, the address is in the instruction/data memory
address space. lf the IO bitis 1, the address is in the in-
put/output address space.

Successful and Unsuccessful Translations

if an address translation is successful, the TLB entry is
further used to perform protection checking for the ac-
cess. Bits in the TLB make it possible to restrict ac-
cesses—independently for Supervisor-mode and User-
mode accesses—to any combination of load, store, and
instruction accesses, or to no access.

It the address translation is valid and no protection viola-
tion is detected, the physical address from the transla-
tion is placed on the processor’s address bus and the
access is initiated. If the transiation is not valid or a pro-
tection violation is detected, a irap occurs. Depending

onthe state of the channel interface, the access request
may be placed on the address bus with the signal BINV
asserted, even though the trap occurs.

Also, if the address translation is successful andthere is
no protection violation, the PGM bits from the TLB entry
used for translation are placed on the MPGM1—MPGMo
outputs during the address cycle for the access. If ad-
dress translation is not performed, these pins are both
Low for the address cycle.

If the TLB cannot transiate an address, a TLB miss oc-
curs. The MMU causes a trap if either a TLB miss oc-
curs, or the transiation is successful and a protection
violation is detected. The processor distinguishes be-
tween traps caused by instruction and data accesses,
and between traps caused by User and Supervisor-
mode accesses, as follows:

Trap Vector
Number Type of Trap
8 User-Mode Instruction TLB Miss
9 User-Mode Data TLB Miss
10 Supervisor-Mode Instruction
TL8 Miss
11 Supervisor-Mode Data TL Miss
12 Instruction TLB Protection
Violation
13 Data TLB Protection Violation

The distinction between the above traps is made 10
assist trap handling, particularly the routines that load
TLB entries.

Reload

So that the MMU may support a large variety of memory-
manage ment architectures, it does not directly load TLB
entries that are required for address transiation. it sim-
ply causes a TLB miss trap when address translation is
unsuccessful. The trap causes a program-—calied the
TLB reload routine—to execute. The TLB reload routine
is defined according to the structure and access method
of the page table contained in an external device or
memory.

When a TLB miss trap occurs, the LRU Recommenda-
tion Register is written with the TLB register number for
Word 0 of the TLB entry to be used by the TLB reload
routine. For instruction accesses, the Program Counter
1 Register contains the instruction address that was not
successfully translated. Fordata accesses, the Channel
Address Register contains the data address that was
not successfully translated.

The TLB reload routine determines the transiation for
the address given by the Program Counter 1 Register or
Channel Address Register, as appropriate. The TLB
reload routine uses an external page table to determine
the required translation, and loads the TLB entry indi-
cated by the LRU Recommendation Register so that the
entry may perform this translation. In a demand-paged

1-87

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

environment, the TLB reload routine may additionally in-
voke a page-fault handler when the translation cannot
be performed.

TLB entries are written by the Move To TLB (MTTLB)
instruction, which copies the contents of a general-
purpose register into a TLB register. The TLB register
number is specified by bits 6-0 of a general-purpose
register. TLB entries are read by the Move From
TLB (MFTLB) instruction, which copies the contents of
a TLB register into a general-purpose register. Again,
the TLB register number is specified by a general-
purpose register.

Entry Invalidation

There are two methods for invalidating TLB entries that
are no longer required at a given point in program exe-
cution. The firstinvolves resetting the Valid Entry bit of a
single entry (this is done by a Move To TLB instruction).
The second involves changing the value of the Process
Identifier (P1D) field of the MMU Configuration Register;
this invalidates ali entries whose Task Identifier {TID)
fields do not match the new value.

If an entry is invalidated by changing the PID field, the
TLB entry still remains valid in some sense. If the PID
field is changed again to match the TID field, the entry
may once again participate in address translation. This
ability can be used to reduce the number of TLB misses

in a system during process switching. However, it is im-
portant to manage TLB entries so that an invalid match
cannot occur between the PID field and the TID field of
an old TLB entry.

Protection

It an address translation is performed successtully, the
TLB entry used in address translation is used to perform
protection checking for the access. There are 6 bits in
the TLB entry for this purpose: Supervisor Read (SR),
Supervisor Write (SW), Supervisor Execute (SE), User
Read (UR), User Write (UW), and User Execute (UE).
These bits restrict accesses, depending on the program
mode of the access, as shown in Figure 61 (the value “x”
is a “don't care”).

Note that for the Load and Set (LOADSET) instruction,
the protection bits must be set to allow both the load and
store access. if this condition does not hoid, neither ac-
cess is performed.

if protection checking indicates that a given access is
not allowed, a Data TLB Protection Violation or Instruc-
tion TLB Protection Violation trap occurs. The cause of
the trap is determined by inspection of the Program
Counter 1 Register for an Instruction TLB Protection
Violation, or by inspection of the contents of the Channel
Address and Channel Control registers for a Data TLB
Protection Violation.

SR SW SE UR uw UE Type of Access Allowed

X X X 0 o} 0 No user access

X X X ¢} 0 1 User instruction

X X x 0 1 0 User store

X X X 0 1 1 User store or instruction

X X X 1 0 0 User ioad

X X X 1 0 1 User load or instruction

X X X 1 1 0 User load or store

X X X 1 1 1 Any user access

0 0 0 X X X No supervisor access

0 0 1 X X X Supervisor instruction

0 1 [¢] x X X Supervisor store

0 1 1 X X X Supervisor store or instruction
1 0 [} X X X Supervisor load

1 0 1 X X X Supervisor load ar instruction
1 1 Q X X X Supervisor load or store

1 1 1 X X X Any supervisor access

Figure 61. TLB Access Protection

1-88

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

CHANNEL DESCRIPTION

The processor channel provides the bandwidth required
for performance, while permitting the connection of
many different types of devices. This section describes
the channet and methods of connecting devices and
memories to the processor.

The channel consists of three 32-bit synchronous buses
with associated control and status signals: the Address
Bus, Data Bus, and Instruction Bus. The Address Bus
transfers addresses and control information fo devices
and memories. The Data Bus transfers data to and from
devices and memories. The Instruction Bus transfers in-
structions to the processor from instruction memories.
In addition, a set of signals allows control of the channel
to be relinquished to an external master.

There are five logical groups of signals performing five
distinct functions, as follows (since some signals per-
form more than one function, a signal may appear in
more than one group):

1. Instruction Address Transfer and Instruction Ac-
cess Requests: Asx—Ao, SUP/US, MPGMi—
MPGMo, PEN, IREQ, IREQT, PIA, BINV

2. Instruction Transfer: lai—lo, IBREG, TRDY, IERR,
IBACK

3. Data Address Transfer and Data Access Re-
quests: Asi—Ao, R'W, SUP/US, LOCK, MPGM:-
MPGMo, PEN, DREQ, DREQT:-DREQT,,
OPT2-OPTe, PDA, BINV

4. Data Transfer: Dai—Do, DBREQ, DRDY, DERR,
DBACK, CDA

5. Arbitration: BREQ, BGRT, BINV

User-Defined Signals

There are two types of user-defined outputs on the pro-
cessorto control devices and memories directly in a sys-
tem-dependent manner. Each of these outputs is valid
simultaneously with—and for the same duration as—
the address for an access.

The first set of user-defined signals, MPGM1+—MPGMo,
is determined by the PGM bits in the Translation Look-
Aside Buffer entry used in address translation. If ad-
dress translation is not performed, these outputs are
both Low.

The second set of signals, OPT>—-OPTo, is determined
by bits 18—16 of the load or store instruction that initiates
an access. These signals are valid only for data ac-
cesses, and have a predefined interpretation for
coprocessor data transfers.

Standard interpretations of OPT=~OPTo are given in the
Pin Description section. Since the OPT=—OPTo signals
are determined by instructions, they have an impact on
application-software compatibility, and system hard-
ware should use the given definitions of OPT2—OPTo.

The OPT=—OPTo signals are used to encode byte and
half-word accesses. However, for a load, the system
should return an entire aligned word, regardless of the
indicated data width.

Note that the standard interpretations of OPT=—OPTo
apply only to accesses to instruction/data memory and
input/output. Other interpretations may be used for
coprocessor transfers.

For interrupt and trap vector tetches, the MPGMi—
MPGMo and OPT=—0PTo outputs are all Low.

Instruction Accesses

Instruction accesses occur to one of two address
spaces: instruction/data memory and instruction read-
only memory (instruction ROM). The distinction be-
tween these address spaces is made by the IREQT sig-
nal, which is in turn derived from the ROM Enable (RE)
bit of the Current Processor Status Register. These are
truly distinct address spaces; each may be populated in-
dependentiy based on the needs of a particular system.

Instruction/data memory contains both instructions
and data. Atthough the channel supports separate
instruction and data memories, the Memory Manage-
ment Unit does not. In certain systems, it may be re-
quired to access instructions via loads and stores, even
though instructions may be contained in physically
separate memories. For example, this requirement
might be imposed because of the need to load instruc-
tions into memory. Note also that the OPT=-OPTo sig-
nals may be used to allow the access of instructions in
instruction ROM, using loads; the Am29000 does not
prevent a store to the instruction ROM, and protection
against stores to the instruction ROM must be provided
externally, if required.

All processor instruction fetches are read accesses, and
the R/W signal is High for all instruction fetches.

Data Accesses

Data accesses occur to one of three address spaces:
instruction/data memory, input/output (YO), and the
coprocessor. The distinction between these spaces is
made by the DREQT:~DREQTo signals, which are in
turn determined by the load or store instruction that initi-
ates a data access. Eachofthese address spaces is dis-
tinct from the others.

The protocol for datatransfers to and from the coproces-
sor is slightly different than the protocol for instruction/
data memory and I/O accesses.

Data accesses may occur either from a slave device or
memory to the processor (for a load), or from the pro-
cessor to a slave device or memory (for a store). The di-
rection of transfer is determined by the R/W signal. In
the case of a load, the processor requires that data on
the data bus be held valid only for a short time before the
end of a cycle. In the case of a store, the processor

1-89

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

drives the data bus as soon as the bus is available and
holds the data valid until the slave device or memory sig-
nals that the access is complete.

Reporting Errors

The successful completion of aninstruction access is in-
dicated by an active level onthe IRDY input, and the suc-
cessful completion of a data access is indicated by an
active leve! on the DRDY input. If there are exceptional
conditions for which an instruction or data access can-
not be completed successfully, the unsuccessful com-
pletion is indicated by an active level on the IERR or
DERR input, as appropriate.

If the processor receives an IERR or DERR in response
to an instruction or data access, it ignores the content of
the instruction or data bus and the value of IRDY or
DRDY. An IERR response causes an Instruction Access
Exception trap, unless itis associated with aninstruction
that the processor does not ultimately execute (because
of a nonsequential instruction fetch). A DERR response
always causes either a Data Access Exceptiontrap ora
Co-processor Exception Trap.

The processor supports the restarting of unsuccessful
accesses upon an interrupt return. inthe case of anun-
successful instruction access, the restart is perfformed
by the Program Counter 0 and Program Counter 1 regis-
ters. Inthe case of an unsuccessful data access, the re-
start is performed by the Channel Address, Channel
Data, and Channel Controf registers. In any event, the
control program must determine whether or not an ac-
cess can and/or should be restarted.

The Instruction Access Exception and Data Access Ex-
ception traps cannot be masked. If one of these traps
occurs within an interrupt or trap handler, the processor
state may not be recoverable.

Access Protocols

Figure 62 shows a control flowchart for accesses per-
formed by the Am29000. This control flow applies inde-
pendently to both instruction and data accesses. Since
the processor performs concurrent instruction and data
accesses, these accesses may be at different points in
the control flow at any given point in time.

Note that the items on the flowchart of Figure 62 do not
represent actual states and have no particular relation-
ship to processor cycles. The flowchart provides only a
high-level understanding of the control flow. Also, ex-
ceptions and error conditions are not shown.

The channel supports three protocols for accesses: sim-
ple, pipelined, and burst-mode. These are described in
the following sections. The various protocols are de-
fined to accommodate minimum-latency accesses as
well as maximum-transfer-rate accesses. The protocols
allow an access to complete in a single cycle, although
they support accesses requiring arbitrary numbers of
cycles. Address transfers for accesses may be inde-
pendent of instruction or data transfers.

Simple Accesses

For a simple access, the processor holds the address
valid throughout the entire access. This protocol is used
for single-cycle accesses, and for accesses to simple
devices and memories.

On any cycle before the completion of the access, a sim-
ple access may be converted to a pipelined access (by
the assertion of PEN) or to a burst-mode access (by the
assertion of IBACK or DBACK, if the processor is assert-
ing IBREQ or DBREQ). Thus, the protocol for simple ac-
cesses also may be used during the initial cycles of
pipelined and/or burst-mode accesses. This is advanta-
geous, for example, in cases where the slave device or
memory either requires the address to be held for multi-
ple cycles at the beginning of the pipelined or burst-
mode access, or cannot respond to the pipelined or
burst-mode request within one cycle.

Pipelined Accesses

A pipelined access is one that starts before an earlier in-
progress accesses completed. The in-progress access
is called a primary access and the second access is
called a pipelined access. A pipelined access is of the
same type as the primary access. For example, an in-
struction access that begins before the completion of a
data access is not considered to be a pipelined access,
whereas a second data access is.

The Am23000 allows only one pipelined access at any
given time.

Tradeoffs

For accesses that require more than one cycle to com-
plete, pipelined accesses perform better than simple ac-
cesses because they allow the overlap of portions of two
accesses. In addition, the ability to latch addresses in
support of pipelined accesses reduces utilization of the
address bus, thereby reducing contention between in-
struction and data accesses. However, devices and
memories that support pipelined accesses are some-
what more complex than devices and memories that
support only simple accesses.

Support for pipelined operations is required for both the
primary access and the pipelined access. The slave per-
forming the primary access must contain some means
for storing the address and other information about the
access. The slave performing the pipelined access must
be able to restrict its use of the instruction bus or data
Bus, and must be prepared to cancel the access (as ex-
plained below).

Pipelined Operation

Pipelined accesses are controlied by the signals PEN,
PIiA, and PDA. Because of internal data-flow con-
straints, the Am239000 does not perform a pipelined
store operationwhile aload is in progress. However, the
protocol does not restrict pipelined operations. Other
channel masters may perform a pipelined store during
a load.

1-80

Copyrighted By Its Respective Manufacturer

Am29000

mew------.PROCESSOR_____._ mmmmemccmcemamcc e~ SLAVEDEVICE _ _ _ _ _ ___

1
NO ACCESS

'
:
'
»

P Il T N [R T T I T T T N I I
'

PRIMARY ACCESS
* Initiate Access I »

Assert TREQ, DREQ

4 Latch Result |¢

[smoe] o

Latch Address

Drive result and
or

]
'
'
.
.
.
)
)
1]
.
.
L]
+
L]
' NO
.
'
'
*
.
'
L
,
,
’
'
’
'
.

¢ Assert IBACK
T

Drive result and l

N TROY o'rm Burst-mode Access
N . see Figures 63 thru 66
, Primary
v Access
v Complete
........ G e cccamcesoceacang
»
’
L}
.................. g U P (5
'
PIPELINED ACCESS
Initiate pipelined >
access h ‘
Assert PIA, FDA L Start Access

{optional)

re |

>d

Primary
access complete
TREQ, DREQ active)
?

Interrupt
or Exception
?

YES

Remove pipelined
access from ----
channel

Deassert FiA, PDA

Figure 62. Channel Fiowchart

1-91

This Material Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

Except as noted above, the processor attempts to per-
form pipelining for every access; the input PEN indicates
whether or not pipelining is supported for a given ac-
cess. The PEN input can be driven by individual devices,
or can be tied active or inactive to enable or disable sys-
tem-wide pipelined accesses. The processor ignores
the value of PEN unless it is performing an access.

The processor samples PEN on every cycle during a pri-
mary access. If PEN is active on any cycle, the proces-
sor ceases to drive the address and associated controls
for the primary access in the next cycle. If the processor
requires another access before the primary access is
completed, it drives the address_and controls for the
second access, asserting PIA or PDA to indicate that the
second access is a pipelined access.

The output TREQ or DREQ, as appropriate, is not as-
serted for a pipelined access. Devices and memories
that cannot support pipelined accesses should there-
fore ignore PIA and/or PDA, and base their operation
upon IREQ and/or DREQ.

A device or memory that receives a request for a
pipelined access may treat it as any other access, with
one exception: the pipelined access cannot use the In-
struction and data buses or the associated controls
{e.g., TRDY or DRDY). In the case of a data read or in-
struction access, the results of the pipelined access
cannot be driven on the appropriate bus. Inthe case of a
data write, the data do not appear on the data bus. Any
other operations for the access, such as address decod-
ing, can occur.

When the primary access is completed (as indicated by
IRDY or DRDY), the pipelined access becomes a pri-

access. The processor indicates this by asserting
RE or DREQ, depending on the type of access. The
device or memory performing the pipelined access may
complete the access as soon as IREQ or DREQ is as-
serted (possibly in the same cycle). When the access
becomes a primary access, it controls the channel as
any other primary access. For example, it may deter-
mine whether or not another pipelined access can be
performed.

When the pipelined access becomes a primary access,
the output PIA or PDA remains asserted for one cycle to
ensure continuity of control within the slave device or
memory. In the cycle after TREQ or DREQ is asserted,
PIA or PDA is deasserted unless the processor initiates
another pipelined access, in which case PIA or PDA re-
mains asserted for the new access.

Cancellation of Plpelined Accesses

If the processor takes an interrupt or trap before a
pipelined access becomes a primary access, the re-
quest for the pipelined access is removed from the
channel. This may occur, for example, when IERR or
DERR is signaled for the primary access.

If the pipelined access is removed from the channel, the
slave device or memory does not receive an | REG or
DREQ forthe pipelined access. Hence, the pipelined ac-
cess does not become a primary access, and cannot be
completed. A pipelined access may be canceled in this
manner at any time before it becomes a primary access.
Because of this, a pipelined access should not change
the state of a slave device or memory until the pipelined
access becomes a primary access.

Burst-Mode Accesses

A burst-mode access allows multiple instructions or
data words at sequential addresses to be accessed with
a single address transfer. The number of accesses per-
formed and the timing of each access within the se-
quence are controlled dynamically by the burst-mode
protocol. Burst-mode accesses take advantage of se-
quential addressing patterns, and provide several bene-
fits over simple and pipelined accesses:

1. Simultaneous instruction and data accesses.
Burst-mode accesses reduce the utilization of
the address bus. This is especially important for
instruction accesses, which are normally se-
quential. Burst-mode instruction accesses elimi-
nate most of the address transfers for instruc-
tions, allowing the address bus to be used for si-
muttaneous data accesses.

2. Faster access times. By eliminating the ad-
dress-transfer cycle, burst-mode accesses al-
low addresses to be generated in a manner that
improves access times.

3. Faster memory access modes. Many memories
have special high-bandwidth access modes
(e.g., fast page mode DRAM). These modes
generally require a sequential addressing pat-
tern, even though addresses may not be pre-
sented explicitly to the memory for all accesses.
Burst-mode accesses allow the use of these ac-
cess modes without hardware to detect sequen-
tial addressing patterns.

Burst-Mode Overview

The control-flow diagrams in Figure 63 and Figure 64 il-
lustrate the operation of the processor and an instruc-
tion memory during a burst-mode instruction access.
The control-flow diagrams in Figure 65 and Figure 66 il-
lustrate the operation of the processor and a data mem-
ory or device during a burst-mode data access. These
diagrams are for illustration only; nodes on these dia-
grams do not necessarily correspond to processor or
slave states, and transitions on these diagrams do not
necessarily correspond to processor cycles.

1-92

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

ACTIVE

(M

IPB |

not available
or Halt or

IPB (1) Step Modes
location
available
TERR
or Load
Test Instr.
SUSPENDED Mode

Nonsequential
Fetch

If no exception
retransmit address

(1) IPB = Instruction Prefetch Buffer

Terminated

Nonsequential Fetch ERR

1-kb boundary
or channel arbitration

Deactivate

TBREQ

Deactivate Deactivate

TLB miss or
protection violation

Figure 63. Processor Burst-Mode Instruction Accesses: Control Flow

A burst-mode access is in one of the following opera-
tional conditions at any given time:

1. Established: The processor and slave device
have successfully initiated the
burst-mode access. A burst-
mode access that has been es-
tablished is either active or sus-
pended. An established burst-
mode access may become
preempted, terminated or can-
celed.

Instruction or data accesses and
transfers are being performed
as the result of the burst-mode
access. An active burst-mode
access may become sus-
pended.

2. Active:

3. Suspended: Noaccessesortransfers are be-

ing performed as the result of

the burst-mode access, but the
burst-mode access remains es-
tablished. Additional accesses
and transfers may occur at
some later time (i.e., the burst-
mode access may become ac-
tive) without the retransmission
of the address for the access.

The burst-mode access can no
longer continue because of
some condition, but the burst-
mode access can be re-
established within a short
amount of time.

4. Preempted:

5. Terminated: All required accesses have

been performed.
6. Canceled: The burst-mode access can no
longer continue because of

Copyrighted By Its Respec

1-93

tive Manuf acturer

This Materi al

29K Family CMOS Devices

1
?

Successful

Unsuccessful

Cannot continue burst Fetch

Deactivate'
TBACK

Fetch Unsuccessful

Fetch

Canceled

Note: A similar state transition may be used to support suspended burst-mode data accesses
or a channel master other than the processor.

Figure 64. Slave Burst-Mode Instruction Accesses: Control Flow

some exceptional condition.
The access may be re-
established only after the excep-
tional condition has been cor-
rected, if possible.

Each of the above conditions, except for the terminated
condition, is under the control of both the processor and
slave device or memory. The terminated condition is
determined by the processor, because only the proces-
sor can determine that all required accesses have been
performed. The following sections discuss each of the
above conditions with respect to the burst-mode
protocol.

Establishing Burst-Mode Accesses

The Am29000 attempis to perform all instruction
prefetches using burst-mode accesses, except for in-
struction fetches at the last word before a 1-kb address
boundary. For data accesses, the processor attemptsto
perform Load Muttiple and Store Multiple operations us-
ing burst-mode accesses. The processor indicates that
it desires a burst-mode access by asserting IBREQ or

DBREQ during the cycle in which the initial address is
placed on the address bus (however, note that these
signals become valid later in the cycle than the ad-
dress).

The inputs IBACK and DBACK indicate thata requested
burst-mode access is supported. The processorignores
the value of IBACK unless IBREQ is asserted, and it ig-
nores the vaiue of DBACK unless DBREQ is asserted.

When it desires a burst-mode access, the processor
continues to drive IBREQ or DBREQ on every cycle for
which the address is valid on the address bus. During
this time, the device or memory involved in the access
may assert IBACK or DBACK to indicate that it can per-
formthe burst-mode access. If IBACK or DBACK (as ap-
propriate) is asserted while the initial address appears
on the address bus, the burst-mode access is estab-
lished. in the following cycle, the processor removes the
request address and deasserts IREQ or . How-
ever, it continues to assert IBREQ or DBREQ.

if the burst-mode access is not established on the first
access, the processor attempts to establish a burst-

1-94

Copyrighted By Its Respective Manufacturer

This Materia

Am29000

ACTIVE

. Latch
Deactivate Data
DBREQ it read

1-kb boundary
or channel arbitration

DERR Active,
or interrupt/trap taken

Deactivate Deactivate

Deactivate

Latch
Data
if read

I Preempted]

if no exception
retransmit address

TLB miss or
protection violation

Note: The Am29000 does not suspend burst-mode data accesses.

Figure 65. Processor Burst-Mode Data Accesses: Control Flow

mode access on each subsequent address transfer, as
long as there are more accesses yet to be performed.
During any subsequent access, the addressed device or
memory may establish a burst-mode access by assert-
ing IBACK or DBACK. If the burst-mode access is never
established, the default behavior is to have the proces-
sor transmit an address for every access.

Active and Suspended Burst-Mode Accesses

Atter the burst-mode access is established, IBREQ and
DBREQ are used during subsequent accesses to indi-
cate that the processor requires at least one more ac-
cess. If IBREQ or DBREQ is active at the end of the cycle
inwhich an access is successfully completed (i.e., when
IRDY or DRDY is active), the processor requires another
access. If the slave device or memory previously has
not preempted the burst-mode access, and does not

preempt (by deasserting IBACK or DBACK) or cancel
(by asserting IERR or DERR) the burst-mode access in
the cycle that the access completes, the additional ac-
cess must be performed.

The execution rate of instructions is known only dynami-
cally, so that in certain situations, a burst-mode instruc-
tion access must be suspended. If IBREQ is inactive
during the cycle in which an instruction access is com-
pleted, the burst-mode access is suspended (if it is nei-
ther preempted nor canceled at the same time). The
burst-mode access remains suspended unless the
processor requests a new instruction access (in which
case JREQ is asserted), or uniess the instruction mem-
ory preempts the burst-mode access.

A suspended bursi-mode instruction access becomes
active whenever the processor can accept more instruc-

1-95

Copyrighted By Its Respective Manufacturer

This Materia

29K Family CMOS Devices

ACTIVE

Activate DRDY

Terminated,
Preempted, or
Canceled by
Processor

Preempted

Unsuccessful
Access

Activate
DERR

Drive data if
read

Canceled

Figure 66. Slave Burst-Mode Data Accesses: Control Flow

tions. The processor activates the burst-mode access
by asserting IBREQ. If the instruction memory does not
preempt the burst-mode access during this cycle, anin-
struction access must be performed.

When a suspended burst-mode instruction access is ac-
tivated, the resulting instruction access is not permitted
to be compieted in the cycie inwhichIBREQ is asserted,
but may be completed in the next cycle. The reason for
this restriction is that the burst-mode protocol is defined
such that the combination of an active level on IBREQ
and IRDY causes an instruction access (as previously
discussed). If the instruction access is completed imme-
diately in the cycle where a suspended burst-mode ac-
cess is activated, there is an ambiguity in the protocol. it
is possible to interpret a single-cycle assertion of IBREQ
as a request for two instructions.

The above ambiguity is resolved by delayingthe instruc-
tion access resulting from a reactivated burst-mode ac-
cess for a cycle. Since this restriction applies only when
the Instruction Prefetch Buffer is full and the instruction
memory is capable of a very fast access, the delayed in-
struction response has no performance impact.

The Am29000 does not suspend burst-mode data ac-
cesses because the data transfers occur to and from
general-purpose registers, which are aiways available.
However, other channe!l masters may suspend burst-
mode data accesses (during direct memory accesses,

tor example). The principles for suspending burst-mode
accesses are the same as those for instruction ac-
cesses discussed above.

Processor Preemption, Termination,

and Cancellation

The processor may preempt, terminate or cancel a
burst-mode access by deasserting IBREQ or DBREQ
and asserting TREQ or DREQ at some later point. Nor-
malily, the processor receives one more instruction or
data word after IBREQ or DBREQ is deasserted. How-
ever, this access may be completed in the same cycle
that IBREQ or DBREQ is deasserted. During the period
after TBREQ or DBREQ is deasserted and before IREG
or DREQ s asserted, the burst-mode access is in a sus-
pended condition.

The slave device or memory cannot distinguish be-
tween preempted, terminated, and canceled burst-
mode accesses, when these are caused by the proces-
sor, until the processor asserts IREQ or . If the
slave continues to assert IBACK or DBACK after IBREG
or DBREQ is deasserted, the slave should be prepared
to accept any new request during the cycle in which
IREQor DRE% is asserted to begin the new access. The
reason for this is that the processor may attempt to es-
tablish a burst-mode access for the new access: if the
slave is asserting IBACK or DBACK because of a previ-

1-96

Copyrighted By Its Respective Manufacturer

This Materi al

Am29000

ously preempted, terminated, or canceled burst-mode
access, the processor interprets the active IBACK or
DBACK as establishing the new burst-mode access and
removes the request in the following cycle.

The processor preempts a burst-mode access when an
external channel master arbitrates for the channel, or
when a burst-mode fetch crosses a potential virtual-
page boundary. Since the minimum page size is 1 kb,
burst-mode instruction and data accesses are pre-
empted whenever the address sequence crosses a 1-kb
address boundary. The burst is reestablished as soon
as a new address translation is performed (if required).
A new physical address is transmitted when the burst-
mode access is reestablished.

Note that the preemption resulting from page bound-
aries is advantageous for devices or memories that
require counters to follow the burst-mode address
sequence. Since all burst-mode accesses are word
accesses and the processor retransmits an address at
every 1-kb address boundary, an B-bit counter in the
slave device or memory is sufficient to follow the burst-
mode address sequence. Additional address bits are
simply latched.

The processor terminates a burst-mode access when-
ever all required instructions or data have been ac-
cessed. In the case of instruction accesses, the burst-
mode access is terminated when a nonsequential fetch
occeurs. In the case of data accesses, the burst-mode
access is terminated when the count indicates a single
load or store remains. The last load or store is executed
as a simple access.

The processor cancels a burst-mode access when an
interrupt or trap is taken. Note that atrap may be caused
by the burst-mode access, for example when a Transla-
tion Look-Aside Buffer miss occurs on an address in the
burst-mode sequence. If the processor cancels a burst-
mode access when an access in the sequence remains
to be completed, this access must be completed in spite
of the cancellation.

Canceled burst-mode data accesses may be restarted
at some (possibly much later) point in execution via the
Channel Address, Channel Data, and Channel Control
registers. In this case, the burst-mode access is re-
started at the point at which it was canceled, rather than
at the beginning of the original address sequence.

Slave Preemption and Cancellation

The slave device or memory involved in a burst-mode
access may preempt the access by deasserting IBACK
or DBACK. The processor samples iIBACK and DBACK
when 1RDY and DRDY are active so that IBACK and
DBACK may be deasserted as the last supported ac-
cess is completed. However, IBACK and DBACK also
may be deasserted in any cycle before the access is
completed. It IBACK or DBACK is deasserted when the
processor is in a state where it expects an access, the
access must be completed.

In general, the slave device or memory preempls the
burst-mode access whenever it cannot support any fur-
ther accesses in the burst-mode sequence. This nor-
mally occurs whenever an implementation-dependent
address boundary is encountered (e.g., a cache-block
boundary), but may occur for any reason. By preempt-
ing the burst-mode access, the slave receives a new re-
quest with the address of the next instruction or data
word required by the processor.

The slave device or memory may cancel a burst-mode
access by asserting IERR or DERR in response to a re-
quested access. The signals IBACK or DBACK need not
be deasserted at this time, but should be deasserted in
the next cycle.

Note that the {ERR and DERR signals cause non-mask-
able traps, except inthe case where IERR is asserted for
an instruction that the processor does not execute.

Arbitration

External masters can gain access to the address, data,
and instruction buses by asserting the BREQ input. The
processor completes any pending access, preempts
any burst-mode access, and asserts the BGRT output.
Atthis time, the processor places all channel outputs as-
sociated with the address, data, and instructionbuses in
the high-impedance state.

For the first cycle in which BGRT is asserted, the output
BINV is also asserted. If the external master cannot con-
trol the address bus and associated controls in the cycle
where BGRT is asserted, the active level on BINV may
be used to define an idle cycle for the channel (i.e., any
spurious access requests are ignored). The BINV signal
is asserted only for a single cycle, so the external master
must take control of the channel in the cycle after BGRT
is asserted.

While the BREQ input remains asseried, the processor
continuesto assert BGRT. The external master has con-
trol over the channel during this time.

To release the channel to the processor, the external
master deasserts BREQ, but must continue to control
the channel for the first cycle in which BREQ is
deasserted. In the cycle after BREQ is deasserted, the
processor asserts BINV and deasserts BGRT; the exter-
nal master should release control of the channel at this
time. On the following cycle, the processor deasserts
BINV and is able to use the channel. The processor
reestablishes any burst-mode access preempted by
arbitration.

The processor does not relinquish the channelwhen the
1 OCK signal is active. This prevents external masters
from interfering with exclusive accesses.

1-97

Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

Use of BINV to Cancel an Access

Besides using the BINV signal to transfer control of the
channel from one master to another, the Am29000 uses
the BINV signalto cancel accesses after they have been
initiated. To cancel anaccess, BINVis asserted duringa
cydie in which 1REQ or DREQ also is asserted. If an ac-
cess is canceled, the accompanying response (using
TRDY, IERR, DRDY or DERR) is ignored during the cycle
where BINV is asserted; thereatter, the system should
not respond to the canceled access.

The BINV signal is used to cancel an instruction access
in the following situations:

® when an interrupt or trap is taken

8 when an instruction fetch-ahead is canceled
because atarget block is only partially present
in the Branch Target Cache

B when an instruction TLB miss or protection
violation occurs on an instruction access

® when a branch instruction is the delay instruc-
tion of another branch, and the targets of both
branches are in the Branch Target Cache (in
this case, the external fetch for the target of
the first branch is not required)

® when the processor enters the Load Test in-
struction Mode, and there is an active instruc-
tion request on the channel

The BINV signal is used to cancel a data access in the
following situations:

® when a data TLB miss or protection violation
occurs on the data access

® when an interrupt or trap is taken in the cycle
where a pipelined data access becomes a pri-
mary access

If, for data accesses, address translation is not per-
formed and pipelined accesses are not implemented,
the BINV signal can be ignored by the system during the
access.

When a LOADSET instruction encounters a protection
violation because store access is not permitted, the
processor cancels the load access with BINV.

Bus Sharing—Electrical Considerations

When buses are shared among multiple masters and
slaves, itis important to avoid situations where these de-
vices are driving a bus at the same time. This may occur
when more than one master or slave is allowed to drive a
bus inthe same cycle if bus arbitration is incompletely or
incorrectly performed. However, it also occurs when a

master or slave releases abus in the same cycle that an-
other master or stave gains control, and the first master
or slave is slow in disabling its bus drivers, compared to
the point at which the second master or slave begins to
drive the bus. The latter situation is called a bus coltision
in the following discussion.

In addition to the logical errors that can occur when mul-
tiple devices drive a bus simultaneously, such situations
may cause bus drivers to carry large amounts of electri-
cal current. This can have a significant impact on driver
reliability and power dissipation. Since bus collisions
usually occur for a smaH amount of time, they are of less
concern, but may contribute to high-frequency electro-
magnetic emissions.

The Am29000 channel is defined to prevent all situ-
ations where muiltiple drivers are driving a bus simuita-
neously. However, bus collisions may be allowed to oc-
cur, depending on the system design.

In the case of the Am29000 channel, arbitration for the
channel prevents the processor from driving the ad-
dress and data buses at the same time as another chan-
nel master. If there is more than one external master,
the system design must include some means for ensur-
ing that only one external master gains control of the
channel, and that no external master gains control of the
channel at the same time as the processor.

When the processor relinquishes control of the channel
to an external master, bus collisions may be prevented
by not allowing the external master to drive any bus
while BINV is active. This ensures that all processor out-
puts are disabled by the time the external master takes
control of the channel. However, there is nothing in the
channel protocol to prevent the external master from
taking control as soon as BGRT is asserted.

Slave devices and memories are prevented from simul-
taneously driving the instruction bus or data bus by
allowing only the device or memory performing a pri-
mary access to drive the appropriate bus. When a
pipelined access becomes a primary access, it may
drive the instruction or data bus immediately, so there is
a potential bus collision if the pipelined access is
performed by a slave other than the slave performing
the original primary access. This bus collision may be
prevented by restricling all slaves to driving the instruc-
tion and data buses in the second half-cycle (using
SYSCLK, for example). Since the processor samples
data only at the end of a cycle, this restriction does not
affect performance.

When the processor performs a store immediately fol-
lowing a load, it drives the data bus for the store in the
second cycle following the cycle in which the datafor the
load appears on the data bus. This provides a complete
cycle for the slave involved in the load to disable its data
drivers. The processor continues to drive the data bus
until it receives a DRDY or DERR in response to the
store; it ceases to drives the data bus inthe cycle follow-
ing the response.

1-98

Copyrighted By Its Respective Manufacturer

Am29000

Channel Behavior for interrupts
and Traps

If aninterrupt or trap is taken, any burst-mode accesses
are canceled. If arequest for a pipelined access isanthe
address bus, this request is removed. Any other ac-
cesses are compieted and no new accesses are started,
other than those required for the interrupt or trap. Note
that any accesses that the processor expects to com-
plete must be completed, even though burst-mode and
pipelined accesses are canceled.

When interrupt or trap processing is complete, any can-
celed burst-mode access transactions are reestab-
lished using the address of the access that was to be
performed next when the interrupt or trap was taken.
Uncompleted pipelined accesses are restarted, either
by the interrupt return sequence in the case of an in-
struction access, or by restarting the initiating instruction
in the case of a data access.

Note that the restarting of a pipelined access is not per-
formed by the Channel Address, Channel Data, and
Channel Control registers, since these registers may be
required to restart the primary access. The instruction
initiating the pipelined access is not allowed to be com-
pleted until the primary access is completed, so that the
Program Counter 1 (PC1) register contains the address
of the initiating instruction when a pipelined access is
canceled. The address in PC1 can restart this instruc-
tion on interrupt retum.

Effect of the LOCK Output

The LOCK output provides synchronization and exclu-
sion of accesses in a multiprocessor environment.
LOCK has no predefined effect for a system, other than
the fact that the Am23000 does not grant the channel to
an external master while LOCK is active.

The LOCK outputis asserted for the address cycle of the
Load-and-Lock and Store-and-Lock instructions, and is
asserted for both the read and write accesses of a Load
and Set instruction. LOCK may also be active for an ex-
tended period of time under control of the Lock bit in the
Current Processor Status Register (this capability is
available only to Supervisor-mode programs).

LOCK may be defined to provide any level of resource
locking for a particular system. For example, it may lock

the channel, an individual device or memory, or a loca-
tion within a device or memory.

When a resource is locked, it is available for access only
by the processor with the appropriate access privilege.
The mechanisms for restricting accesses and the meth-
ods for reporting attempted violations of the restrictions
are system-dependent.

Initialization and Reset

When power is first applied to the processor, it is in an
unknown state and must be placed in a known state.
Also, under certain circumstances, it may be necessary
to place the processor in a defined state. This is accom-
plished by the Reset mode, which is invoked by activat-
ing the RESET pin for the required duration. The Reset
mode configures the processor state as follows:

1. Instruction execution is suspended.
. Instruction fetching is suspended.

2
3. Any interrupt or trap conditions are ignored.
4

. The Current Pracessor Status Register is set as
shown in Figure 67.

5. The Cache Disabie bit of the Configuration Reg-
ister is set.

6. The Data Width Enable bit of the Configuration
Register is reset.

7. The Contents Valid bit of the Channel Controt
Register is reset.

Except as previously noted, the contents of all general-
purpose registers, special-purpose registers, and TL.B
registers are undefined. The contents of the Branch Tar-
get Cache are also undefined.

The Reset mode also configures the processor to initi-
ate an instruction fetch using an address of 0. Since the
ROM enable (RE) bit of the Current Processor Status is
1, this fetch is directed to external instruction read-only
memory. This fetch occurs when the Reset mode is
exited (i.e., when the RESET input is deasserted).

The Reset mode is invoked by asserting the RESET in-

put and can be entered only if the SYSCLK pin is operat-
ing normally, whether or not the SYSCLK pin is being

31 23

c|jo|ofcjo|o|ojolo|oljolojOjO]O}O

A

DI

3
Reservad E
L}

1
1
[
1
[

' [. 1 .
L

CA TE T

Figure 67. Current Processor Status Register In Reset Mode

1-99

This Material Copyrighted By Its Respective Manufacturer

This Materi al

29K Family CMOS Devices

driven by the processor. The Reset mode is entered
within four processor cycles after RESET is asserted.
The RESET input must be asserted for at least four pro-
cessor cycles to accomplish a processor reset.

The Reset mode can be entered from any other proces-
sor mode (e.g., the Reset mode can be entered from the
Halt mode). It the RESET input is asserted at the time
that power is first applied to the processor, the proces-
sor enters the Reset mode only after four cycles have
occurred on the SYSCLK pin.

The Reset mode is exited when the RESET input is de-
asserted. Either three or four cycles after RESET is de-
asseried (depending on internal synchronization time),
the processor performs an initial instruction access on
the channel. The initial instruction access is directed to
Address 0 in the instruction read-only memory (instruc-
tion ROM). If instruction ROM is not implemented in a
particular system, another device or memory must re-
spond to this instruction fetch.

if the CNTLi—CNTLs inputs are 10 or 01 when RESET is
deasserted, the processor enters the Hatlt or Step mode,

respectively. If the processor enters the Halt mode im-
mediately after reset, the protection checking that nor-
mally applies to the Halt instruction is disabled so that
the Halt instruction can be used as an instruction break-
point in a User-mode program. The Load Test Instruc-
tion mode cannot be directly entered from the Reset
mode. If the CNTLi—~CNTLo inputs are 00 immediately
after RESET is deasserted, the effect on processor op-
eration is unpredictable. If the CNTL—CNTLoinputs are
11, the processor enters the Executing mode.

The processor samples the STATe output intemally
when RESET is asserted. A High level on STATo in this
case is used to enable a special test configuration and
causes the processor to be inoperable. When RESET is
asserted, the processor drives STATo Low in order to
disable this test configuration. However, if processor
outputs are disabled by the Test mode, the processor is
not able to drive STATo. Thus, if RESET is asserted
when the processor is in the Test mode, the STATo pin
must be driven Low externally. (In a master/stave con-
figuration, STATe is driven Low by the master processor
when RESET is asserted.)

1-100

Copyrighted By Its Respective Manufacturer

Am29000

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature —65 to +150°C Commercial (C) Devices

Voltage on any Pin Case Temperature (Tc) 0 to +85°C
with Respect to GND -0.5t0 Vec 0.5V Supply Voltage (Vcc) +4.7510 +5.25 V

Stresses above those listed under ABSOLUTE MAXI- Military Devices

MUM RATINGS may cause permanent device failure. Case Temperature (Tc)* -55 to +125°C

Functionality at or above these limits is not implied. Ex- Supply Voltage (Vcc) +45t0 455V

posure to absolute maximum ratings for extended peri-
ods may affect device reliability.

Operating ranges define those limits between which the

functionality of the device is guaranteed.
*measured “instant on”

DC CHARACTERISTICS over COMMERCIAL and MILITARY operating ranges

Parameter | Parameter
Symbol Description Test Conditions Min. Max. Unkt
Vi Input Low Voltage -0.5 0.8 \
Vs Input High Voltage 2.0 Vee +0.5 \'
ViLncLk INCLK Input Low Voltage -0.5 0.8 \'4
VHINCLK INCLK Input High Voltage 2.0 Vec +0.5 V
ViLsyscux SYSCLK Input Low Voitage -0.5 0.8 v
Visyscik SYSCLK Input High Voltage Vec —0.8 Vee +0.5 \'/
Vo Output Low Voltage for Y
All Outputs except SYSCLK lo.=3.2 mA 0.45 \Y
Vou Output High Voltage for
All Outputs except SYSCLK fou=—400 pA . 2.4 \
lu Input Leakage Current 0.45V < Vi < Yool +10 pA
o Output Leakage Current 0.45V < Vour < 10 MA
lecor Operating Power-Supply 22 for
Current Commercial mA/MHz
25 for
DI Military
Vo SYSCLK Out ge) 0.6 v
Vorc SYSCLK Output High Voltage | "W : Vec—0.6 Vv
losano SYSCLK GND Short s,
Circuit Current - e [Wec=5.0V 100 mA
losvec SYSCLK Vce Sho, N
Circuit Current Vec=5.0 V 100 mA
CAPACITANCE
Parameter | Parameter
Symbol Description Test Conditions Min. Max. Unkt
Cin input Capacitance 15 pF
Cmvex INCLK Input Capacitance 20 pF
Csyscik SYSCLK Capacitance fC =1 MHz (Note 1) 90 pF
Cour QOutput Capacitance 20 pF
Cwo 17O Pin Capacitance 20 pF
Note: 1. Not 100% tested.
1101

This Material Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

Parameter Test 33 MHz 25 MHz
No. Description Condltions Min. Max. Min. Max. Unkt
1 System Clock {SYSCLK)
Period (T) Note 1 40 1000 ns
1A | SYSCLKat 1.5V to SYSCLK
at 1.5V when used as an output Note 13 0.5T-1 0.5T+1 ns
2 SYSCLK High Time when used as input Note 13 19 ns
3 SYSCLK Low Time when used as input Note 13 17 ns
4 SYSCLK Rise Time Note 2 5 ns
5 SYSCLK Fall Time Note 2 5 ns
6 Synchonous SYSCLK Output
Valid Delay Notes 3, 12 3 14 ns
6A Synchronous SYSCLK Output
Valid Dslay for D,,—D, Note 12 4 18 ns
7 Three-State Synchronous SYSCLK Notes 4,
Output Invalid Delay 14, 15 3 30 ns
8 Synchronous SYSCLK
Qutput Valid Delay Notes 5, 1 3 14 ns
8A | Three-State SYSCLK Notes
Synchronous Output Invalid Delay 14 3 30 ns
9 Synchronous Input Setup Time 12 ns
9A Synchronous Input Setup Time
for Dy =D, b1, [:] ns
9B | Synchronous Input Setup Time
for DRDY 13 ns
10 Synchronous Input Hold Time e 6 2 ns
11 Asynchronous Input Minimum
Puise Width Note 8 T+10 ns
12 INCLK Period 20 500 ns
12A | INCLK to SYSCLK Delay 2 10 ns
128 | INCLK to SYSCLK Delay 2 10 ns
13 INCLK Low Time 8 ns
14 INCLK High Time 8 ns
15 INCLK Rise Time 5 ns
16 INCLK Fall Time 5 ns
17 | INCLK to Deassertion of RESET
(for phase synchronization of SYSCLK) Note 9 0 5 ns
18 | WARN Asynchronous Deassertion
Hold Minimum Pulse Width Note 10 47 ns
19 | BINV Synchronous Output Valid
Delay from SYSCLK Note 12 1 7 ns
20 Three-State synchronous SYSCLK Notes 11,
output invalid delay for D,~D, 14, 15 3 20 ns
1-102
This Material Copyrighted By Its Respective Manufacturer

Am29000

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

Parameter Tost 20 MHz 16 MHz
No. Description Conditions Min. Max. Min. Max. Unit
1 System Clock (SYSCLK)
Period (T) Note 1 50 1000 60 1000 ns
1A | SYSCLK at 1.5V to SYSCLK
at 1.5V when used as an output Note 13 0.5T-1 0.5T+1 0.5T-2 0.5T+2 ns
2 SYSCLK High Time when used as input Note 13 22 27 ns
3 SYSCLK Low Time when used as input Note 13 19 22 ns
4 SYSCLK Rise Time Note 2 5 5 ns
5 SYSCLK Fall Time Note 2 5 5 ns
6 Synchonous SYSCLK Output
Valid Delay Notes 3, 12 3 6 3 16 ns
6A | Synchronous SYSCLK Output
Valid Delay for Dy—D, Note 12 20 4 20 ns
7 Three-State Synchronous SYSCLK Notes 4,
Output invalid Delay 14, 15 30 3 30 ns
8 Synchronous SYSCLK
Output Valid Delay Notes 5, 16 3 16 ns
8A | Three-State SYSCLK Not
Synchronous Output invalid Delay 3 30 3 30 ns
9 Synchronous Input Setup Time 15 15 ns
9A Synchronous input Setup Time
for Dy=D,, 1y,—1, 8 8 ns
9B | Synchronous Input Setup Time
for DRDY 16 16 ns
10 Synchronous input Hold Time Note 6 2 2 ns
11 Asynchronous Input Minimum
Pulse Width Note 8 T+10 T +10 ns
12 INCLK Period 25 500 30 500 ns
12A | INCLK to SYSCLK Delay 2 12 2 15 ns
128 | INCLK to SYSCLK Delay 2 12 2 15 ns
13 INCLK Low Time 10 12 ns
14 INCLK High Time 10 12 ns
15 INCLX Rise Time 5 5 ns
16 INCLK Fall Time 5 5 ns
17 | INCLK to Deassertion of RESET
(for phase synchronization of SYSCLK) Note 9 0 5 0 5 ns
18 | WARN Asynchronous Deassertion
Hold Minimum Pulse Width Note 10 4T 4T ns
19 | BINV Synchronous Output Valid
Delay from SYSCLK Note 12 1 8 1 9 ns
20 Three-State synchronous SYSCLK Notes 11,
output invalid delay for D,~D, 14, 15 3 25 3 25 ns
1-103

T = e - e — ——— —

This Material Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

SWITCHING CHARACTERISTICS over MILITARY operating range

Parameter Test 20 MHz 16 MHz
No. Description Conditions Min. Max. Min. Max. Unit
1 System Clock (SYSCLK)
Period (T) Note 1 50 1000 60 1000 ns
1A | SYSCLKat 1.5V to SYSCLK
at 1.5V when used as an output Note 13 0.5T-1 0.5T+1 0.5T-2 0.5T+2 ns
2 SYSCLK High Time when used as input Note 13 22 27 ns
3 SYSCLK Low Time when used as input Note 13 19 22 ns
4 SYSCLK Rise Time Note 2 5 5 ns
5 SYSCLK Fall Time Note 2 5 5 ns
6 Synchonous SYSCLK Output
Valid Delay Notes 3, 12 3 6 3 16 ns
6A Synchronous SYSCLK Output
Valid Delay for D,,—D, Note 12 4 20 ns
7 Three-State Synchronous SYSCLK Notes 4,
Output invalid Delay 14, 15 30 3 30 ns
8 | Synchronous SYSCLK
QOutput Valid Delay 16 3 16 ns
8A | Three-State SYSCLK
Synchranous Output Invaiid Delay 30 3 30 ns
9 Synchronous input Setup Time 15 ns
9A Synchronous Input Setup Time
for Dy,—D,, ky—lo 8 ns
9B | Synchronous Input Setup Time
for DRDY 16 ns
10 Synchronous Input Hold Time 2 ns
Ah! Asynchronous Input Minimum.
Pulse Width Note 8 T+10 T+10 ns
12 INCLK Period 25 500 30 500 ns
12A | INCLK to SYSCLK Delay 12 15 ns
12B | INCLK to SYSCLK Delay 12 15 ns
13 INCLK Low Time 10 12 ns
14 INCLK High Time 10 12 ns
15 INCLK Rise Time 5 5 ns
16 INCLK Fall Time 5 5 ns
17 | INCLK to Deassertion of RESET
{for phase synchronization of SYSCLK) Note 9 0 5 0 5 ns
18 | WARN Asynchronous Deassertion
Hold Minimum Pulse Width Note 10 AT 4T ns
19 | BINV Synchronous Output Valid
Delay from Note 12 1 8 1 9 ns
20 Three-State synchronous SYSCLK Notes 11,
output invalid delay for D,,-D, 14,15 4 25 4 25 ns
1-104

This Materi al

Copyrighted By Its Respective Manufacturer

Am295000

Notes:

s

w

o

0 oNoOn

10.
1.

12
13.

14.

15.

. AC measurements made relative to 1.5 V, except where noted.
. SYSCLK rise and fail times measured between 0.8 V and (V. — 1.0 V).
. S*nchronous OFu|t£uls felative to SYSCLK rising edge include: A,~A,, BGRT, R/W, SUP/US, EOCK, MPGM,-MPGM,,

. IREQT, PIA, DREQ, DREQT,-DREQT,, PDA, OPT,~OPT,, STAT,~STAT,, and MSERR.

- Three-state Synchronous Outputs relative to SYSCLK rising edge include: A,—A, RW, SUP/US, [OCK,

MPGM,-MPGM,, TREQ, IREQT, FIA, DREQ, DREQT,-DREQT,, PDA, and OPT,~OPT,,

- Synchronous Outputs relative to SYSCLK falling edge (SYSCLK): IBREQ, DBREQL.

- Synchronous Inputs include: BREG, PEN, TRDY, TERR, IBACK, DERR, DBACK, TDA, I,,-L,, DRDY, and D,-D,

. Synchronous Inputs inciude: BREQ, PEN, TRDY, IERR, IBACK, DERR, DBACK, and CDA.

- Asynchranous Inputs include: WARN, INTR,INTR,, TRAP,—~TRAP,, and CNTL,~CNTL,,

. RESETisan asynchronous input on assertion/deassertion. As an option to the user, RESET deassertion can be used to

force the state of the internal divide-by-two fiip-flop to synchronize the phase of SYSCLK (if internally generated) rela-
tive to RESET/INCLK.

WARN has a minimum pulse width requirement upon deassertion.

To guarantee Store/l.oad with one-cycle memories, D,,—D, must be asserted relative to SYSCLK falling edge from an
external drive source.

Refer to Capacitive Output Delay table when capacitive loads exceed 80 pF.

Whan used as an input, SYSCLK presents a 90-pF max. load to the external driver. When SYSCLK is used as an out-
put, timing is specified with an external load capacitance of <200 pF.

Three-State Output Inactive Test Load. Three-State Synchronous Output Invalid Delay is measured as the time to a
1500 mV change from prior output level.

When a three-state output makes a synchronous transition from a valid logic level to a high-impedance state, data is
guaranteed to be held valid for an amount of time equal to the lessar of the minimum Three-State Synchronous Output
Invalid Delay and the minimum Synchronous Output Valid Delay.

Conditions:

a.
b.
c.
d.

All inputs/outputs are TTL compatible for V,,, V,, V. and V,, unless otherwise noted.

All output timing specifications are for 80 pF of loading.

All setup, hold, and delay times are measured relative to SYSCLK or INCLK uniess otherwise noted.

All input Low levels must be driven 10 0.45 V and alt input High levels must be driven to 2.4 V except SYSCLK.

1-105

This Material Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices
SWITCHING WAVEFORMS

v

—(1)
o/

One

SYSCLK
Vee-1.0V Veo=1.0V [
1'5°\°/ ?IC.SV 15V 15V
0.8V 0.8V] -
SYSCIK '
Synchronous 15V e
Outputs

SYSCLK
Synchronous 15V
Outputs
BINV 1.5V
9,9A
bl @
Synchronous Inputs
15V 15V
Relative to SYSCLK
1-106

This Material Copyrighted By Its Respective Manufacturer

Am29000

SWITCHING WAVEFORMS

INCLK

RESET
- (d >
L
7
WARN 15V 15V
l<) ol
< () >
{LC
7
ﬁ,‘{,’,‘ﬁ"wm“s 15V 15V

INCLK and Asynchronous Inputs

1-107

This Material Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

SWITCHING WAVEFORMS

Zl Vee—1.0V XS Ve -1.0V /
15V 15V 15V
0.8V 0.8V

— (@) —» ®

SYSCLK Definition

SYSCLK

INCLK 0.8V

INCLK to SYSCLK Delay

1-108

This Material Copyrighted By Its Respective Manufacturer

Am29000

Capacitive Output Delays
For loads greater than 80 pF

This table describes the additional output delays for capacitive loads greater than 80 pF. Values in the Maximum
Additional Delay column should be added to the value listed in the Switching Characteristics table. For loads less
than or equal to 80 pF, refer to the delays listed in the Switching Characteristics table.

Total Maximum
External Additional

No. Parameter Description Capacitance Delay
6 Synchronous SYSCLK Output Valid Delay 100 pF +1ns
150 pF +2ns

2 +4ns

& +6ns

+8 ns

6A Synchronous SYSGLK Output Valid Delay for D,,~D, +1ns
0 +6ns
00 pF +10ns
250 pF +15ns
300 pF +19ns

8 Synchronous SYSCLK Outp! 100 pF +1ns
150 pF +2ns

200 pF +4ns

250 pF +6ns

300 pF +8 ns

19 BINV Synchronous§utput Valid Delay from SYSCLK 100 pF +1ns
150 pF +3ns

200 pF +4ns

250 pF +6ns

300 pF +7 NS

SWITCHING TEST CIRCUIT

Am29000

Pin Under Test

00758-00A

1C001030

Vi

C, is guaranteed to 80 pF. For capacitive loading greater
than 80 pF, refer to the Capacitive Output Delay table.

1-109

This Material Copyrighted By Its Respective Manufacturer

29K Family CMOS Devices

Am29000 Thermal Characteristics

Pin-Grid-Array Package
8, Y
4
for
[T i
(T -
Thermal Resistance - °C/Watt
900
Parameter {4.61)
8, Junction-to-Case 2
8., Case-to-Ambient (no Heatsjg 10
6., Case-to-Ambiant (wi
Heatsink, Thermalio! 2
6, Case-to-Ambient (witHnidirectionat Pin Fin
Heatsink, Wakefiekd 840-20) 10 6 3 2 2 2
Ceramic-Quad-Flat-Pack Package
0 l |
6 On
B, =0, +0,, 1C001040
Thermal Resistance — °C/Watt
Alrflow—it./min. (m/sec)
0 150 300 480 700 900
Parameter {0) {0.76) (1.53) (2.45) (3.58) (4.61)

8. Junction-to-Case

6., Case-to-Ambient

Note: This is for referenca only.

1110

This Material Copyrighted By Its Respective Manufacturer

