This Materia

80C286

High-Speed CMOS 80286 Microprocessor

e

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS
8 Uitra high-performance processor
—OQver 20X performance of 8086
—Over 1.5X performance of 386SX-16"
—Comparable performance to 386 at same clock
speed”
B Wide range of clock rates
—25 MHz (80C286-25)
—20 MHz (80C286-20)
—16 MHz (80C286-16)
—12.5 MHZ (80C286-12)

*When running 16-bit code (i.e., DOS or 0S/2)

® 100% functionally and pin compatible with
NMOS 286

8 Static CMOS design for low power operation
—Standby mode icc =5 mA maximum
—Operating mode icc

220 mA max at 12.5 MHz
260 mA at max 16 MHz
310 mA at max 20 MHz
360 mA at max 25 MHz

® g8-lead LCC and 68-lead PLCC packages

GENERAL DESCRIPTION

AMD’s 80C286 is a high-speed implementation of the in-
dustry standard 80286 microprocessor. It is 100% func-
tionally compatible with the NMOS version and is a plug
compatible replacement. AMD's high-speed CMOS
process allows clock speeds much higher than those at-
tainable with NMOS. This CMOS 80286 operates at
clock speeds up to 25 MHz.

This CMOS design is a static implementation which al-
lows the processor to be clocked down to DC and still

retain full register status. This is useful for designs where
power consumption is a consideration as the 80C286
uses only 5 mA of supply current when in standby mode.
The 80C286 also retains full functionality from it's maxi-
mumclock frequency through very low frequencies down
to DC. Since power consumption is proportional to clock
speed, the 80C286 may be clocked at a slower rate to
draw less current.

BLOCK DIAGRAM

Address Unit (AU)

‘Address ‘ A
Latches and Drivers WIS

sical

'Address
Ad

—_———mrmmmem e

Pre ¥ ;
I Extension
Interface 8
51, 50, COD/INTA

Bus [OCK. HLDA

R
i
o

Data Dis-De

[WO

— . e e et o e wnd

! Bus Unit (BU)
— — e e ol
A N T T —— RESE
Decoded

——b Ves

-
. |
Instruction
: i¢——— CL

Execution Unit (EU) |

[— e —

—_ e Ve

1-128

80C286

Publication 8 (09729 Rev. A Amendment /0
tssue Date: May 1989

Copyrighted By Its Respective Manufacturer

CONNECTION DIAGRAMS

Component Pad Views—

as viewed from underside

of component on the PC Asy
board.

CD005613

PC Board Views—as viewed
from the component side of 4 5 ;
the PC board. Vss A

ZIE DS EITBIE!
TITESE

There are no electrical connections on the bottom of this package.

80C286 1-129

This Material Copyrighted By Its Respective Manufacturer

CONNECTION DIAGRAMS (continued)

LCC
As viewed fi f pack: e
(pca.mf'&f?nm?ﬁw" EE%égE °§ -EdEddEEQ
TIE>a>ZZ2Z2Z =2 =
P —\’QDDDDDDDDDDDDDDDDT
s * [0.
Ne [C] [] o,
NC E j D
St :l De
%] [] Dss
PEACK [] 0s
As [] 0
Az E % D.
Vss E D1
Aa] 1D,
Ax E :] Dyo
A E :l De
An E : Do
Az E : D,
Ase E j Ds
Ass Do
A|4 J Vss
uuuuuuuuu,,gqg«,o
PP IS L] <<<3>°3<<<
& CD010641
PIN DESIGNATIONS
(sorted by pin number)
Pin Pin Pin Pin Pin Pin
No. Name No. Name No. Name
1 BAE 24 A7 47 Dis
2 NC 25 As 48 Ds
3 NC 26 As 49 D14
4 51 27 A 50 D7
5 S0 28 As 51 Dis
6 PEACK 29 RESET 52 NC
7 Az 30 Vee 53 ERROR
8 Az 31 CLK 54 BUSY
9 Vss 32 Az 55 NC
10 Az 33 Ai 56 NC
11 Az 34 Ao 57 INTR
12 At 35 Vss 58 NC
13 At 36 Do 59 NMI
14 Az 37 Ds 60
1 A % Be 62 Ve 0
15 cc
17 A 40 D2 63 READY
18 Az 4 D1o 64 HOLD
19 Az 42 Ds 65 HLDA
20 An 43 Dn 66 COD/INTA
21 Ao 44 D« 67 M/IO
22 As 45 D12 68 LOCK
23 As 46 Ds
1-130 80C286

This Material Copyrighted By Its Respective Manufacturer

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number
(Valid Combination) is formed by a combination of: a. Device Number

b .Package Type

c. Temperature Range

d. Speed Option

e. Optional Processing

R 80C285 .16

—[_.____ d. SPEED OPTION

-12 = 12.5 MHz
-16 = 16 MHz
~20 = 20 MHz
-25 = 25 MHz

a. DEVICE NUMBER/DESCRIPTION
80C286
High-Speed CMOS 80286 Microprocessor

b. PACKAGE TYPE
R = 68-Pin Ceramic Leadless Chip Carrier
(CA2068)

N = 68-Lead Plastic Leaded Chip Carrier
(PLO68)

c. TEMPERATURE RANGE
Blank = Commercial {TC =0 to +85°C)

Valid Combinations

80C286-25
80C286-20
80C286-16
80C286-12

R, N

Valid Combinations

Valid Combinations list configurations planned to
be supported in volume for this device. Consult
the local AMD sales office to confirm availability of
specific valid combinations, to check on newly re-
leased combinations, and to obtain additional
data on AMD’s standard military grade products.

80C286 1-131

This Material Copyrighted By Its Respective Manufacturer

This Materi al

PIN DESCRIPTION

CLK

System Clock (Input; Active HIGH)

System Clock provides the fundamental timing for
80C286 systems. It is divided by two inside the 80C286
to generate the processor clock. The internal divide-by-
two circuitry can be synchronized to an external clock
generator by LOW-to-HIGH transition on the RESET
input.

Do-D1s
Data Bus (Input/Output; Active HIGH)

Data Bus inputs data during memory, 1/0, and interrupt
acknowledge read cycles; outputs data during memory
and I/O write cycles. The data bus is active HIGH and
tioats to three-state OFF during bus hold acknowledge.

A23-A0

Address Bus (Output; Active HIGH)

Address Bus outputs physical memory and 1/0 port ad-
dresses. Ao is LOW when data is to be transferred on
pins D7.o. A2a-Aws are LOW during I/O transfers. The
address bus is active HIGH and fioats to three-state OFF
during bus hold acknowledge.

BHE
Bus High Enable (Output; Active LOW)

Bus High Enable indicates transfer of data on the upper
byte of the data bus Dsss. Eight-bit oriented devices as-
signed to the upper byte of the data bus would normally
use BHE to condition chip select functions. BHE is active
LOW and floats to three-state OFF during bus hold ac-
knowledge.

BHE and A, Encodings

BRE A,
Value Value Function

0 0 Word transfer
0 1 Byte transfer on upper half of data bus (D,s,)
1 0 Byte transfer on lower half of data bus (D)
1 1 Reserved

§1,50

Bus Cycle Status (Output; Active LOW)

Bus Cycle Status indicates initiation of a bus cycle and,
along with M710 and COD/INTA, defines the type of bus
cycie. The bus is in a Ts state whenever one or both are
LOW. 57 and 30 are active LOW and float to three-state
OFF during bus hold acknowledge.

80C286 Bus Cycie Status Definition

cop/ _
INTA MAO 51 50 Bus cycle initiated

(LOW) Interrupt acknowledge
Reserved

Reserved

None; not a status cycle
IF A, = 1 then halt; else shutdown
Memory data read
Memory data write
None; not a status cycle
Reserved

1O Read

VO Write

None; not a status cycle
Reserved

Memory instruction read
Reserved

None; not a status cycle

(HIGH)

ok ek b bt A 2 OO0OO0O0O0O00O0O
e b QOO0 MLt OO0O0CQ
Sl OO == 00400+ -00
_- OS2 O00O0 RO -O=-0O=20~0

" 1Te]

Memory/IO Select (Output)

Memory/lO Select distinguishes memory access from
11O access. If HIGH during Ts, a memory cycle or a
halt/shutdown cycle is in progress. If LOW, an /O cycle
or an interrupt acknowledge cycle is in progress MAO
floats to three-state OFF during bus hold acknowledge.

COD/INTA

Code/interrupt Acknowledge (Output)
Code/Interrupt Acknowledge distinguishes instruction
fetch cycles from memory data read cycles. Also distin-
guishes interrupt acknowledge cycles from /O cycles.
COD/INTA floats to three-state OFF during bus hold ac-
knowledge.

LOCK

Bus Lock (Output; Active LOW)

Bus Lock indicates that other system bus masters are not
to gain control of the system bus following the current
bus cycle. The LOCK signal may be activated explicitly
by the “LOCK” instruction prefix or automatically by
80C286 hardware during memory XCHG instructions,
interrupt acknowledge, or descriptor table access. LOCK
is active LOW and floats to three-state OFF during hold
acknowledge.

1-132

80C286

Copyrighted By Its Respective Manufacturer

This Materi al

PIN DESCRIPTION (continued)

READY
Bus Ready (Input; Active LOW)

Bus Ready terminates a bus cycle. Bus cycles are ex-
tended without limit until terminated by READY LOW.
READY is an active LOW synchronous input requiring
set-up and holid times relative to the system clock be met
for correct operation. READY is ignored during bus hold
acknowledge.

HOLD, HLDA

Bus Hold Request and Hold Acknowledge
(Input/Output; Active HIGH)

Bus Hold Request and Hold Acknowledge control owner-
ship of the 80C286 local bus. The HOLD input allows
another local bus master to request control of the local
bus. When controlis granted, the 80C286 will float its bus
drivers to three-state OFF and then active HLDA, thus
entering the bus hold acknowledge condition. The local
bus will remain granted to the requesting master until
HOLD becomes inactive which results in the 80C286
deactivating HLDA and regaining control of the local
buys. This terminates the bus hold acknowledge condi-
tion. HOLD may be asynchronous to the system clock.
These signals are active HIGH.

INTR
interrupt Request (Input; Active HIGH)

Interrupt Request requests the 80C286 to suspend its
current program execution and service a pending exter-
nal request. Interrupt requests are masked wheneverthe
interrupt enable bit in the flag word is cleared. When the
80C286 responds to an interrupt request, it performs two
interrupt acknowiedge bus cycles to read an 8-bit inter-
rupt vector that identifies the source of the interrupt. To
assure program interruption, INTR must remain active
until the first interrupt acknowledge cycle is completed.
INTR is sampled at the beginning of each processor
cycle and must be active HIGH at least two processor
cycles before the current instruction ends in order to
interrupt before the next instruction. INTR is level sensi-
tive, active HIGH, and may be asynchronous to the sys-
tem clock.

NMI
Non-maskable Interrupt Request
(Input; Active HIGH)

Non-maskable Interrupt Request interrupts the 80C286
with an internally supplied vector value of 2. No interrupt
acknowledge cycles are performed. The interrupt enable
bit in the 80C286 flag word does not affect this input. The
NMiI input is active HIGH, may be asynchronous to the
system clock, and is edge triggered after internal syn-
chronization. For proper recognition, the input must have
been previously LOW for at least four system clock cy-

cles and remain HIGH for at least four system clock
cycles.

PEREQ, PEACK

Processor Extension Operand Request and
Acknowledge (Input/Output)

Processor Extension Operand Request and Acknow!-
edge extends the memory management and protection
capabilities of the 80C286 to processor extensions. The
PEREQ input requests the 80C286 to perform a data
operand transfer for a processor extension. The PEACK
output signals the processor extension when the re-
quested operand is being transferred. PEREQ is active
HIGH and may be asynchronous to the system clock.
PEACK is active LOW.

BUSY, ERROR

Processor Extension Busy and Error

Processor Extension Busy and Error indicate the operat-
ing condition of a processor extension to the 80C286. An
active BUSY input stops 80C286 program execution on
WAIT and some ESC instructions until BUSY becomes
inactive (HIGH). The 80C286 may be interrupted while
waiting for BU%Y to become inactive. An active ERROR
input causes the 80C286 to perform a processor exten-
sion interrupt when executing WAIT or some ESC in-
structions. These inputs are active LOW and may be
asynchronous to the system clock.

RESET

System Reset (Input; Active HIGH)

System Reset clears the internal logic of the 80C286 and
is active HIGH. The 80C286 may be reinitialized at any
time with a LOW-to-HIGH transition on RESET which
remains active for more than 16 system clock cycles.
During RESET active, the output pins of the 80C286
enter the state shown below:

80C286 Pin State during Reset

Pin Value Pin Names
1 (HIGH) 30, §1, PEACK, A,-A,, BHE, LOCK
0 (LOW) MAO, COD/INTA, HLDA

three-state OFF D,s-Dy

Operation of the 80C286 begins after a HIGH-to-LOW
transition on RESET. The HIGH-to-LOW transition of
RESET must be synchronous to the system clock. Ap-
proximately 50 system clock cycles are required by the
80C286 for internal initializations before the first bus
cycle to fetch code from the power-on execution address
is performed.

80C286

Copyrighted By Its Respective Manufacturer

PIN DESCRIPTION (continued)

ALOW-to-HIGH transition of RESET synchronous to the
system clock, will begin a new processor cycle atthe next
HIGH-to-LOW transition of the system clock. The LOW-
to-HIGH transition of RESET may be asynchronous to
the system clock; however, in this case it cannot be
predetermined which phase of the processor clock will
occur during the next system period. Synchronous LOW-
to-HIGH transitions of RESET are only required for sys-
tems where the processor clock must be phase synchro-
nous to another clock.

Vss
System Ground (Input; Active HIGH)

System Ground: 0 volts.

Vee

System Power (Input; Active HIGH)
System Power: +5 volt power supply.

1-134 80C286

This Material Copyrighted By Its Respective Manufacturer

This Materi al

FUNCTIONAL DESCRIPTION
Introduction

The 80C286 is a fully static advanced, high-performance
microprocessor with specially optimized capabilities for
mutltiple user and multitasking systems. Depending on
the application, the 80C286's performance is up to 20
times faster than the standard 5-MHz 8086, while provid-
ing complete upward software compatibility with AMD’s
iAPX 86, 88, and 186 family of CPUs.

Static Operation

AMD’s 80C286 is composed of complete static circuitry.
Unlike the dynamic circuit design, the 80C286’s internal
registers, counters, and latches are static and do not
require refresh which eliminates the minimum operat-
ing frequency restriction that is typically placed on
Microprocessors.

AMD's 80C286 can operate from DC to the specified
upper frequency limit. The clock to the processor may be
stopped at any point (either phase one or phase two of
the processor clock cycle) and held there indefinitely.
Additionally, a significant decrease inpower requirement
occurs if the clock is stopped in phase two of the proces-
sor clock cycle. Details on clock relationships can be
found in the Bus Operation section.

Note that the ability to stop the clock to processor is
useful for system debug or power critical applications
such as battery-powered laptop personal computers.
The 80C286 can be single-stepped using only the CPU
clock, and this state can be maintained as long as neces-
sary. Single step clock operation allows for simple inter-
face circuitry to provide critical information during system
debug.

Static design allows very low frequency operation (down
to DC). In a power critical situation, this can provide low
power operation since 80C286 power dissipation is di-
rectly related to operating frequency. As the system fre-
quency is reduced, so is the operating power until, ulti-
mately, with the clock stopped in phase two of the
processor clock cycle, the 80C286 power requirement is
the standby current (5 mA maximum).

The 80C286 operates in two modes: iIAPX 86 real ad-
dress mode and protected virtual address mode. Both
modes execute a superset of the iAPX 86 and 88 instruc-
tion set.

In iAPX 86 real address mode programs use real ad-
dresses with up to one megabyte of address space. Pro-
grams use virtual addresses in protected virtual address

mode, also calied protected mode. In protected mode,
the 80C286 CPU automatically maps 1 gigabyte of vir-
tual addresses per task into a 16 megabyte real address
space. This mode aiso provides memory protection to
isolate the operating system and ensure privacy of each
task’s programs and data. Both modes provide the same
base instruction set, registers, and addressing modes.

The following pages describe first, the base 80C286 ar-
chitecture common to both modes; second, iAPX 86 real
address mode; and third, protected mode.

80C286 Base Architecture

The iAPX 86, 88, 286, and C286 CPU family all contain
the same basic set of registers, instructions, and ad-
dressing modes. The 80C286 processor is upward com-
patible with the 8086, 8088, and 80186 CPUs.

Register Set

The 80C286 base architecture has fifteen registers as
shown in Figure 1. These registers are grouped into the
following four categories:

General Registers: Eight 16-bit general purpose regis-
ters used to contain arithmetic and logical operands.
Four of these (AX, BX, CX, and DX) canbe used eitherin
their entirety as 16-bit words or split into pairs of separate
8-bit registers.

Segment Registers: Four 16-bit special purpose regis-
ters select, at any given time, the segments of memory
that are immediately addressable for code, stack, and
data. (For usage, refer to Memory Organization.)

Base and Index Registers: Four of the general purpose
registers may also be used to determine offset ad-
dresses of operands in memory. These registers may
containbase addresses orindexes to particutar locations
within a segment. The addressing mode determines the
specific registers used for operand address calculations.

Status and Control Registers: Three 16-bit special
purpose registers record or control certain aspect of the
80C286 processor state. These include the Instruction
Pointer, which contains the offset address of the next
sequential instruction to be executed.

80C286

1-135

Copyrighted By Its Respective Manufacturer

16-Bit Special
Register Register 15 0
Name Function
07 0 Ccs Code Segment Selector
IB\theressable AX| AH AL Muttiply/Divide bDs Data Segment Selector
(8-Bit Register | DX | DH DL VO Instructions ss Stack Segment Selector
gﬁg‘:: cs| cH] cL |} Loop/Shitt Repeat Count ES Extra Segment Selector
BX ;
BH BL Base Registers Segment Registers
BP
sl 15 0
oI } Index Registers E Flags
spP Stack Pointer P Instruction Pointer
15 Y MSW Machine Status Word
General Registers

Figure 1. Register

Status and Control Registers

Set

Status Flags:

Carry
Parity
Auxiliary Carry
Zero
Sign
Overflow
15 14 13 12 11 10 9 8 7
T
Flags: NT IOPL OF | DF IF TF | SF
Control Flags:
Trap Flag
Interrupt Enable
Direction Flag
Special Fields:
/O Privilege Level
Nested Task Flag
3 2 1 0
TS| EM MP| PE
Task Switch ——-I
Reserved Processor Extension Emulated
Monitor Processor Extension
Protection Enable
Figure 2. Status and Control Register Bit Functions
1-136 80C286

This Material Copyrighted By Its Respective Manufacturer

This Materi al

Flags Word Description

The Flags word (Flags) records specific characteristics
of the result of logical and arithmetic instructions (bits 0,
2, 4, 6, 7, and 11) and controls the operation of the
80C286 within a given operating mode (bits 8 and 9).
Flags is a 16-bit register. The function of the flag bits is
given in Table 1.

Table 1. Flags Word Bit Functions

Bit
Position Name Function

operand instructions may reference a register or mem-
ory location. Two-operand instructions permit the follow-
ing six types of instruction operations:

Register to Register

Memory to Register

Immediate to Register

Memory to Memory

Register to Memory

Immediate to Memory
Two-operand instructions (e.g., MOV and ADD) are usu-
ally three to six bytes long. Memory to memory opera-
tions are provided by a special class of string instructions
requiring one to three bytes. For detailed instruction for-

0 CF Carry Flag—Set on high-order bit carry mats and encodings, refer to the instruction set summary
or borrow; cleared otherwise at the end of this document.
2 PF Parity Flag-—Set if low-order 8 bits of . 5 .
result contain an even number of 1 bits; Memory is organized as sets of variable length seg-
cleared otherwise ments. Each segment is a tinear contiguous sequence of
4 AF Set on carry-from or borrow-to the up to 64K(*16) 8-bit bytes. Memory is addressed using a
low-order four bits of AL; cleared two-component address (a pointer) that consists of a
otherwise 16-bit segment selector and a 16-bit offset. The segment
6 ZF Zero Flag—Set if result is zero; cleared selector indicates the desired segment in memory. The
otherwise offset component indicates the desired byte address
7 SF Sign Flag—Set equal to high-order bitof ~ Within the segment.
result (0 if positive, 1 if negative) . .
11 OF Overflow Flag—Set if result is a Memory Orgamzatlon
too-large large positive number or a All instructions that address operands in memory must
too-small negative number (excluding specify the segment and the offset. For speed and com-
s:gn~b|(1’) '°hm in destination operand; pactinstruction encoding, segment selectors are usually
cleared otherwise) stored in the high speed segment registers. An instruc-
8 TF S‘lngl_e tStep flag—ON;te S?rf‘ a S'ntgle tion need specify only the desired segment register and
step Iinterrupt occurs aiter the nex
instruction executes. TF is cleared by the an offset to address a memory operand.
single step interrupt
9 IF Interrupt-Enable Flag—When set, General Purpose
maskable interrupts will cause the CPU MOV Move byte or word
to lrza_qsfer control to an interrupt vector PUSH Push word onto stack
specified location POP Pop word off stack
10 DF Direction Flag—Causes string PUSHA Push all registers on stack
instructions to auto decrement the POPA Pop all registers from stack
appropriate index registers when set. XCHG Exchange byte or word
Clearing DF causes auto increment. XLAT Translate byte
Input/Output
7 IN input byte or word
Instruction Set ouT Output byte or word
The instruction set is divided into seven categories: data Address Object
transfer, arithmetic, shift/rotate/logical, string manipula- LEA L oad effective address
tion, program transfer, high-level instructions, and proc- LDS Load pointer using DS
essor control. These categories are summarized in Fig- LES Load pointer using ES
ures 3-9. Flag Transfer
An 80C286 instruction can reference zero, one, or two ;2?!’[:—' g::iﬁ: ';%'iss:rrf;:;?agzgs
operands where an operand resides in a register, inthe
; S . 4 . PUSHF Push flags onto stack
instruction itself or in memory. Zero-operand instructions POPE Pop flags off stack
(e.g., NOP and HLT) are usually one byte long. One-op-
erand instructions (e.g., INC and DEC) are usually two Figure 3. Data Transfer Instructions
bytes long, but some are encoded in only one byte. One-
80C286 1-137

Copyrighted By Its Respective Manufacturer

Addition MOVS Move byte or word string
ADD Add byte or word INS Input bytes or word string
ADC Add byte or word with carry ouTs Output bytes or word strin.g
INC Increment byte or word by 1 CMPS Compare byte or word string
AAA ASCIl adjust for addition SCAS Scan byte or word string
DAA Decimal adjust for addition LODS Load byte or word string
Subtraction STOS Store byte or word string
suB Subtract byte or word REP Repeat
SBB Subtract byte or word with borrow REPE/REPZ Repeat while equal/zero
DEC Decrement byte or word by 1 REPNE/REPNZ Repeat while not equal/not zero
NEG Negate byte or word Figure 5. String Instructions
CMP Compare byte or word
AAS ASCI adjust for subtraction
DAS Decimal adjust for subtraction
Multiptication
MUL Muttiply byte or word unsigned Logicals
IMUL. Integer multiply byte or word NOT "Not 'byte or word
AAM ASCII adjust for multiply AND Andbyleorword
DIV Divide byte or word unsigned OR “lnclusn./e or” byte or wor
DIV Integer divide byte or word XOR Exclusive or” byte or word
AAD ASClII adjust for division TEST “Test” byte or word
Division Shits =~
CBW Convert byte to word SHL/SAL Shfft log,cal/grlthmetlc left byte or word
cWD Convert word to doubleword SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word
Figure 4. Arithmetic Instructions Rotates
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte or word
RCR Rotate through carry right byte or word
Figure 6. Shift/Rotate/Logical Instructions
Conditional Transfers Unconditional Transfers
JA/INBE Jump if above/not below nor equal CALL Call procedure
JAE/NB Jump if above or equal/not below RET Return from procedure
JBIJNAE Jump if below/not above nor equal JMP Jump
JBE/ANA Jump if below or equal/not above
JC Jump if carry lteration Controls
JENZ Jump if equal/zero
JG/ANLE Jump if greater/not less nor equal LOOP Loop
JGE/JNL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JUINGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLEAUNG Jump if less or equal/not greater JCXZ Jump if register CX =0
JNC Jump if not carry
JNEANZ Jump if not equal/not zero interrupts
JNO Jump if not overflow
JNPAPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO Interrupt if overflow
JO Jump if overtlow IRET Interrupt return
JPJPE Jump if parity/parity even
JS Jump if sign
Figure 7. Program Transfer Instructions
1-138 80C286

This Materi al

Copyrighted By Its Respective Manufacturer

This Materia

Flag Operations

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag

STD Set direction flag

CLD Clear direction flag

STI Set interrupt enable flag

CLI Clear interrupt enable flag
External Synchronization

HLT Halt until interrupt or reset

WAIT Wait for BUSY not active

ESC Escape to extension processor

LOCK Lock bus during next instruction
No Operation
NOP No operation
Execution Environment Control
LMSW Load machine status word
SMSW Store machine status word
Figure 8. Processor Control Instructions
ENTER Format stack for procedure entry
LEAVE Restore stack for procedure exit
BOUND Detects values outside prescribed range
Figure 9. High-Level Instructions
=2 >
Pointer
Segment l Offset
31 16,15 Q
d d Selected
T ggfer;gd Segment
>
= Memory =

Figure 10. Two-Component Address

Ali instructions that address operands in memory must
specity the segment and the offset. For speed and in-
struction encoding, segment selectors are usually stored
in the high speed segment registers. An instruction need
specify only the desired segment register and anoffset to
address a memory operand.

Most instructions need not explicitly specify which seg-
ment register is used. The correct segment register is
automatically chosen according to the rules of Table 2.
These rules follow the way programs are written (see
Figure 11) as independent modules that require areas
for code and data, a stack, and access to external data
areas.

Memory Segment

Reference Register Selection Rule

Needed Used Selection Rule

Instructions Code (CS) Automatic with instruction
prefetch

Stack Stack (8S) All stack pushes and pops.
Any memory reference which
uses BP as a base register.

Local Data Data (DS) All data references except
when relative to stack or
string destination.

External Extra (ES) Alternate data segment and

(Global) Data destination of string operation.

Table 2. Segment Register Selection Rules

Special segment override instruction prefixes allow the
implicit segment register selection rules to be overridden
for special cases. The stack, data, and extra segments
may coincide for simple programs. To access operands
that do not reside in one of the four immediately available
segments, either a full 32-bit pointer can be used or a
new segment selector must be loaded.

Addressing Modes

The 80C286 provides a total of eight addressing modes
for instructions to specify operands. Two addressing
modes are provided for instructions that operate on reg-
ister or immediate operands:

Register Operand Mode: The operand is located in one
of the 8- or 16-bit general registers.

Immediate Operand Mode: The operand is included in
the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand ad-
dress consists of two 16-bit components: segment selec-
tor and offset. The segment selector is supplied by a
segment register either implicitly chosen by the address-
ing mode or explicitly chosen by a segment override

80C286

1-139

Copyrighted By Its Respective Manufacturer

This Materi al

prefix. The offset is calculated by summing any combina-
tion of the following three address elements:

the displacement (an 8- or 16-bit immediate value con-
tained in the instruction)

the base (contents of eitherthe BX or BP base registers)
the Index (contents of either the Sl or Dl index registers)

Any carry out from the 16-bit addition is ignored. Eight-bit
displacements are sign extended to 16-bit values.

Combinations of these three address elements define
the six memory addressing modes, here described.

Direct Mode: The operand’s offset is contained in the
instruction as an 8- or 16-bit dispiacement element.

Register Indirect Mode: The operand’s offset is in one
of the registers Si, DI, BX, or BP.

Based Mode: The operand’s offset is the sum of an 8- or
16-bit displacement and the contents of a base register
(BX or BP).

re--=- “
CODE
Module A
DATA
\ '
CODE CPU
Module B I
DATA CODE
: v DATA
Process
Stack STACK
EXTRA
' H Segment
Registers
Process
Data
Block 1
1 L}
1)
Process
Data
Block 2
4 s N
emory DF00360

Figure 11. Segmented Memory Helps Structure Software

Indexed Mode: The operand’s offset is the sum of an 8-
or 16-bit displacement and the contents of an index reg-
ister (St or DI).

Based Indexed Mode: The operand’s offset is the sum
of the contents of a base register and an index register.

Based Iindexed Mode with Displacement: The oper-
and's offset is the sum of a base register’s contents, an
index register's contents, and an 8- or 16-bit displace-
ment.

Data Types
The 80C286 directly supports the following data types:

integer: A signed binary numeric value con-
tained in an 8-bit byte or a 16-bit word.
Ali operations assume a two’s comple-
ment representation. signed 32- and
64-bit integers are supported using the

80C287 Numeric Data Processor.

Ordinal: An unsigned binary numeric value con-

tained in an 8-bit byte or 16-bit word.

A 32-bit quantity, composed of a seg-
ment selector component and an offset
component. Each componentis a 16-bit
word.

Pointer:

String: A contiguous sequence of bytes or
words. A string may contain from 1 byte

to 64K bytes.

A byte representation of alphanumeric
and control characters using the ASCil
standard of character representation.

ASCII:

BCD: Abyte (unpacked) representation of the

decimal digits 0-9.

Packed BCD: A byte (packed) representation of two
decimal digits 0-9 storing one digit in

each nibble of the byte.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. (Floating point oper-
ands are supported using the 80C287
Numeric Processor configuration.)

Figure 12 graphically represents the data types sup-
ported by the 80C286.

1-140

80C286

Copyrighted By Its Respective Manufacturer

7 0

Signed TT]TT]
Byte
Sign Bit —
Magnitude
7 0
Unsigned LN LR
Byte
L. MSB
Magnitude
i 514 *! 8 7 0 0
Signed IBERERE RRREREE)
Word l
Sign Bit-J LMS% —
agnitude
+3 +2 +1 [+]
Signed 1 16 15 0
Double ||||||LH1|H|'|"|'I'IT|'|"I'T|'T'V'|'1'I'1'
Word s
Sign Bit = Magnitude
+7 +6 +5 +4 +3 +2 +1 V]
Signed &: 48 47 32 31 1615 ()
Quad
Word [] l I] I
Sign Bit - L L=MSB Maaniod
agnitude
15 +1 [¢] o
Unsigned||||l|||||”||||
Word
LL-MSB
Magnitude
Binary 7N o 7 MY 0 0
Coded cos Il||||1| TTT[TTT
Decimal
(BCD) BCD BCD BCD
Digit N Digit 1 Digit 0
; N [: 7 + 07 0 0
ASCII ASCII ASCIl
Character, Character, Character,
; N 0 7 0
Packed [TT T[T 11 IRSRAEE LN LR
BoD I coe F I
Most Significant Digit Least Significant Digit
715 N 0 715 *1 0715 ©
Smng[l'ﬂ_‘r_ﬂj .ee IIIIIIII TYT 17T
Byte Word N Byte Word 1 Byte Word 0
+3 +2 +1 o
31 16 15 (‘
Pointer lllllll'lllllll'ITrTTmTrn-rrn-
]
Selector Oftset
+9 +8 +7 +6 +5 +4 +3 +2 +1 v]
7! 0
Floating
Pomt || [| [1 [[[|
Sign Bit =
9 Exponent Magnitude
*Supported by iAPX 80C286/80C287 Numeric Data Processor Configuration DF003670

Figure 12. 80C286 Supported Data Types

80C286 1-141

This Material Copyrighted By Its Respective Manufacturer

This Materi al

I/O Space

The 1/0 space consists of 64K 8-bit or 32K 16-bit ports.
/O instructions address the /O space with either an 8-bit

port address, specified in the instruction, or a 16-bit port
address in the DX register. Eight-bit port addresses are
zero extended such that A15-A8 are LOW. VO port ad-
dresses 00F8(H) through 00FF(H) are reserved.

Table 3. Interrupt Vector Assignments

Return Address
Interrupt Related Before Instruction
Function Number instructions Causing Exception?
Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 All
Breakpoint interrupt 3 INT
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
invalid opcode exception 6 Any undefined opcode Yes
Processor extension not available exception 7 ESC or WAIT Yes
Reserved 8-15
Processor extension error input 16 ESC or WAIT
Reserved 17-31
User defined 32-255
Interrupts Further maskable interrupts are disabled while servicing

An interrupt transfers execution to a new program loca-
tion. The old program address (CS:IP) and machine
state (flags) are saved on the stack to allow resumption
of the interrupted program. Interrupts fall into three
classes: hardware initiated, INT instructions, and in-
struction exceptions. Hardware initiated interrupts occur
in response to an external input and are classified as
non-maskable or maskable. Programs may cause an
interrupt with an INT instruction. Instruction exceptions
occur when an unusual condition, which prevents further
instruction processing, is detected while attempting to
execute an instruction. The return address from an ex-
ception will always point at the instruction causing the
exception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. interrupts
0-31, some of which are used for instruction exceptions,
are reserved. For each interrupt, an 8-bit vector must be
supplied to the 80C286 which identifies the appropriate
table entry. Exceptions supply the interrupt vector inter-
nally. INT instructions contain or imply the vector and
allow access to all 256 interrupts. Maskable hardware-
initiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence. Non-
maskable hardware interrupts use a predefined inter-
nally supplied vector.

Maskable interrupt (INTR)

The 80C286 provides a maskable hardware interrupt
request pin, INTR. Software enables this input by setting
the interrupt flag bit (IF) in the flag word. All 224 user-de-
fined interrupt sources can share this input, yet they can
retain separate interrupt handlers. An 8-bit vector read
by the CPU during the interrupt acknowledge sequence
(discussed in System Interface section) identifies the
source of the interrupt.

aninterrupt by resetting the IF but as part of the response
to an interrupt or exception. The saved flag word will
reflect the enable status of the processor prior to the
interrupt. Until the flag word is restored to the flag regis-
ter, the interrupt flag will be zero unless specifically set.
The interrupt return instruction includes restoring the flag
word, thereby restoring the origina!l status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NMI) is also provided.
NMI has higher priority than INTR. A typical use of NMi
would be to activate a power failure routine. The activa-
tion of this input causes an interrupt with an internally
supplied vector value of 2. No external interrupt acknowl-
edge sequence is performed.

While executing the NMI servicing procedure, the
80C286 will not service further NMI requests, INTR re-
quests, or the processor extension segment overrun in-
terrupt until an interrupt return (IRET) instruction is exe-
cuted or the CPU is reset. if NMI occurs while currently
servicing an NMJ, its presence will be saved for servicing
after executing the first IRET instruction. IF is cleared at
the beginning of an NMi interrupt to inhibit INTR inter-
rupts.

Single Step Interrupt

The 80C286 has an intemal interrupt that allows pro-
grams to execute one instruction at a time. It is called the
single step interrupt and is controlled by the single step
flag bit (TF) in the flag word. Once this bit is set, an
internal single step interrupt will occur after the next in-
struction has been executed. The interrupt clears the TF
bit and uses an internally supplied vector of 1. The IRET
instruction is used to set the TF bit and transfer controito
the next instruction to be single stepped.

1-142

80C286

Copyrighted By Its Respective Manufacturer

This Materia

Interrupt Priorities

When simultaneous interrupt requests occur, they are
processed in a fixed order as shown in Table 4. interrupt
processing involves saving the flags, return address, and
setting CS:iP to point at the first instruction of the inter-
rupt handler. If other interrupts remain enabled, they are
processed before the first instruction of the current inter-
rupt handler is executed. The last interrupt processed is
therefore the first one serviced.

Table 4. Interrupt Processing Order

Machine Status Word Description

The machine status word (MSW) records when a task
switch takes place and controls the operating mode of
the 80C286. It is a 16-bit register of which the lower four
bits are used. One bit places the CPU into protected
mode, while the other three bits, as shown in Table 6,
control the processor extension interface. After RESET,
this register contains FFFO(H) which places the 80C286
in iAPX 86 real address mode.

Table 6. MSW Bit Functions

Order Interrupt

INT instruction or exception

Single step

NMI

Processor extension segment overrun
INTR

| W] -

Initialization and Processor Reset

Processor initialization or start up is accomplished by
driving the RESET input pin HIGH. RESET forces the
80C286 to terminate all execution and local bus activity.
No instruction or bus activity willoccur as long as RESET
is active. After RESET becomes inactive and an internal
processing interval elapses, the 80C286 begins execu-
tion in real address mode with the instruction at physical
location FFFFFO(H). RESET also sets some registers to
predefined values as shown in Table 5.

Table 5. 80C286 Initial Register State after RESET

Flag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOOO(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

Bit

Position| Name | Function

[} PE Protected mode Enable places the
80C286 into protected mode and

cannot be cleared except by RESET.

Monitor Processor extension allows
WAIT instructions to cause a
processor extension not present
exception (number 7).

Emulate processor extension causes
a processor extension not present
exception (number 7) on ESC
instructions to allow emulating a
processor extension.

Task Switched indicates the next
instruction using a processor
extension will cause exception 7,
allowing software to test whether the
current processor extension context
belongs to the current task.

1 MP

The LMSW and SMSW instructions can load and store
the MSW in real address mode. The recommended use
of TS, EM, and MP is shown in Table 7.

Table 7. Recommended MSW Encodings For Processor Extension Control

Instructions
TS MP| EM Recommended Use Causing
Exception
0 0 0 | iAPX 86 real address mode only. Initial encoding after RESET. 80C286 operation is None
identical to iIAPX 86, 88.
0 o] 1 No processor extension is available. Software will emulate its function. ESC
1 o] 1 No processor extension is available. Software will emulate its function. The current ESC
processor extension context may belong to another task.
0 1 0 | A processor extension exists. None
1 1 0 | A processor extension exists. The current processor extension context may belong to ESC or WAIT
another task. The exception {(number 7) on WAIT allows software to test for an error
pending from a previous processor extension operation.
Halt Either NMI, INTR with iIF=1, or RESET will force the

The HLT instruction stops program execution and pre-
vents the CPU from using the local bus untit restarted.

80C286 out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

80C286

1-143

Copyrighted By Its Respective Manufacturer

This Materi al

iAPX 80C286 Real Address Mode

The 80C286 executes a fully upward-compatibie super-
set of the 8086 instruction set in real address mode. In
real address mode the 80C286 is object code compatible
with 8086 and 8088 software. The real address mode
architecture (registers and addressing modes) is exactly
as described in the 80C286 Base Architecture section.

Memory Size

Physical memory is a contiguous array of up to
1,048,576 bytes (one megabyte) addressed by pins A0
through A19 and BHE. A20 through A23 are ignored.

Memory Addreésing

In real address mode the processor generates 20-bit
physical addresses directly from a 20-bit segment base
address and a 16-bit offset.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower four
bits of the 20-bit segment address are always zero. Seg-
ment addresses, therefore, begin on multiples of 16
bytes. See Figure 13 for a graphic representation of ad-
dress formation.

Offset
r Offset Address
« J
N
r Segment 0000 igg?;zz'
(¥ J

4

20-Bit Physical
Memory Address

./

DF003680

Figure 13. 80C286 Real Address Mode Address
Calculation

All segments in real address mode are 64K bytes in size
and may be read, written, or executed. An exception or
interrupt can occur if data operands or instructions at-
tempt to wrap around the end of a segment (e.g., a word
withits low order byte at offset FFFF(H) and its high order
byte at offset 0000(H}). If, in real address mode, the infor-
mation contained in a segment does not use the full 64K
bytes, the unused end of the segment may be overiayed
by another segment to reduce physical memory require-
ments.

Reserved Memory Locations

The 80C286 reserves two fixed areas of memory in real
address mode (see Figure 14): system initialization area
and interrupt table area. Locations from addresses
FFFFO(H) through FFFFF(H) are reserved for system
initialization. Initial execution begins at location
FFFFO(H). Locations 00000(H) through 003FF(H) are
reserved for interrupt vectors.

Reset Bootstrap FFFFFH
Program Jump
FFFFOH
R . =R
3FFH
Interrupt Pointer
For Vector 255 3FoH
R . T
7H
Interrupt Pointer
For Vector 1 4H
interrupt Pointer 3H
For Vector 0
OH
DF003690

Figure 14. 80C286 Real Address Mode Initially Reserved
Memory Locations

1-144

80C286

Copyrighted By Its Respective Manufacturer

This Materi al

Table 8. Real Address Mode Addressing interrupts

interrupt Related Return Address
Function Number Instructions Before Instruction?
Interrupt table limit too small exception 8 INT vector not within table limit Yes
Processor extension segment overrun interrupt 9 ESC with memory operand extending No
beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with "Yes

offset = FFFF(H) or an attempt to
execute past the end of a segment

Interrupts

Table 8 shows the interrupt vectors reserved for excep-
tions and interrupts which indicate an addressing error.
The exceptions leave the CPU in the state existing be-
fore attempting to execute the failing instruction (except
for PUSH, POP, PUSHA, or POPA). Refer to the next
section on protected mode initialization for a discussion
on exception 8.

Protected Mode Initialization

To prepare the 80C286 for protected mode, the LIDT
instruction is used to load the 24-bit interrupt table base
and 16-bit limit for the protected mode interrupt table.
This instruction can also set a base and limit for the
interrupt vector table in real address mode. After reset,
the interrupt table base is initialized to 000000(H) and its
size set to 03FF(H). These values are compatible with
iAPX 86, 88 software. LIDT should only be executed in
preparation for the protected mode.

Shutdown

Shutdown occurs when a severe error is detected that
prevents further instruction processing by the CPU.
Shutdown and hait are externally signaled via a halt bus
operation. They can be distinguished by A1 HIGH for halt
and A1 LOW for shutdown. in real address mode, shut-
down can occur under two conditions:

* Exceptions 8 or 13 happen and the IDT limit does not
include the interrupt vector.

e A CALL, INT, or POP instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the
IDT limit is at least 000F(H) and SP is greater than
0005(H); otherwise, shutdown can only be exited via the
RESET input.

Protected Virtual Address Mode

The 80C286 executes a fully upward-compatible super-
setofthe 8086 instruction setin protected virtuail address
mode (protected mode). Protected mode also provides
memory management and protection mechanisms and
associated instructions.

The 80C286 enters protected virtual address mode from
real address mode by setting the PE (Protection Enable)
bit of the machine status word with the Load Machine
Status Word (LMSW) instruction. Protected mode offers
extended physical and virtual memory address space,
memory protection mechanisms, and new operations to
support operating systems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the 80C286 Base Architecture section remain
the same. Programs for the iAPX 86, 88, 186, and real
address model 80C286 can be run in protected mode;
however, embedded constants for segment selectors
are different.

Memory Size

The protected mode 80C286 provides a 1 gigabyte vir-
tual address space per task mapped into a 16-megabyte
physical address space defined by the address pin
A23-A0 and BHE. The virtual address space may be
larger than the physical address space since any use of
an address that does not map to a physical memory
location will cause a restartable exception.

Memory Addressing

As in real address mode, protected mode uses 32-bit
pointers, consisting of 16-bit selector and offset compo-
nents. The selector, however, specifies an index into a
memory-resident table rather than the upper 16-bits of a
real memory address.

The 24-bit base address of the desired segment is ob-
tained from the table in memory. The 16-bit offset is
added to the segment base address to form the physical
address as shown in Figure 15. The tables are automati-
cally referenced by the CPU whenever a segment regis-
ter is loaded with a selector. All 80286 instructions which
load a segment register will reference the memory-.
based tables without additional software. The memory-
based tables contain 8-byte values called descriptors.

80C286

1-145

Copyrighted By Its Respective Manufacturer

This Materi al

CPU
31 1615
Pointer ISelecto:: Offset
Physical Memory
R a
3\
Memory > Segment
Operand
|
Segment
Base Segment | ySegment
|__Address | ﬁsiﬂmL Descriptor
23 9 Table
& 2

DF003700

Figure 15. Protected Mode Memory Addressing

Descriptors

Descriptors defined the use of memory. Speciai types of
descriptors also define new functions for transfer of con-
trol and task switching. The 80C286 has segment de-
scriptors for code, stack and data segments, and system

control descriptors for special system data segments
and control transfer operations. Descriptor accesses are
performed as locked bus operations to assure descriptor
integrity in multi-processor systems.

Code and Data Segment Descriptors
(S=1)

Besides segment base addresses, code and data de-
scriptors contain other segment attributes, including
segment size (1 to 64K bytes), access rights (read-only,
read/write, execute-only, and execute/read), and pres-
ence in memory (for virtual memory systems) (see Fig-
ure 16). Any segment usage violating a segment attrib-
ute indicate by the segment descriptor will prevent the
memory cycle and cause an exception or interrupt.

(4] I Z 0
+7 RESERVED* +6
Access +5| P{DPL|s|TYPE fA BASEps « +4
Rights Byte 1 L1
+3 BA§ED—|| +2
+1 L|M1|Tzs-|s v}
15 8 7 [

* Must be set to 0 for compatibility with iAPX 386 and

future upgrades DFoc3710

Access Rights Byte Definition

Bit
Posltion Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exists; base and limit are
not used. Segment privilege attribute used in privilege tests.
6-5 Descriptor Privilege
Level (DPL)
4 Segment Descriptor (S) S=1 Code or Data Segment descriptor
S=0 Non-segment descriptor —
3 Executable (E) E=0 Data segment descriptor type is:
2 Expansion Direction ED=0 Grow up segment, offsets must be <limit. Data
(ED) ED=1 Grow down segment, offsets must be>limit. [~ Segment
Type 1 Writable (W) W=0 Data segment may not be written into.
Field W=1 Data segment may be written into. -
Definition 3 Executable (E) E=1 Code Segment Descriptor type is: =
2 Conforming (C) C=1 Code segment may only be executed when Code
CPL>DPL. ™ Seament
1 Readable (R) R=0 Code segment may not be read. 9
R=1 Code segment may be read. =
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has bean loaded into segment register

or used by selactor test instructions.

Figure 16. Code and Data Segment Descriptors

Code and data are stored intwo types of segments: code
segments and data segments. Both types are identified
and defined by segment descriptors. Code segments are
identified by the executable (E) bit set to 1 in the descrip-
tor access rights byte. The access rights byte of both

code and data segment descriptor types have three
fields in common: present (P) bit, Descriptor Privilege
Level (DPL), and accessed (A) bit. If P = 0, any attempted
use of this segment will cause a not-present exception.
DPL specifies the privilege level of the segment descrip-

1-146

80C286

Copyrighted By Its Respective Manufacturer

This Materi al

tor. DPL controls when the descriptor may be used by a
task (refer to privilege discussion). The A bit shows
whether the segment has been previously accessed for
usage profiling, a necessity for virtual memory systems.
The CPU will always set this bit when accessing the
descriptor. Data segments (S = 1, E = 0) may be either
read-only or read-write as controlled by the W bit of the
access rights byte. Read-only (W = 0) data segments
may not be written into.

Data segments may grow in two directions, as deter-
mined by the Expansion Direction (ED) bit; upward (ED =
0) for data segments, and downward (ED = 1) for a
segment containing a stack. The limit field for a data
segment descriptor is interpreted differently depending
on the ED bit (see Figure 16).

A code segment (S = 1, E = 1) may be execute-only or
execute/read as determined by the Readable (R) bit.
Code segments may never be written into and execute-
only code segments (R = 0) may not be read. A code
segment may also have an attribute called Conforming
(C). A conforming code segment may be shared by pro-
grams that execute at different privilege levels. The DPL
of a conforming code segment defines the range of privi-
lege levels at which the segment may be executed (refer
to privilege discussion).

System Segment Descriptors
(S =0, TYPE 1-3)

In addition to code and data segment descriptors, the
protected mode 80C286 defines system segment de-
scriptors. These descriptors define special system data
segments which contain a table of descriptors (Local
Descriptor Table Descriptor) or segments which contain
the execution state of a task (Task State Segment De-
scriptor).

Figure 17 gives the formats for the special system data
segment descriptors. The descriptors contain a 24-bit
base address of the segment and a 16-bit limit. The
access byte defines the type of descriptor, its state and
privilege level. The descriptor contents are valid, and the
segment is in physical memory if P = 1. If P = 0, the
segment is not valid. The DPL field is only used in Task
State Segment descriptors and indicates the privilege
level at which the descriptor may be used (see Privilege).
Since the Local Descriptor Table descriptor may only be
used by a special privileged instruction, the DPL field is
notused. Bit 4 of the access byte is 0 to indicate that it is a
system control descriptor. The Type field specifies the
descriptor type as indicated in Figure 17.

System Segment Descriptor

0 . 7 0
+7 RESERVED* +6
+5] P DlPL STIYF; A BASE,; ,¢ +4
+3 BAISEZ’"“ +2
+1 UMlITz:Hs [o}
15 8 7 0

* Must be set to 0 for compatibility with iAPX 386 and
future upgrades TB000088D

System Segment Descriptor Fields

Name Value Description
TYPE 1 Available Task State Segment
2 Local Descriptor Table Descriptor
3 Busy Task State Segment
P 0 Descriptor contents are not valid
1 Descriptor contents are valid
DPL 0-3 Descriptor Privilege Level
BASE 24-bit Base Address of special system data
number segment in real memory
LIMIT 16-bit Offset of last byte in segment
number

Figure 17. System Segment Format

Gate Descriptors

(S=0,TYPE=4-7)

Gates are used to contro! access to entry points within
the target code segment. The gate descriptors are call
gates, task gates, interrupt gates and trap gates. Gates
provide a level of indirection between the source and
destination of the controi transfer. This indirection aliows
the CPU to automatically perform protection checks and
control the entry point of the destination. Call gates are
used to change privilege levels (see Privilege); task
gates are used to perform a task switch; and interrupt
and trap gates are used to specify interrupt service rou-
tines. The interrupt gate disables interrupts (resets IF)
while the trap gates does not.

Figure 18 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to
the descriptor of the target segment and the entry point
offset. The destination selector in an interrupt gate, trap

80C286

1-147

Copyrighted By Its Respective Manufacturer

This Materi al

gate, and call gate must refer to a code segment descrip-
tor. These gate descriptors contain the entry point to
prevent a program from constructing and using anillegal
entry point. Task gates may only refer to a task state
segment. Since task gates invoke a task switch, the des-
tination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a
destination selector does not refer to the correct descrip-
tor type. The Word Count field is used in the call gate
descriptor to indicate the number of parameters (0-31
words) to be automatically copied from the caller's stack
to the stack of the called routine when a control transfer
changes privilege levels. The Word Count field is not
used by any other gate descriptor.

Gate Descriptor

Q '7
+7 RESERVED* +6
+5 | P|DPUS{TYPH Al X X X Word o +4
+3 Destination JSelector 1522316 Xlx +2
+1 Destinatlion Offset 53 46 0
15 8 7 [}

* Must be set to 0 for compatibility with iAPX 386 TB0000880

and future upgrades

Gate Descriptor Fields

The access byte format is the same for all gate descrip-
tors. P = 1 indicates that the gate contents are valid. P=0
indicates the contents are not valid and causes excep-
tion 11 if referenced. DPL is the descriptor Privilege
Level and specifies when this descriptor may be used by
atask (refer to privilege discussion). Bit 4 must equal O to
indicate a system control descriptor. The Type field
specifies the descriptor type as indicated in Figure 18.

Segment Descriptor Cache Registers

A segment descriptor register is assigned to each of the
four segment registers (CS, SS, DS, ES). Segment de-
scriptors are automatically loaded (cached) into a seg-
ment descriptor cache register (Figure 20) whenever the
associated segment register is loaded with a selector.
Only segment descriptors may be loaded into segment
descriptor cache registers. Once loaded, all references
to that segment of memory use the cached descriptor
information instead of reaccessing memory. The de-
scriptor cache registers are not visible to programs. No
instructions exist to store their contents. They only
change when a segment register is loaded.

Selector Fields

A protected mode selector has three fields: descriptor
entry index, local or global descriptor tabie indicator (T1),
and selector privilege (RPL), as shown in Figure 19.
These fields select one of two memory-based tables of
descriptors, select the appropriate table entry, and allow
high-speed testing of the selector’s privilege attribute
(refer to privilege discussion).

Name Value Description
Selector
TYPE 4 ~Call Gate T
5 ~Task Gate Index i PRL
6 ~Interrupt Gate I S W SR TS SR S UUNES SN NEN S 1 1
7 -—Trap Gate 1’ s 7 210
P (o} —Descriptor Contents are not valid
1 —Descriptor Contents are valid Bits Name Function
DPL 0-3 Descriptor Privilege Level 1-0 Requested Indicates Selector Privilege
Privilege Level (RPL) Level Desired
WORD 0-31 Number of words to copy from
2 Table Ti=0 To use Global
COUNT callers stack to called procedures Indicator (T1) Descriptor Table (GDT)
stack. Only used with call gate. Ti=1 Use Local Descriptor
DESTINATION 16-bit Selector to the target code segment Table (LDT)
SELECTOR selector (Call, Interrupt or Trap Gate) 15-3 Index Select Descriptor Entry in
Selector to the target task state Table
segment (Task Gat
. gment (Task Gate) Figure 19. Selector Fields
DESTINATION 16-bit Entry point within the target
OFFSET offset code segment
Figure 18. Gate Descriptor Format
1-148 80C286

Copyrighted By Its Respective Manufacturer

This Materi al

ROGRAM ViS| -
P! M VISIBLE Access

—_——

PROGRAM INVISIBLE

Segment Registers
(Loaded by Program

| |

Segment Selectors I Rights Segment Base Address .- Segment Size ;

cs I i
DS } :
s | |
ES i I
15 o | 47 40 % 16 15 o |

| |

1 |

4

Segment Descriptor Cache Registers

(Loaded by CPU

DF003720

Figure 20. Descriptor Cache Registers

Local and Global Descriptor Tables

Two tables of descriptor tables, contain all descriptors
accessible by atask at any giventime. A descriptor table
is a linear array of up to 8192 descriptors. The upper 13
bits of the selector value are an index into a descriptor
table. Each table has a 24-bit base register to locate the
descriptor table in physical memory and a 16-bit limit
register that confines descriptor access to the defined
limits of the table as shown in Figure 21. A restartable
exception (13) will occur if an attempt is made to refer-
ence a descriptor outside the table limits.

35)

Met
- mory n

>
]
.
CPU
15 0) : GDT
23 I—GDT Limit

GDT Base

LDT,

_V——I
co
g¢
8

LDT,

[a.
[a

32

-t Ly
- ™’ DF003730

Figure 21. Local and Global Descriptor Table Definition

One table, called the Global Descriptor Table (GDT),
contains descriptors available to all tasks. The other ta-
ble, called the Local Descriptor Table (LDT), contains
descriptors that can be private to a task. Each task may
have its own private LDT. The GDT may contain all de-

scriptor types except interrupt and trap descriptors. A
segment cannot be accessed by a task if its segment
descriptor does not exist in either descriptor table at the
time of access.

The LGDT and LLDT instructions load the base and limit
of the global and local descriptor tables. LGDT and LLDT
are protected. They may only be executed by trusted
programs operating at ievel 0. The LGDT instruction
loads a six byte field containing the 16-bit table limit and
24-bit base address of the Global Descriptor Table as
shown in Figure 22. The LLDT instruction loads a selec-
tor which refers to a descriptor in the Local Descriptor
Table. This descriptor contains the base address and
limit for an LDT, as shown in Figure 17.

7 g 7 [+]
+5| RESERVED* | BASE,, +4
+3 BASE,, +2
+1 LIMIT, 0
i
15 g 7 0
TB0000SO

Figure 22. Global Descriptor Table and Interrupt
Descriptor Data Type

* Must be set to 0 for compatibility with iAPX 386 and future
upgrades.

Interrupt Descriptor Table

The protected mode 80C286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure
23), used to define up to 256 interrupts. it may contain
only task gates, interrupt gates and trap gates. The IDT
(Interrupt Descriptor Table) has a 24-bit base and 16-bit
limit register in the CPU. The protected LIDT instruction
loads these registers with a six-byte value of identical
form to that of the LGDT instruction (see Figure 22 and
Protected Mode Initialization).

80C286

1-143

Copyrighted By Its Respective Manufacturer

This Materi al

3>
(

Memory "

Gate for

Gate for

. Interrupt
. Descriptor
Table

CPU
° (DT)

15 Gate for

imi Interrupt #1
DT Limit Gate for

Interrupt #0 /

IDT Base

22

L
o

~

DF003740

Figure 23. Local and Global Descriptor Table Definition

References to IDT entries are made via INT instructions,
external interrupt vectors, or exceptions. The IDT must
be at least 256 bytes in size to allocate space for all
reserved interrupts.

Privilege

The 80C286 has a four-fevel hierarchical privilege sys-
tem which controls the use of privileged instructions and
access to descriptors (and their associated segments)
within atask. Four-level privilege, as shown in Figure 24,
is an extension of the user/supervisor mode commonly
found in minicomputers. The privilege levels are num-
bered 0 through 3. Level 0 is the most privileged level.
Privilege levels provide protection within a task. (Tasks
are isolated by providing private LDT's for each task.)
Operating system routines, interrupt handlers, and other
system software can be included and protected within
the virtual address space of each task using the four
levels of privilege. Tasks may also have a separate stack
for each privilege level.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege effects the use of instructions and
descriptors Descriptor and selector privilege only effect
access to the descriptor.

Applications

CPU

Enforced
Software
Interfaces

OS Extensions

System
Services
P

High Speed
Operating
System
Interface

AF003230

Figure 24. Hierarchical Privilege Levels

Task Privilege

The task always executes at one of the four privilege
levels. A task privilege level at any specific instant is
called the Current Privilege Level (CPL) and is defined
by the lower two bits of the CS register. CPL cannot
change during execution in a single code segment. A
task’s CPL may only be changed by control transfers
through gate descriptors to a new code segment (See
Control Transfer). Tasks begin executing at the CPL
value specified by the code segment when the task is
initiated via a task switch operation. A task executing at
Level 0 can access all data segments definedinthe GDT
and the task’s LDT and is considered the most trusted
level. A task executed at Level 3 has the most restricted
access to data and is considered the least trusted level.

Descriptor Privilege

Descriptor privilege is specified by the Descriptor Privi-
lege Level (DPL) field of the descriptor access byte. DPL
specifies the least trusted privilege leve! (CPL) at which a
task may access the descriptor. Descriptors withDPL =3
are the least protected (i.e. have the least restricted
access) since tasks can access themwhenCPL =0, 1,2,
or 3. This rule applies to all descriptors, except LDT
descriptors.

Selector Privilege

Selectorprivilege is specified by the Requested Privilege
Level (RPL) field in the ieast significant two bits of a
selector. Selector RPL may establish a less trusted privi-
lege level than the current privilege level for the use of a
selector. This level is called the task’s effective privilege
level (EPL). RPL can only reduce the scope of a task’s
access to data with this selector. A task’s effective privi-
lege is the numeric maximum of RPL and CPL. A selec-
tor with RPL =0 imposes no additional restriction on its
use while a selector with RPL =3 can only refer to seg-
ments at privilege Level 3 regardless of the task’s CPL.
RPL is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed to

1-150

80C286

Copyrighted By Its Respective Manufacturer

This Materi al

use data at a more privileged level than the caller (referto
pointer testing instructions).

Descriptor Access and Privilege
Validation

Determining the ability of a task to access a segment
involves the type of segment to be accessed, the instruc-
tion used, the type of descriptor used and CPL, RPL, and
DPL. The two basic types of segment accesses are con-
trol transfer (selectors loaded into CS) and data (selec-
tors loaded into DS, ES, or SS).

Data Segment Access

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readable code seg-
ment descriptor. The CPL of the task and the RPL of the
selector must be the same as or more privileged (numeri-
cally equal to or lower than) than the descriptor DPL. In
general, a task can only access data segments at the
same or less privileged levels than the CPL or RPL
(whichever is numberically higher) to prevent a program
from accessing data it cannot be trusted to use.

An exception to the rule is a readable conforming code
segment. This type of code segment can be read from
any privilege level.

If the privilege checks fail (e.g. DPL is numerically less
than the maximum of CPL and RPL) or an incorrect type
of descriptor is referenced (e.g. gate descriptor or exe-
cute only code segment), exception 13 occurs. If the
segment is not present, exception 11 is generated.

Instructions that load selectors into SS must refer to data
segment descriptors for writable data segments. The
descriptor privilege (DPL) and RPL must equal CPL. All
other descriptor types of privilege level violation will
cause exception 13. A not present fault causes excep-
tion 12.

Control Transfer

Four types of control transfer can occur when a selector
is loaded into CS by a control transfer operation (see
Table 10). Each transfertype canonly occurif the opera-
tion which loaded the selector references the comrect
descriptor type. Any violation of these descriptor usage
rules (e.g. JMP through a callgate or RET to a Task State
Segment) will cause exception 13.

The ability to reference a descriptor for control transfer is
also subject to rules of privilege. A CALL or JUMP in-
struction may only reference a code segment descriptor
with DPL equal to the task CPL or a conforming segment
with DPL of equal or greater privilege than CPL. The RPL
of the selector used to reference the code descriptor
must have as much privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal to or
less privileged than the task CPL. The selector loaded
into CS is the return address from the stack. After the
return, the selector RPL is the task’s new CPL. If CPL
changes, the old stack pointer is popped after the return
address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less
privileged than the task's CPL. Reference to a valid Task
State Segment descriptor causes a task switch (see
Task Switch Operation). Reference to a Task State Seg-
ment descriptor at a more privileged level than the task’s
CPL generates exception 13.

When an instruction or interrupt references a gate de-
scriptor, the gate DPL must have the same or less privi-
lege than the task CPL. If DPL is at a more privileged
level than CPL, exception 13 occurs. If the destination
selector contained in the gate references a code seg-
ment descriptor, the code segment descriptor DPL must
be the same or more privileged than the task CPL. If not,
Exception 13 is issued. After the control transfer, the
code segment descriptor DPL is the task’s new CPL. If
the destination selector in the gate references a task
state segment, a task switch is automatically performed
{see Task Switch Operation).

The privilege rules on control transfer require:

—JMP or CALL direct to a code segment (code segment
descriptor) can only be to a conforming segment with
DPL of equal or greater privilege than CPL or a non-con-
forming segment at the same privilege level.

—interrupts within the task or calls that may change privi-
lege levels can only transfer control through a gate atthe
same or a less privileged level than CPL to a code seg-
ment at the same or more privileged level than CPL.

—retum instructions that don’t switch tasks can only re-
turn control through a gate at the same or a less privi-
leged level than CPL to a code segment at the same or
more privileged level than CPL.

—retumn instructions that don’t switch tasks can onily re-
turn control to a code segment at the same or less privi-
leged level.

—task switch can be performed by a call, a jump or an
interrupt which references either a task gate or task state
segment at the same or less privileged level.

80C286

1-151

Copyrighted By Its Respective Manufacturer

This Materi al

Table 9. Descriptor Types Used for Controi Transfer

Descriptor Descriptor
Controt Transfer Types Operation Types Referenced Table
intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/ADT
Intersegment to the same or higher privilege level CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or interrupt DT
Exception, External Gate
Interrupt
Intersegment to a lower privilege level (changes task CPL) RET, IRET" Code Segment GDT/LDT
Task Switch CALL, JMP Task State Segment GDT
CALL, JMP Task Gate GDT/LDT
IRET**
Interrupt Instruction, Task Gate iDT
Exception, External
Interrupt

* NT (Nested Task bit of flag word) =0
** NT (Nested Task bit of flag word) = 1

Privilege Level Changes

Any control transfer that changes CPL within the task
causes a change of stacks as part of the operation. Initiai
values of SS:SP for privilege levels 0, 1, and 2 are kept in
the task state segment (refer to Task Switch Operation).
During a JMP or CALL control transfer, the new stack
pointer is loaded into the SS and SP registers and the
previous stack pointer is pushed onto the new stack.

© When returning to the originat privilege level, its stack is
restored as part of the RET or IRET instruction operation.
For subroutine calls that pass parameters on the stack
and cross privilege levels, a fixed number of words, as
specified in the gate, are copied from the previous stack
to the current stack. The intersegment RET instruction
with a stack adjustment value will correctly restore the
previous stack pointer upon return.

Protection

The 80C286 includes mechanisms to protect critical in-
structions that affect the CPU execution state (e.g., HLT)
and code or data segments from improper usage. These
mechanisms are grouped under the term “protection”
and have three forms:

¢ Restricted usage of segments (e.g., no write aliowed
to read-only data segments). The only segments
available for use are defined by descriptors in the
Local Descriptor Table (LDT) and Global Descriptor
Table (GDT).

e Restricted access to segmenis via the rules of
privilege and descriptor usage. ’

e Privileged instructions or operations that may only
be executed at certain privilege levels as determined
by the CPL and ¥/O Privilege Level (IOPL). The IOPL
is defined by bits 14 and 13 of the flag word.

These checks are performed for ali instructions and can
be split into three categories: segment load checks (Ta-
ble 10), operand reference checks (Table 11), and privi-

leged instruction checks (Table 12). Any violation of the
rules shown will result in an exception. A not-present
exception related to the stack segment causes excep—
tion 12.

The IRET and POPF instructions do not perform some of

their defined functions if CPL is not of sufficient privilege

(numerically small enough). Precisely these are:

e The IF bit is not changed if CPL>10PL. The IOPL
field of the flag word is not changed if CPL > 0.

No exceptions or other indication are given when these
conditions occur.

Table 10. Segment Register Load Checks

Exception
Error Description Number
Descriptor table limit exceeded 13
Segment descriptor not-present 11 0r12
Privilege rules violated 13
Invalid descriptor/segment type segment
register load:

— Read only data segment load to SS

— Special control descriptor ioad to DS,
ES, SS 13

— Execute only segment load to DS, ES,
Ss

— Data segment load to CS
— Read/Execute code segment load
to SS
Table 11. Operand Reference Checks
Exception
Error Description Number
Write into code segment 13
Read from execute-only code segment 13
Write to read-only data segment 13
Segment limit exceeded! 120r13

Note: Carry out in offset calculations is ignored.

1-152 80C286

Copyrighted By Its Respective Manufacturer

This Materi al

Table 12. Privileged Instruction Checks

Exception
Error Description Number
CPL # 0 when executing the following
instructions: 13
LIDT, LLDT, LGDT, LTR, LMSW,
CTS, HLT
CPL > IOPL when executing the following
instructions 13
INS, IN, OUTS, OUT, STI, CLI, LOCK

Exceptions

The 80C286 detects several types of exceptions and
interrupts in protected mode (see Tabie 13). Most are
restartable after the exceptional condition is removed.
interrupt handlers for most exceptions receive an error
code, pushed on the stack after the return address, that
identifies the selector involved (0 if none). The retum
address normally points to the failing instruction, includ-
ing all leading prefixes. For a processor extension seg-
ment overrun exception, the return address will not point
at the ESC instruction that caused the exception; how-
ever, the processor extension registers may contain the
address of the failing instruction.

Table 13. Protected Mode Exceptions

Return
Address Error
Interrupt At Failing Always Code
Vector Function Instruction? Restartable? on Stack?

8 Double exception detected Yes Noz Yes
9 Processor extension segment overrun No Noz No
10 Invalid task state segment Yes Yes Yes
11 Segment not present Yes Yes Yes
12 Stack segment overrun or segment not present Yes Yes? Yes
13 General protection Yes No? Yeos

Notes 1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception
will not be restartable because stack segment wrap around is not permitted. This condition is identified by the value of the
saved SP being either 0000(H), 0001(H), FFFE(H), or FFFF(H).

2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted

under those conditions.

3. Allthese checks are performed for all instructions and can be split into three categories: Segment Load Checks (Table
10), Operand Reference Checks (Table 11), and Privileged Instruction Checks (Table 12). Any violation of the rules
shown will resutt in an exception. A not-present exception causes exception 11 or 12 and is restartable.

Special Operations
Task Switch Operation

The 80C286 provides a built-in task switch operation
which saves the entire 80C286 execution state (regis-
ters, address space, and a link to the previous task),
loads a new execution state, and commences execution
in the new task. Like gates, the task switch operation is
invoked by executing an inter-segment JMP or CALL
instruction which refers to a Task State Segment (TSS)
or task gate descriptor in the GDT or LDT. An INT n
instruction, exception, or external interrupt may also in-
voke the task switch operation by selecting a task gate
descriptor in the associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 25)
containing the entire 80C286 execution state while atask
gate descriptor contains a TSS selector. The limit field
must be > 002B(H).

Each task must have a TSS associated with it. The cur-
rent TSS is identified by a special register in the 80C286
called the Task Register (TR). This register contains a
selector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit

register associated with TR are loaded whenever TR is
loaded with a new selector.

The IRET instruction is used to return control to the task
that cailed the current task or was interrupted. Bit 14 in
the flag register is calied the Nested Task(NT) bit. |t
controls the function of the IRET instruction. I NT =0, the
IRET instruction performs the regular current task return;
when NT=1, IRET performs a task switch operation
back to the previous task.

When a CALL, JMP or INT instruction initiates a task
switch, the old and new TSS will be marked busy and the
back link field of the new TSS set to the old TSS selector.
The NT bit of the new task is set by CALL or INT initiated
task switches. An interrupt that does not cause a task
switch will clear NT. NT may also be set or cleared by
POPF or IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a
selector that references a busy task state segment
causes Exception 13.

80C286

Copyrighted By Its Respective Manufacturer

This Materi al

Processor Extension Context Switching

The context of a processor extension is not changed by
the task switch operation. A processor extension context
need only be changed when a different task attempts to
use the processor extension (which still contains the
context of a previous task). The 80C286 detects the first
use of a processor extension after a task switch by caus-
ing the processor extension not present exception (7).
The interrupt handler may then decide whether a context
change is necessary.

Whenever the 80C286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a proc-
essor extension context may belong to a different task

than the current one. The processor extension not pre-
sent exception (7) will occur when attempting to execute
an ESC or WAIT instruction if TS=1 and a processor
extension is present (MP =1 in MSW).

Pointer Testing Instructions

The 80C286 provides several instructions to speed
pointer testing and consistency checks for maintaining
system integrity (see Table 14). These instructions use
the memory management hardware to verify that a se-
lector value refers to an appropriate segment without
risking an exception. A condition flag indicates whether
use of the selector or segment will cause an exception.

80C286

Copyrighted By Its Respective Manufacturer

>4 S
{
cPU Reserved
1 Type Description
D
Task Register NHAS BASE 5.4
System L 11 1 An Available Task State
TR : g \ Segment. May be used as
D BASE the Destination of a Task
15 o kel B Switch Operation
________ 1 1
r - 1 1 3 A Busy Task State
| Program Invisible LIMIT 5.4] Segment. Cannot be used
[15 0 L | i as the Destination of a
| — Task Switch.
Limit o 1
! —_— 4
I L Base
| = 0
[N [X 2 4
Byte
, s o} Offset
Task LDT Selector 42
DS Selector w | [P Descripion
SS Selector 38 1 | Base and Limit Fields are Valid
[} ment is not Present in Memory,
CS Selector 3 gzge and Limit are not defined.
ES Selector 34
Di 32
S| 30
BP 28 Current
> k
sP s [o
BX 24
Task DX
—— Staty
s nﬁ cX 20
AX 18
Flag Word 16
IP (Entry Point) 14
<
SSforCPL2 12
SP for CPL 2 10
SS for CPL1 8 Initial
 Stacks
SP for CPL 1 6 for CPLO,1,2
SSfor CPLO 4
SS for CPL O 2
/
Back Link Selector to TSS o
X =
DF003750
Figure 25. Task State Segment and TSS Registers
80C286 1-155

This Material Copyrighted By Its Respective Manufacturer

This Materi al

Table 14. Pointer Test Instructions

Instruction Operands Function

ARPL Selector, Register Adjust Requested Privilege
Level: adjusts the RPL of the
selector to the numeric maxi-
mum of current selector RPL
value and the RPL value in the
register. Set zero flag if selec-

tor RPL was changed.

VERR Selector VERify for Read: sets the zero
flag is the segment referred to

by the selector can be read.

VERW Selector VERIfy for Write: sets the zero
flag if the segment referred to

by the selector can be written.

LSL Register, Selector Load Segment Limit: reads the
segment limit into the register
if privilege rules and descriptor
type allow. Set zero flag if suc-
cessful.

LAR Register, Selector Load Access Rights: reads the
descriptor access rights byte
into the register if privilege
rules allow. Set zero flag if
successful.

Double Fault and Shutdown

If two separate exceptions are detected during a single
instruction execution, the 80C286 performs the double
fault exception (8). If an exception occurs during proc-
essing of the double fault exception, the 80C286 will
enter shutdown. During shutdown no further instructions
or exceptions are processed. Either NMI (CPU remains
in protected mode) or RESET (CPU exits protected
mode) canforce the 80C286 out of shutdown. Shutdown
is externally signatled via a HALT bus operation with A:
HIGH.

Protected Mode Initialization

The 80C286 initially executes in real address mode after
RESET. To allow initialization code 1o be placed at the
top of physical memory, Azs-20 will be HIGH when the
80C286 performs memory references relative to the CS
register, until CS is changed. Azs-20 will be zero for refer-
ences to the DS, ES, or SS segments. Changing CS in
real address mode will force Az-20 LOW whenever using
CS thereafter. The initial CS:IP value of FFOO:FFFO
provides 64K bytes of code space for initialization code
without changing CS.

Before placing the 80C286 into protected mode, several
registers must be initialized. The GDT and IDT base
registers must refer to a valid GDT and IDT. After execut-

ing the LMSW instruction to set PE, the 80C286 must
immediately execute an intrasegment JMP instruction to
clear the instruction queue of instructions decoded in
real address mode.

To force the 80C286 CPU registers to match the initial
protected mode state assumed by software, execute a
JMP instruction with a selector referring to the initial TSS
u