MOS INTEGRATED CIRCUIT μ PD78P218A

8-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD78P218A, a product of the 78K/II series, is an 8-bit single-chip microcomputer which one-time PROM or EPROM in place of the mask ROM in the μ PD78218A. Since the μ PD78P218A is user-programmable, it is suitable for system development evaluation and small production.

Functions are described in detail in the following user's manuals, which should be read when carrying out design work

 $\mu PD78218A$ Subseries User's Manual Hardware Volume: IEM-755 78K/II Series User's Manual Instruction Volume: IEU-754

FEATURES

- Upward compatibility with the µPD78214 subseries (pin compatibility)
- Compatibility with the μ PD78218A (except PROM programming)
- High-speed instruction execution (at 12 MHz operation): 333ns
- On-chip memory
 - PROM: 32K bytes

µPD78P218ADW : Reprogrammable (suitable for system evaluation)

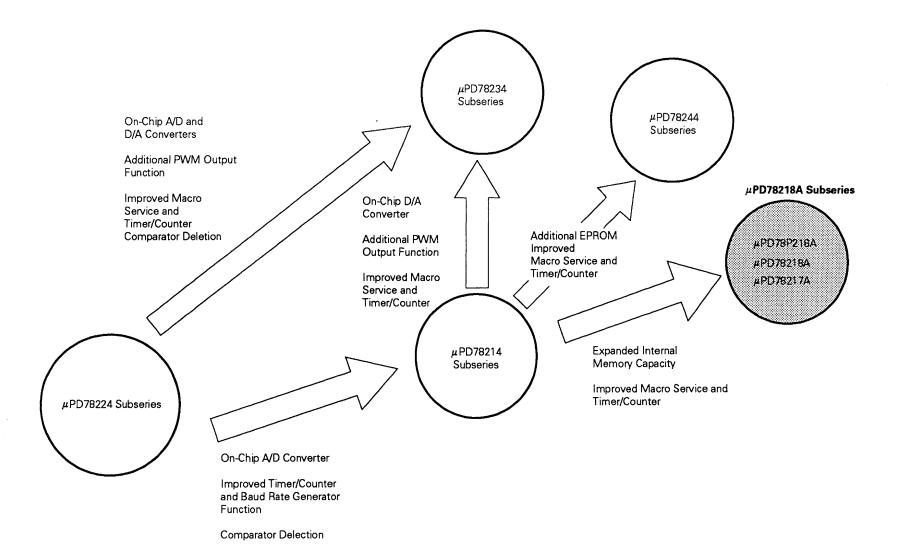
µPD78P218ACW, GC: Programmable only once (suitable for small production)

- RAM: 1024 bytes
- QTOP™ microcomputer compatibility
- **Remarks** The QTOP microcomputer is a general term for one-time PROM incorporated single-chip microcomputers offered by NEC, which cover totally program writing, marking, screening and verification.

ORDERING INFORMATION

Ordering Code	Package	On-Chip ROM
μPD78P218ACW	64-pin plastic shrink DIP (750 mil)	One-time PROM
μPD78P218AGC-AB8	64-pin plastic QFP (🗆 14 mm)	One-time PROM
μPD78P218ADW	64-pin ceramic shrink DIP (CERDIP) (with window) (750mil)	EPROM

QUALITY GRADE


Standard

Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications. In this manual, PROM indicates the features common to the one-time PROM products and the EPROM.

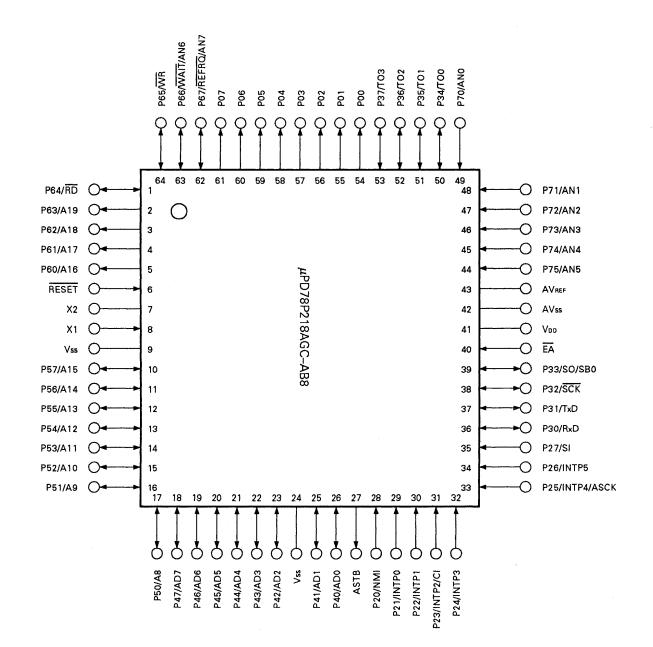
The information in this document is subject to change without notice.

78K/II Product Developments

N

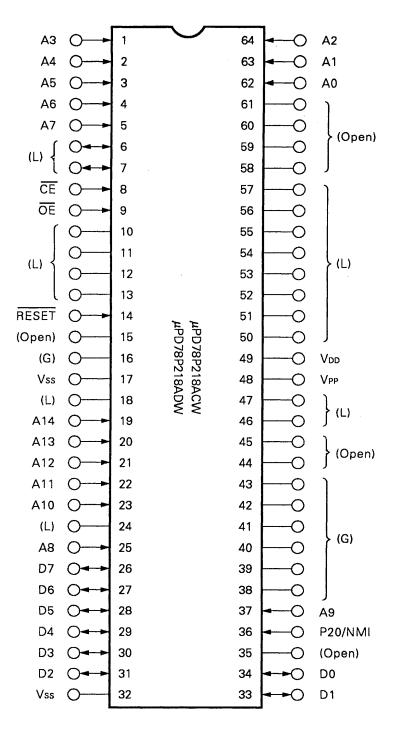
 μ PD78P218A

PIN CONFIGURATION (TOP VIEW)


(1) Normal operating modes

			/			
P03	○	1	$\mathbf{\circ}$	64	 O	P02
P04	`⊖	2		63	0	P01
P05	○	3		62	 O	P00
P06	○	4		61	 0	P37/TO3
P07	○	5		60	←→ O	P36/TO2
P67/REFRQ/AN7	○	6		59	 ►O	P35/TO1
P66/WAIT/AN6	○	7		58	 0	P34/TO0
P65/WR	0	8		57	0	P70/AN0
P64/RD	0	9		56	 0	P71/AN1
P63/A19	○	10		55	0	P72/AN2
P62/A18	0-	11		54		P73/AN3
P61/A17	0	12		53	0	P74/AN4
P60/A16	0-	13	μP	52	← O	P75/AN5
RESET	0	14	D78 D78	51		AVREF
X2	\circ	15	uPD78P218ACW uPD78P218ADW	50	0	AVss
X1	0	16	8A(49	0	Vdd
Vss	0	17	N N	48	 O	ĒĀ
P57/A15	0	18		47	 0	P33/SO/SB0
P56/A14	○→→	19		46	 O	P32/SCK
P55/A13	○◄-►	20		45	→→ O	P31/TxD
P54/A12	0	21		44	 O	P30/RxD
P53/A11	0	22		43		P27/SI
P52/A10	○	23		42	0	P26/INTP5
P51/A9	○>	24		41	- O	P25/INTP4/ASCK
P50/A8	$\bigcirc \bullet \bullet$	25		40	 0	P24/INTP3
P47/AD7	○>	26		39	0	P23/INTP2/CI
P46/AD6	○>	27		38	0	P22/INTP1
P45/AD5	○	28		37	0	P21/INTP0
P44/AD4	○	29		36	0	P20/NMI
P43/AD3	○	30		35	 O	ASTB
P42/AD2	○→→	31		34	 O	P40/AD0
Vss	0	32		33	→ •0	P41/AD1
	-					

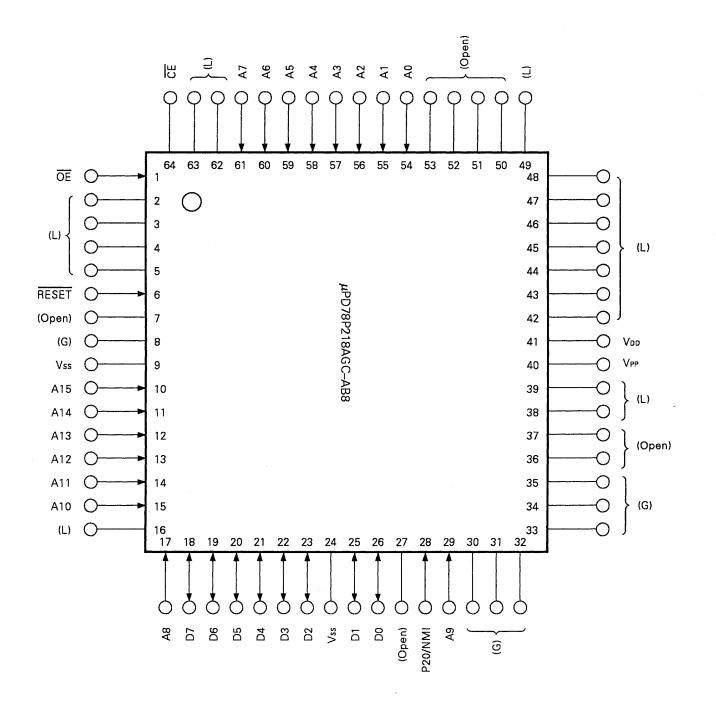
(a) 64-pin plastic shrink DIP and 64-pin ceramic shrink DIP (CERDIP) (with window)


(b) 64-pin plastic QFP

NEC

4

- (2) PROM programming mode (P20/NMI = 12.5 V, RESET = L)
 - (a) 64-pin plastic shrink DIP and 64-pin ceramic shrink DIP (CERDIP) (with window)



- Note Processing for pins which are not used in the PROM programming mode is indicated in parentheses.
 - L : Connect these pins independently to Vss via a 10 k Ω resistor.
 - G : Connect these pins to Vss.

Open : Leave open.

 \star

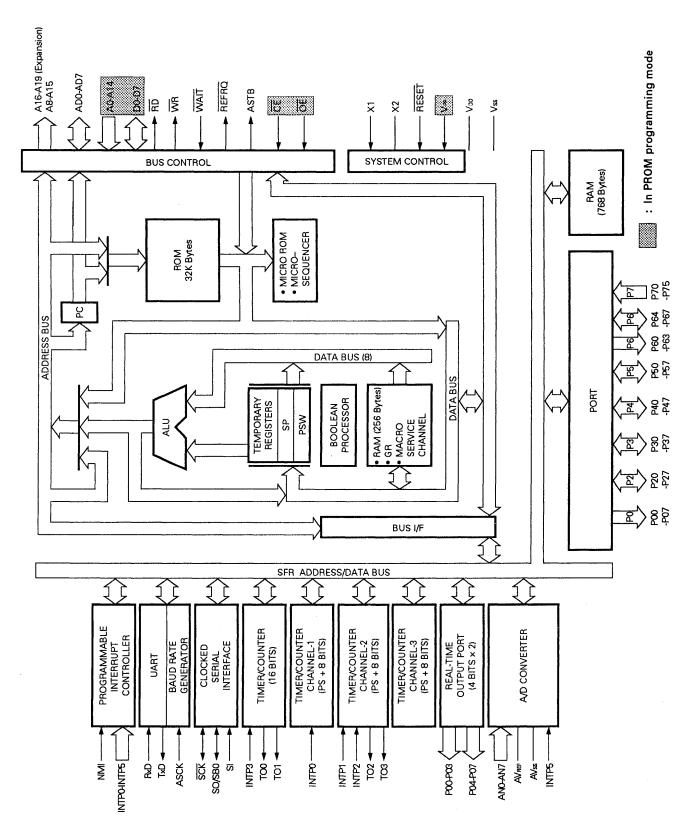
(b) 64-pin plastic QFP

Processing for pins which are not used in the PROM programming mode is indicated in parentheses. Note L

: Connect these pins independently to Vss via a 10 $k\Omega$ resistor.

G : Connect these pins to Vss.

Open : Leave open.


6

★

P00 to P07	: Port 0	RD	: Read Strobe
P20 to P27	: Port 2	WR	: Write Strobe
P30 to P37	: Port 3	WAIT	: Wait
P40 to P47	: Port 4	ASTB	: Address Strobe
P50 to P57	: Port 5	REFRQ	: Refresh Request
P60 to P67	: Port 6	RESET	: Reset
P70 to P75	: Port 7	X1, X2	: Crystal
TO0 to TO3	: Timer Output	ĒĀ	: External Access
CI	: Clock input	AN0 to AN7	: Analog Input
R×D	: Receive Data	AVREF	: Reference Voltage
T _× D	: Transmit Data	AVss	: Analog Ground
SCK	: Serial Clock	Vdd	: Power Supply
ASCK	: Asynchronous Serial Clock	Vss	: Ground
SB0	: Serial Bus	CE	: Chip Enable
SI	: Serial Input	OE	: Output Enable
SO	: Serial Output	Vpp	: Programming Power Supply
NMI	: Non-maskable interrupt		
INTP0 to INTP5	: Interrupt From Peripherals		
AD0 to AD7	: Address/Data Bus		
A8 to A19	: Address Bus		

.

INTERNAL BLOCK DIAGRAM

8

.

CONTENTS

1.	DIFFERENCE BETWEEN µPD78218A AND µPD78214 SUBSERIES	0
2.	PIN FUNCTIONS1	1
	2.1 NORMAL OPERATING MODE	
	2.2 PROM PROGRAMMING MODE	3
3.	PROGRAMMING1	4
	3.1 OPERATING MODE1	4
	3.2 PROM WRITE PROCEDURE1	
	3.3 PROM READ PROCEDURE	7
4.	ERASURE CHARACTERISTICS (µPD78P218ADW ONLY)1	8
5.	ERASURE WINDOW SEALING (µPD78P218ADW ONLY)1	8
6.	SCREENING OF ONE-TIME PROM PRODUCTS1	8
7.	ELECTRICAL SPECIFICATIONS1	9
8.	PACKAGE INFORMATION	9
9.	RECOMMENDED SOLDERING CONDITIONS	2
AP	PENDIX A. DEVELOPMENT TOOLS	3
AP	PENDIX B. EXTERNAL VIEW OF CONVERSION SOCKET AND RECOMMENDED BOARD MOUNTING PATTERN4	5
AP	PENDIX C. RELATED DOCUMENTS	7

Series			µPD78218A Subseries			μPD78214 Subseries	Subseries	
Product Name	ime	μ ^{PD78217A}	µPD78218A	μPD78P218A	μΡD78212	µPD78213	μΡD78214	µPD78P214
Minimum instruction cycle (at 12 MHz operation)	ycle	500 ns	333 ns	su	333 ns	500 ns	333 ns	US
PUSH PSW instruction execution time (number of clocks)	n execution s)	When the stack area is Other than above: 8	s internal dual-port RAM: 6	9	When the stack are Other than above: 7	When the stack area is internal dual-port RAM: 5 or 7 Other than above: 7 or 9	rt RAM: 5 or 7	
Supply voltage range		+5 V ±	10%	+5 V ± 0.3 V		+5 V ± 10	%	
On-chip memory	ROM	ROM-less	32K bytes (Mask ROM)	32K bytes (PROM)	8K bytes (Mask ROM)	ROM-less	16K bytes (Mask ROM)	16K bytes (PROM)
	RAM		1024 bytes		384 bytes		512 bytes	
Number of I/O pins		96	54		54	œ	54	
AVREF input voltage			3.6 V to V _{DD}			3.4 V	3.4 V to V _{DD}	
Restrictions concerning input voltage	input	0V to AV _{REF} pin voltage is al during A/D conversion only	e is applied to pins relevant to A/D conversion only	nt to A/D conversion	Constant 0V to AVREF pin voltag register ANI0 to ANI2 bits only.	И _{REF} pin voltage is ap NI2 bits only.	Constant OV to AVREF pin voltage is applied to pins selected by ADM register ANI0 to ANI2 bits only.	d by ADM
16-bit timer/counter one-shot pulse output	ne-shot pulse		Yes			No	0	
Macro service counter bit width	r bit width	8-/16-bit select capability (except type A)	ity (except type A)			only 8-bit	8-bit	
Macro service type C MPD, MPT increment	MPD, MPT		16-bit increment		Only low-order 8-bi	its increment (High≺	Only low-order 8-bits increment (High-order 8 bits are unchanged.)	anged.)
Macro service execution time	ion time	Varies depending on mode.		Please refer to users manual with each product.	oduct.			
Restrictions in data transfer from memory of macro service type A to SFR	ansfer from vice type	Generates when addree is 0FED0H to 0FEDFH	Generates when address range of transfer source buffer (memory) is 0FED0H to 0FEDFH	rce buffer (memory)	Generates when t	ransfer data is in the	Generates when transfer data is in the range of D0H to DFH.	Ť
Stabilization time for oscillation when STOP mode is released	oscillation released	Dedicated counter 15 counter 16 bits	Dedicated counter 15 bits or <u>NMI</u> active pulse width + dedicated counter 16 bits	width + dedicated	<u>NMI</u> active pulse v	NMI active pulse width + dedicated counter 16 bits	ounter 16 bits	
Package		 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (□14 mm) 64-pin ceramic shrink DIP (CERD) (750mil):μPD78P218A only 	DIP (750 mil) ⊐14 mm) k DIP (CERDIP) (with window) A only	(wop	 64-pin plastic shrink DIP (750 mil) 64-pin plastic OUIP: Except μPD7 68-pin plastic OF9 (Π 14 mm) 74-pin plastic OFP (Π 20 mm) 64-pin ceramic shrink DIP (CERD) (750mil): μPD78P214 only 	 64-pin plastic shrink DIP (750 mil) 64-pin plastic QUIP: Except μPD78212 68-pin plastic QFP (□ 14 mm) 74-pin plastic QFP (□ 20 mm) 64-pin ceramic shrink DIP (CERDIP) (with window) (750mil): μPD78P214 only 	12 2 (with window)	

1. DIFFERENCES BETWEEN μ PD78218A AND μ PD78214 SUBSERIES

2. PIN FUNCTIONS

2.1 NORMAL OPERATING MODE

(1) Ports

Pin Name	1/0	Dual- Function Pin	Function
P00 to P07	Output		Port 0 (P0): Use enabled as a real-time output port (4 bits × 2) Transistor drive possible
P20		NMI	
P21		INTP0	Port 2 (P2):
P22	1	INTP1	P20 is disabled for use as a general-purpose port (nonmaskable interrupt).
P23	Input	INTP2/CI	However, input level can be checked in the interrupt routine.
P24		INTP3	Specification of the internal pull-up resistor for P22 to P27 by software in 6-bit units is possible.
P25		INTP/ASCK	is possible.
P26		INTP5	
P27		SI	
P30		RxD	Port 3 (P3):
P31	Input/	TxD	Input/output specifiable bit-wise.
P32	output	SCK	Concerning input mode pins, specification of the internal pull-up resistor by software
P33	1	SO/SB0	at one time is possible.
P34 to P37	1	TO0 to TO3	
P40 to P47	Input/ output	AD0 to AD7	Port 4 (P4): Input/output specifiable in 8-bit units at one time. Specification of the internal pull-up resistor by software in 8-bit units at one time is possible. LED direct drive is possible.
P50 to P57	Input/ output	A8 to A15	Port 5 (P5): Input/output specifiable bit-wise. Concerning input mode pins, specification of the internal pull-up resistor by software at one time is possible. LED direct drive capability.
P60 to P63	Output	A16 to A19	Port 6 (P6):
P64		RD	Input/output specifiable bit-wise for P64 to P67.
P65	Input/	WR	Concerning input mode pins, specification of the internal pull-up resistor by software
P66	output	WAIT/AN6	at one time is possible for P64 to P67.
P67		REFRQ/AN7	
P70 to P75	Input	AN0 to AN5	Port 7 (P7)

(2) Other Than Ports

Pin Name	1/0	Function	Dual- Function Pin
TO0 to TO3	Output	Timer output	P34 to P37
CI	Input	Count clock input to 8-bit timer/counter 2	P23 /INTP2
RxD	Input	Serial data input (UART)	P30
TxD	Output	Serial data output (UART)	P31
ASCK	Input	Baud rate clock input (UART)	P25/INTP4
SB0	Input /output	Serial data input/output (SBI)	P33/SO
SI	Input	Serial data input (3-wire serial I/O)	P27
SO	Output	Serial data output (3-wire serial I/O)	P33/SB0
SLK	Input /output	Serial clock input/output (SBI, 3-wire serial I/O)	P32
NMI			P20
INTP0			P21
INTP1			P22
INTP2	Input	External interrupt request	P23/CI
INTP3			P24
INTP4			P25/ASCK
INTP5			P26
AD0 to AD7	Input /output	Time multiplexing address/data bus (external memory connection)	P40 to P47
A8 to A15	Output	Higher address bus (external memory connection)	P50 to P57
A16 to A19	Output	Expanded higher adderss (external memory connection)	P60 to P63
RD	Output	Read strobe for external memory	P64
WR	Output	Write strobe into external memory	P65
WAIT	Input	Wait insert	P66/AN6
ASTB	Output	Latch timing output of time-multiplexing addresses (A0 to A7) (in external memory accessed)	
REFRQ	Output	Refresh pulse output to external pseudo-static memory	P67/AN7
RESET	Input	Chip reset	
X1	Input		
X2		Crystal connection for system clock oscillation (clock input to X1 enabled)	
ĒĀ	Input	ROM-less operation specification (external access in the same space as internal ROM).	
AN0 to AN5		· · · · · · · · · · · · · · · · · · ·	P70 to P75
AN6, AN7	Input	Analog voltage input for A/D converter	P66/WAIT, P67/REFRQ
AVREF		Reference voltage application for A/D converter	
AVss		GND for A/D converter	
Voo		Positive power supply	1 —
Vss		GND	1

2.2 PROM PROGRAMMING MODE (P20/NMI = +12.5 V, RESET = L)

Pin Name	Input/Output	Function	
P20/NMI			
RESET	Input	PROM programming mode	
A0 to A14		Address bus	
D0 to D7	Input/output	Data bus	
ĈĒ		PROM enable input	
ŌĒ	- Input	Read strobe for PROM	
Vpp		Write power supply	
Vdd		Positive power supply	
Vss		GND	

3. PROGRAMMING

The on-chip program memory of the μ PD78P218A is a 32768×8-bit electrically programmable PROM. For PROM programming mode is set using the NMI and RESET pins.

The programming characteristics are compatible with the μ PD27C256A.

3.1 OPERATING MODE

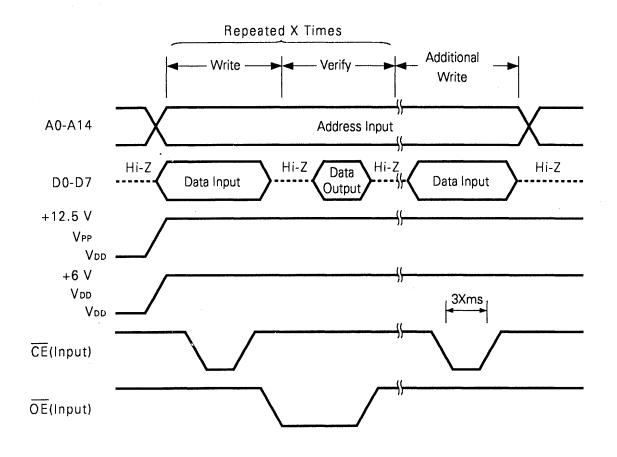
When +6 V and +12.5 V are applied to V_{DD} pin and V_{PP} pin, respectively, the μ PD78P218A is set to the programwrite/verify mode. This mode can be reset to the operating mode described in Table 3-1 by setting \overline{CE} and \overline{OE} pins. In the read mode, the μ PD78P218A can read the PROM contents.

Pin Mode	NMI	RESET	ĈĒ	ŌĒ	Vpp	νοσ	D0 to D7	
Program write			L	н			Data input	
Program verify	+ 12.5 V			н	L	+ 12.5 V	+ 6 V	Data output
Program inhibit		L	н	н			High-impedance	
Read				L	L			Data output
Output disable					L	н	+ 5 V	+ 5 V + 5 V
Standby			н	L/H			High-impedance	

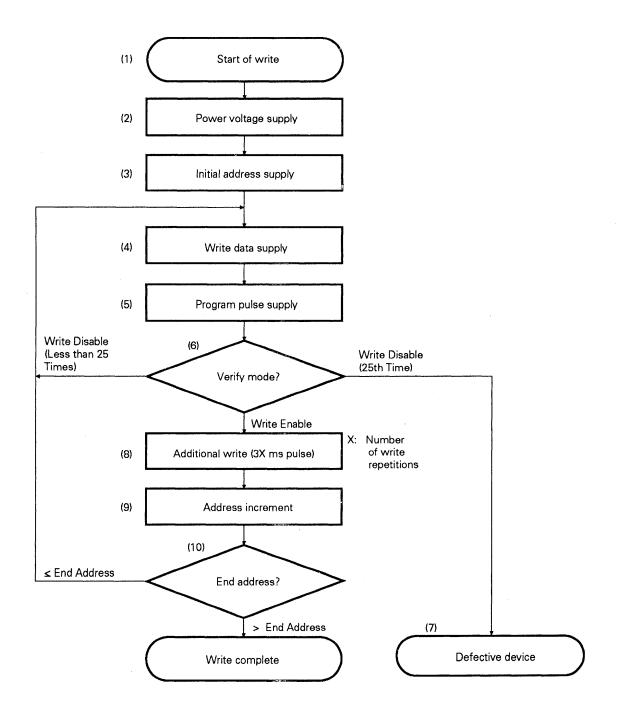
Table 3-1 PROM Programming Operating Mode

Note When V_{PP} is set to +12.5 V and V_{DD} is set to +6 V, it is inhibited to set both \overline{CE} and \overline{OE} to L.

NEC


3.2 PROM WRITE PROCEDURE

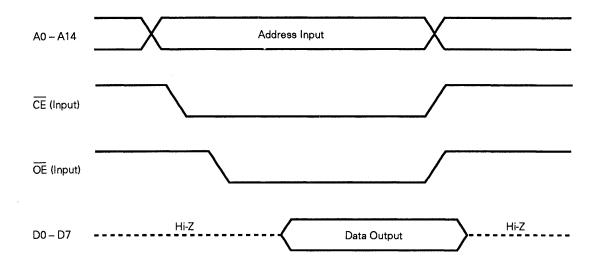
PROM write can be executed at high speeds using the following procedure:


- (1) Fix the RESET pin to the low level. Apply +12.5 V to the NMI pin. Treat all other unused pins as shown in **PIN CONFIGURATION (2)**.
- (2) Apply +6 V to the V_{DD} pin and +12.5 V to the V_{PP} pin.
- (3) Supply the initial address.
- (4) Supply write data.
- (5) Supply a 1 ms program pulse (active low) to the \overline{CE} pin.
- (6) Set the verify mode. If data has been written, procedure to step (8). If data has not been written, repeat steps
 (4) to (6). If data cannot yet be written after repeating the three steps 25 times, proceed to step (7).
- (7) Stop carrying out the write operation assuming that the device is defective.
- (8) Supply write data and then supply (number of repetitions of steps (4) to (6): X) × 3ms program pulses (additional write).
- (9) Increment the address.
- (10) Repeat steps (4) to (9) up to the final address.

The timings in steps (2) to (8) are shown in Fig. 3-1.

3.3 PROM READ PROCEDURE

NEC


PROM contents can be read into the external data bus (D0 to D7) using the following procedure:

(1) Fix the RESET pin to the low level. Apply +12.5 V to the NMI pin. Treat all other unused pins as shown in **PIN CONFIGURATION (2)**.

- (2) Apply +5 V to the V_{DD} and V_{PP} pins.
- (3) Input the address of the data to be read to the A0 to A14 pins.
- (4) Set the read mode.
- (5) Output data to the D0 to D7 pins.

The timings in steps (2) to (5) are shown in Fig.3-3.

Fig. 3-3 PROM Read Timings

4. ERASURE CHARACTERISTICS (µPD78P218ADW ONLY)

The µPD78P218ADW can erase the programmed data content (FFH) by applying light having wavelengths of less than about 400 nm.

To erase the μ PD78P218ADW program memory contents, normally apply ultraviolet rays having a wavelength of 254 nm. The total radiation required to erase the μ PD78P218ADW contents completely is a minimum of 15 W·s /cm² (ultraviolet strength × erasure time). The erasure time is approximately 15 to 20 minutes (when a 12000 μ W/ cm² ultraviolet lamp is used). The erase time may possible become longer due to deterioration in the performance of the ultraviolet lamp or fouling of the package window.

For the erasure operation, place the μ PD78P218ADW within 2.5 cm from the ultraviolet lamp. Use the ultraviolet lamp with the filter removed.

5. ERASURE WINDOW SEALING (µPD78P218ADW ONLY)

Except when erasing EPROM contents, apply a protective seal to the erasure window. This is important to prevent the EPROM contents from being inadvertently erased due to light other than the erasure lamp or the internal circuits other than the EPROM form error due to light.

6. SCREENING OF ONE-TIME PROM PRODUCTS

By reason of their structure, one-time PROM products (μ PD78P218ACW and μ PD78P218AGC-AB8) cannot be fully tested by NEC prior to shipment. After the necessary data has been written, it is recommended that screening be performed for PROM verification after high-temperature storage under the following conditions.

Storage Temperature	Storage Period
125 ºC	24 hrs.

Under the generic name "QTOP microcomputer", NEC offers a charged service covering one-time PROM writing, marking, screening and verifications. Please consult our sales representative for details.

7. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (Ta = +25 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	RATING	UNIT
	VDD		-0.5 to +7.0	v
Supply voltage	AVREF		-0.5 to VDD +0.5	v
	AVss		-0.5 to +0.5	V
	Vii		-0.5 to VDD +0.5	v
Input voltage	Vız	*1	-0.5 to AVREF +0.5	V
	Vis	*2	-0.5 to +13.5	v
Output voltage	Vo		-0.5 to VDD +0.5	v
0		1 pin	15	mA
Output current low	lor	All output pins total	100	mA
Output current high	1	1 pin	-10	mA
	Іон	All output pins total	-50	mA
Operating temperature	Topt	-	40 to +85	°C
Storage temperature	Tstg		65 to +150	°C

- * 1. Those of pins P70/AN0 to P75/AN5, P66/WAIT/AN6, P67/REFRQ/AN7 which are used as A/D converter input pins.
 - 2. Pins P20/NMI, EA/VPP and P21/INTP0/A9 in PROM programming mode.
- Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even \star momentarily. The absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

OPERATING CONDITIONS

CLOCK FREQUENCY	OPERATING TEMPERATURE (Topt)	SUPPLY VOLTAGE (VDD)
4 MHz ≤ fxx ≤ 12 MHz	–40 to +85 ℃	+5.0 ± 0.3 V

CAPACITANCE (Ta = +25 °C, V_{DD} = V_{SS} = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input capacitance	Сι	f = 1 MHz unmeasured			20	pF
Output capacitance	Co	pins returned to 0 V.			20	pF
I/O capacitance	Сю				20	pF

RESONATOR	RECOMMENDED CIRCUIT	PARAMETER	MIN.	MAX.	UNIT
Ceramic resonator or crystal resonator	$V_{ss} X1 X2$	Oscillator frequency (fxx)	4	12	MHz
External	X1 X2	X1 input frequency (fx)	4	12	MHz
clock		X1 input rising/falling time (txe, tx=)	0	30	ns
		X1 input high/low level width (twxн, twxเ)	30	130	ns

OSCILLATOR CHARACTERISTICS (Ta = -40 to +85 °C, VD0 = +5.0 \pm 0.3 V, Vss = 0 V)

Note When the system clock oscillator is used, the following points should be noted concerning wiring in the section enclosed by dots, in order to prevent the effects of wiring capacitance, etc.

- . Keep the wiring as short as possible.
- . Do not cross any other signal lines.
- . Keep away from lines carrying a high fluctuating current.
- . Ensure that oscillator capacitor connection points are always at the same potential as Vss. Do not ground in a ground pattern in which a high current flows.
- . Do not take a signal from the oscillator.

DC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = +5.0 ±0.3 V, V_{BB} = 0 V)

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage low	Vil					0.8	v
<u></u>	Vін1	Pins	except for *1 and *2	2.2		Vdd	v
Input voltage high	ViH2	Pin o	f •1	2.2		AVREF	v
	Vінз	Pin o	f *2	0.8Vpd		VDD	V
Output voltage low	Vol1	lol = 1	lo∟ = 2.0 mA			0.45	v
Output voltage low	Vol2	lог = 1	8.0 mA *3			1.0	v
	Vон1	Іон =	–1.0 mA	Vpp-1.0			v
Output voltage high	Voh2	Іон =	–100 μ Α	Vpp-0.5			v
	Vонз	Іон =	–5.0 mA *4	2.0			v
X1 input current low	lı.	0 V ≤	Vi ≤ ViL			-100	μΑ
X1 input current high	ħн	Vінз ≤	Vi ≤ Vdd			100	μА
Input leakage current	lu	0 V ≤	VI ≤ VDD				
Output leakage current	ILO	0 V ≤	Vo ≤ Vod				
AVREF current	AIREF	Opera	ating mode fxx = 12 MHz		1.5	5.0	mA
Voo supply current	loo1	Opera	ating mode fxx = 12 MHz		20	40	mA
voo supply cultent	lod2	HALT	mode fxx = 12 MHz		7	20	mA
Data retention voltage	VDDDR	STOP	mode	2.5		5.3	v
D. to out of the second s		STOP	VDDDR = 2.5 V		2	20	μА
Data retention current	Idddr	mode	VDDDR = +5.0 ±0.3 V		5	50	μΑ
Pull-up resistor	R∟	Vı = 0	V	15	40	80	kΩ

- * 1. Those of pins P70/AN0 to P75/AN5, P66/WAIT/AN6, P67/REFRQ/AN7 which are used as A/D converter input pins.
 - 2. X1, X2, RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/ INTP5, P27/SI, P32/SCK, P33/SO/SB0, EA pins
 - 3. P40/AD0 to P47/AD7, P50/A8 to P57/A15 pins
 - 4. P00 to P07 pins

AC CHARACTERISTICS (Ta = -40 to +85 °C, V_{DD} = +5.0 ±0.3 V, V_{BB} = 0 V) Read/Write Operation (1/2)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input clock cycle time	tcyx	<u></u>	82	250	ns
Address setup time (to ASTB↓)	tsast		52		ns
Address hold time (from ASTB↓) *	thsta •		25		ns
Address hold time (from RD1)	thra		30		ns
Address hold time (from WRT)	thwa		30		ns
$\overline{\mathrm{RD}}\downarrow$ delay time from address	tdar •		129		ns
Address float time (from $\overline{RD}\downarrow$)	tfar •		11		ns
Data input time from address	tdaid •	No. of waits = 0	h	228	ns
Data input time from ASTB↓	tostid •	No. of waits = 0		181	ns
Data input time from $\overline{RD}\downarrow$	torid •	No. of waits = 0		100	ns
$\overline{RD} \downarrow$ delay time from ASTB \downarrow	tdstr •		52		ns
Data hold time (from RD1)	thrid		0		ns
Address active time from \overline{RD}	tdra •		124		ns
ASTB \uparrow delay time from $\overline{\text{RD}}\uparrow$	torst •	······································	124		ns
RD low-level width	twrl •	No. of waits = 0	124		ns
ASTB high-level width	twsтн •		52		ns
 WR↓ delay time from address	tdaw •		129		ns
Data output time from ASTB↓	tostod •			142	ns
Data output time from $\overline{WR}{\downarrow}$	towod			60	ns
 WR↓ delay time from ASTB↓	tostw1+	In refresh disabled	52		ns
	tostw2 •	In refresh enabled	129		ns
Data setup time (to WR1)	tsodwr •	No. of waits = 0	146		ns
Data setup time (to WR↓)	tsodwr •	in refresh enabled	22		ns
Data hold time (from WR1) *	tнwod	· · · · · · · · · · · · · · · · · · ·	20		ns
ASTB1 delay time from WR1	towsr •		42		ns
	tww.1•	In refresh disabled no. of waits = 0	196		ns
WR low-level width	twwL2•	In refresh enabled no. of waits = 0	114		ns
$\overline{WAIT}\downarrow$ input time from address	tdawt •			146	ns
$\overline{\text{WAIT}}\downarrow$ input time from ASTB \downarrow	tostwt •			84	ns

* The hold time includes the time to hold the V_{OH} and V_{OL} under the load conditions of C_L = 100 pF and R_L = $2k\Omega$.

Remarks 1. The values in the above table are based on " $f_{xx} = 12$ MHz and $C_L = 100$ pF".

2. For a parameter with a dot (.) in the SYMBOL column, refer to "tcvx DEPENDENT BUS TIMING

Read/Write Operation (2/2)

PARA	METER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
WAIT hold time	from ASTB↓	thstwt•	No. of external waits = 1	174		ns
WAIT1 delay tim	ne from ASTB↓	tostwth•	No. of external waits = 1	<u>.</u>	273	ns
WAIT↓ input tim	e from RD↓	tdrwtl•			22	ns
WAIT hold time	from RD↓	thrwt∙	No. of external waits = 1	87		ns
WAIT1 delay tim	ne from RD↓	torwth•	No. of external waits = 1	~	186	ns
Data input time	from WAIT	towno.			62	ns
WR1 delay time	from WAIT1	towtw•	· · · · · · · · · · · · · · · · · · ·	154		ns
RD↑ delay time	from WAIT1	towtr.		72		ns
WAIT input time (At refresh disal		tdwwtl•			22	ns
WAIT hold time	Refresh disabled	tHwwT1+	No. of external waits = 1	87		ns
from ₩R↓	Refresh enabled	thwwt2•	No. of external waits = 1	5		ns
WAIT1 delay	Refresh disabled	towwTH1•	No. of external waits = 1		186	ns
time from ₩R↓	Refresh enabled	towwrH2•	No. of external waits = 1		104	ns
REFRQ↓ delay ti	me from RD↑	torrfo.		154		ns
REFRQ↓ delay ti	me from ₩R↑	towrfa.		72		ns
REFRQ low-leve	REFRQ low-level width			120		ns
ASTB1 delay tim	ne from REFRQ↑	torfost.		280		ns

Remarks 1. The values in the above table are based on " $f_{xx} = 12$ MHz and $C_L = 100$ pF".

2. For a parameter with a dot (.) in the SYMBOL column, refer to "torx DEPENDENT BUS TIMING DEFINITION" as well.

Serial Operation

PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	MAX.	UNIT
		Input	External clock	1.0		μs
Serial clock cycle time	tcysk	Output	Internal divided by 16	1.3		μs
		Output	Internal divided by 64	5.3		μs
		Input	External clock	420		ns
Serial clock low-level width	twski.	0	Internal divided by 16	556		ns
		Output	Internal divided by 64	2.5		μs
ter a new ne con ann dan da dae dan es de		Input	External clock	420		ns
Serial clock high-level width	twsкн	0	Internal divided by 16	556		ns
		Output	Internal divided by 64	2.5		μs
SI, SB0 setup time (to SCK1)	tsssk			150		ns
SI, SB0 hold time (from \overline{SCK})	thssk		* ************************************	400		ns
	.	CMOS p	oush-pull output	0	300	
SO/SB0 output delay time	tosesk1	(3-wire s	serial I/O mode)	U	300	ns
(from SCK↓)		Open-dr	ain output (SBI mode),		800	
	tosesk2	R∟ = 1 ks	Ω	0	800	ns
SB0 high hold time (from SCK1)	tнsвsк			4		tcyx
SB0 low setup time (to $\overline{SCK}\downarrow$)	tssbsk	SBI mod	16	4		tcvx
SB0 low-level width	twsbl			4		tсух
SB0 high-level width	twsвн			4		tcyx

Remarks The values in the above table are based on "fxx = 12 MHz and C_L = 100 pF".

Other Operations

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
NMI low-level width	twnil	<u> </u>	10	· · · · · · · · · · · · · · · · · · ·	μs
NMI high-level width	twnih		10		μs
INTP0 to INTP5 low-level width	twitL	·	24		tcyx
INTP0 to INTP5 high-level width	twith	· ·	24		tcyx
RESET low-level width	twrsl		10		μs
RESET high-level width	twrsh		10		μs

External Clock Timing

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	MAX.	UNIT
X1 input low-level width	twxL		30	130	ns
X1 input high-level width	twxн		30	130	ns
X1 input rise time	txr		0	30	ns
X1 input fall time	txF	······································	0	30	ns
X1 input clock cycle time	tcyx	и.	82	250	ns

A/D CONVERTER CHARACTERISTICS (Ta = -40 to +85 °C, V_{D0} = +5.0 ±0.3 V, V_{88} = AV₈₈ = 0 V)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resolution			8			bit
Overall error*		$4.0 V \leq AV_{REF} \leq V_{DD}$ $Ta = -10 \text{ to } +70^{\circ}C$			0.4	%
Overall error-		$3.6 V \le AV_{REF} \le V_{DD}$ Ta = -10 to +70°C			0.8	%
		$4.0 V \leq AV_{REF} \leq V_{DD}$			0.8	%
Quantization error					±1/2	LSB
Conversion time tconv	82 ns ≤ tcyx < 125 ns (The FR bit of ADM is to be "0")	360			tcyx	
	LCONV	125 ns ≤ tcvx ≤ 250 ns (The FR bit of ADM is to be "1")	240			tcyx
		82 ns ≤ tcvx < 125 ns (The FR bit of ADM is to be "0")	72			tcyx
Sampling time	tsamp	125 ns ≤ tcvx ≤ 250 ns (The FR bit of ADM is to be "1")	48.			tcyx
Analog input voltage	Vian		-0.3		AVREF +0.3	v
Analog input impedance	Ran			1000		MΩ
Reference voltage	AVREF	••••••••••••••••••••••••••••••••••••••	3.6		VDD	v
	A.1	fxx = 12 MHz		1.5	5.0	mA
AVREF current	AIREF	STOP mode	· [0.2	1.5	mA

ŧ

* Quantization error is not included. Represented by the ratio to full-scale value.

terx DEPENDENT BUS TIMING DEFINITION (1/2)

PARAMETER	SYMBOL	FORMULA	MIN./MAX.	12 MHz	UNIT
X1 input clock cycle time	tcyx		MIN.	82	ns
Address setup time (to ASTB↓)	tsast	tcyx - 30	MIN.	52	ns
$\overline{\mathrm{RD}}\downarrow$ delay time from address	tdar	2tcyx - 35	MIN.	129	ns
Address float time (from RD↓)	tfar	tcyx/2 - 30	MIN.	11	ns
Data input time from address	toaid	(4 + 2n) tcyx – 100	MAX.	228 *	ns
Data input time from ASTB↓	tostid	(3 + 2n) tcyx - 65	MAX.	181 *	ns
Data input time from RD↓	torid	(2 + 2n) tcvx – 64	MAX.	100 *	ns
RD↓ delay time from ASTB↓	tostr	tcyx - 30	MIN.	52	ns
Address active time from RD1	t dra	2tcvx - 40	MIN.	124	ns
ASTB [↑] delay time from RD [↑]	torst	2tcvx - 40	MIN.	124	ns
RD low-level width	twaL	(2 + 2n) tcvx - 40	MIN.	124 *	ns
ASTB high-level width	twsтн	tcyx - 30	MIN.	52	ns
WR↓ delay time from address	tdaw	2tcvx - 35	MIN.	129	ns
Data output time from $ASTB{\downarrow}$	t dstod	tcyx + 60	MAX.	142	ns
	tostw1	tcyx – 30 (In refresh disabled)	MIN.	52	ns
WR↓ delay time from ASTB↓	tdstw2	2tcyx – 35 (In refresh enabled)	MIN.	129	ns
Data setup time (to WR1)	tsodwr	(3 + 2n) tcyx - 100	MIN.	146 *	ns
Data setup time (to WR↓)	tsoowr	tcvx – 60 (In refresh enabled)	MIN.	22	ns
ASTB ¹ delay time from WR ¹	towst	tcyx - 40	MIN.	42	ns
WR low-level width	twwL1	(3 + 2n) tcyx – 50 (In refresh disabled)	MIN.	196 *	ns
	twwL2	(2 + 2n) tcyx – 50 (In refresh enabled)	MIN.	114 *	ns
WAIT↓ input time from address	t dawt	3tcyx – 100	MAX.	146	ns
WAIT↓ input time from ASTB↓	tdstwt	2tcyx - 80	MAX.	84	ns

Remarks "n" indicates the number of waits.

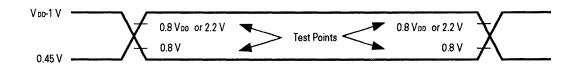
* When n = 0

tcvx DEPENDENT BUS TIMING DEFINITION (2/2)

PARA	METER	SYMBOL	FORMULA	MIN./MAX.	12 MHz	UNIT
WAIT hold time	from ASTB↓	thstwt	2Xtcvx + 10	MIN.	174 *	ns
WAIT1 delay tim	ne from ASTB↓	tostwith	2(1 + X)tcyx - 55	MAX.	273 *	ns
WAIT↓ input tim	ne from RD↓	t DRWTL	tcvx - 60	MAX.	22	ns
WAIT hold time	from RD↓	thewr	(2X - 1)tcvx + 5	MIN.	87 *	ns
WAIT1 delay tim	ne from RD↓	torwth	(2X + 1)tcvx - 60	MAX.	186 *	ns
Data input time	from WAIT	towtid	tcyx - 20	MAX.	62	ns
WR1 delay time	from WAIT	towrw	2tcyx - 10	MIN.	154	ns
RD1 delay time	from WAIT1	towtr	tcyx - 10	MIN.	72	ns
WAIT input time (At refresh disal		TDWWTL	tcvx – 60	MAX.	22	ns
WAIT hold time	Refresh disabled	thwwr1	(2X - 1)tcyx + 5	MIN.	87 *	ns
from ₩R↓	Refresh enabled	thwwr2	2(X - 1)tcvx + 5	MIN.	5 *	ns
WAIT↑ delay	Refresh disabled	towwTH1	(2X + 1)tcvx - 60	MAX.	186 *	ns
time from ₩R↓	Refresh enabled	towwTH2	2Xterx - 60	MAX.	104 *	ns
REFRQ↓ delay ti	me from RD↑	t DRRFQ	2tcyx - 10	MIN.	154	ns
REFRQ↓ delay ti	me from ₩R↑	towara	tcvx - 10	MIN.	72	ns
REFRQ low-leve	l width	twrfal	2tcyx - 44	MIN.	120	ns
ASTB1 delay tim	ne from REFROT	LORFOST	4tcyx 48	MIN.	280	ns

.

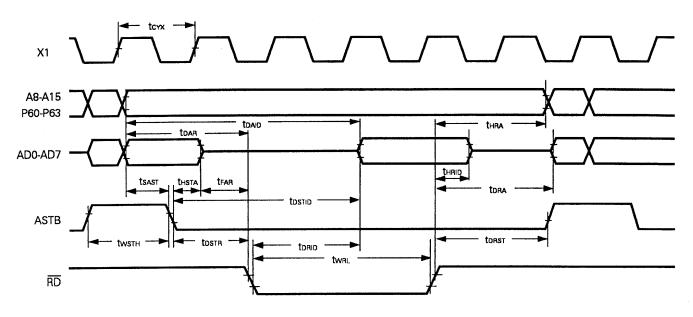
Remarks 1. X: The number of the external wait. (1, 2, ...)

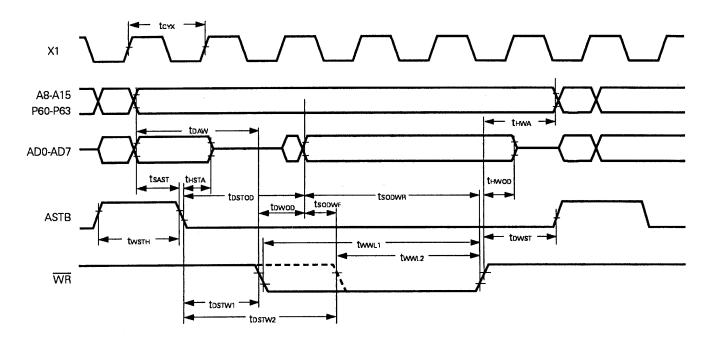

- 2. t_{cyx} ≅ 82 ns (f_{xx} = 12 MHz)
- 3. "n" indicates the number of waits.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data retention voltage	VDDDR	STOP mode	2.5	<u> </u>	5.3	V
	,	VDDDR = 2.5 V		2	20	μA
Data retention current	DDDR	VDDDR = 5 V ±0.3 V		5	50	μA
Vod rise time	tavo		200			μs
Voo fall time	trvo		200			μs
Voo hold time (from STOP	thyp	0				
mode setting)	LUAD.		U			ms
STOP release signal input	torel		0			ms
time			U			1115
Oscillation stabilization		Crystal resonator	30			ms
wait time	twait	Ceramic resonator	5			ms
Low-level input voltage	ViL	Specified pin*	0		0.1 VDDDR	V
High-level input voltage	Ин	opecined pin	0.9 VDDDR		VDDDR	v

DATA RETENTION CHARACTERISTICS (Ta = -40 to +85 °C)

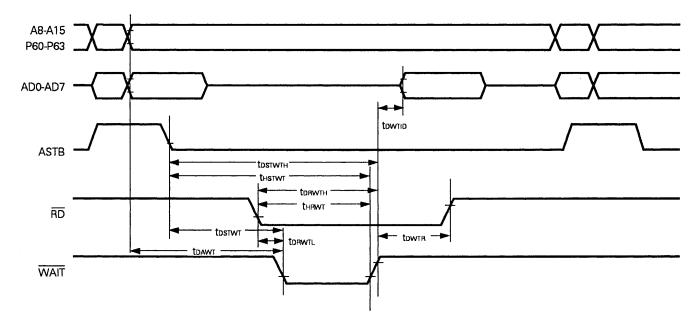
* RESET, P20/NMI, P21/INTP0, P22/INTP1, P23/INTP2/CI, P24/INTP3, P25/INTP4/ASCK, P26/INTP5, P27/SI, P32/SCK, P33/SO/SB0 and EA pins

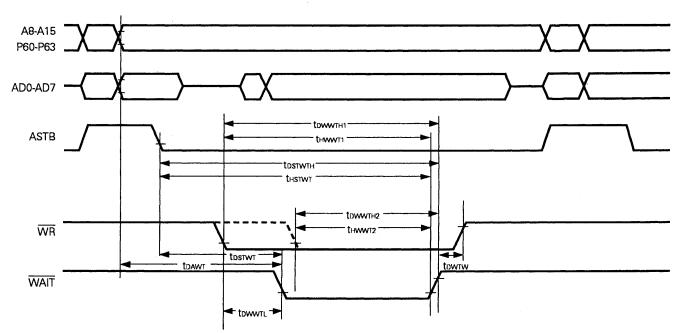

AC Timing Test Point


NEC

Timing Waveform

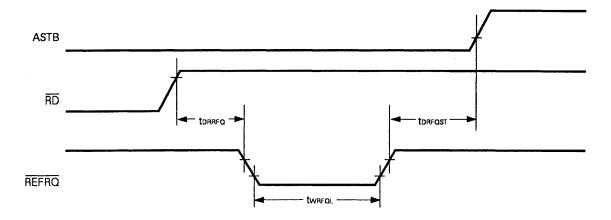
Read operation

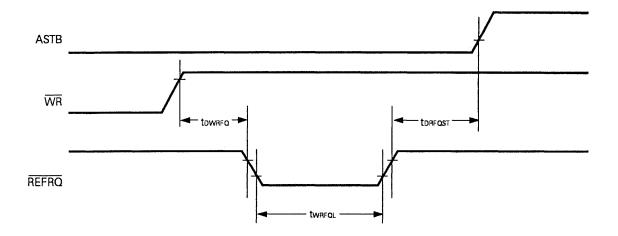



Write operation

External WAIT Signal Input Timing

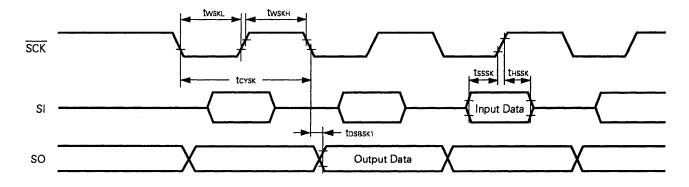
Read operation



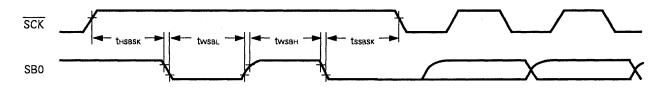

Write operation

Refresh Timing Waveform

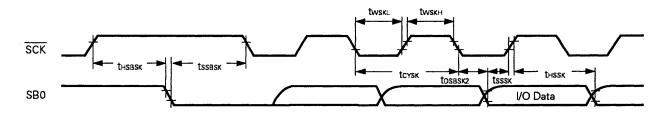
Refresh after read



Refresh after write

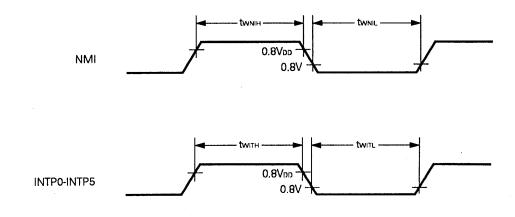

Serial Operation

3-wire serial I/O mode

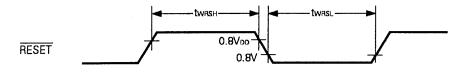


SBI Mode

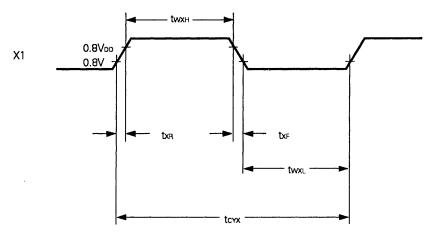
Bus release signal transfer

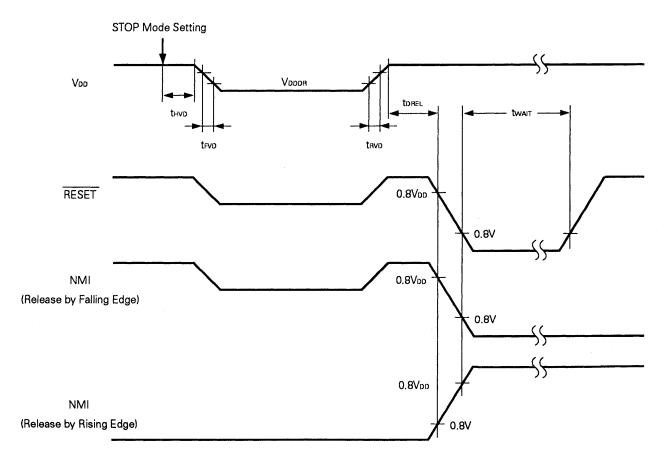


Command signal transfer



NEC


Interrupt Input Timing


Reset Input Timing

External Clock Timing

Data Retention Characteristics

DC PROGRAMMING CHARACTERISTICS (Ta = +25 to $\pm 5 \text{ °C}$, V_{IP} *1 = +12.5 $\pm 0.5 \text{ V}$, V_{ss} = 0 V)

PARAMETER	SYMBOL	SYMBOL *2	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input voltage high	Ин	Viн		2.4		VDDP + 0.3	v
Input voltage low	ViL	ViL		-0.3		0.8	v
Input leakage current	ILIP	lu	0 ≤ Vi ≤ Vddp			10	μA
Output voltage high	Vон1	Vон 1	Іон = – 400 <i>µ</i> А	2.4			v
	Voh2	Vон2	loι = - 100 μΑ	VDD-0.7			- V
Output voltage low	Vol	Vol	lol = 2.1 mA			0.45	v
Output leakage current	lol		$0 \leq V_0 \leq V_{DDP}, \overline{OE} = V_{H}$			10	μΑ
NMI pin high-voltage input current	1ıe					± 10	μA
Voor supply voltage			Program memory write mode	5.75	6.0	6.25	v
		Vcc	Program memory read mode	4.5	5.0	5.5	v
Vee supply voltage			Program memory write mode	12.2	12.5	12.8	v
	Vpp	Vpp	Program memory read mode	VPP = VODP			v
VDDP supply current	lcc icc	Program memory write mode		5	30	mA	
		Program memory read mode CE = VıL, Vı = Vıн		5	30	mA	
Vee supply current	PP	pp	Program memory write mode $\overline{CE} = V_{IL}, \overline{OE} = V_{IH}$		5	30	mA
			Program memory read mode		1	100	μA

* 1. Voltage applied to P20/NMI pin

2. Symbol of the corresponding μ PD27C256A

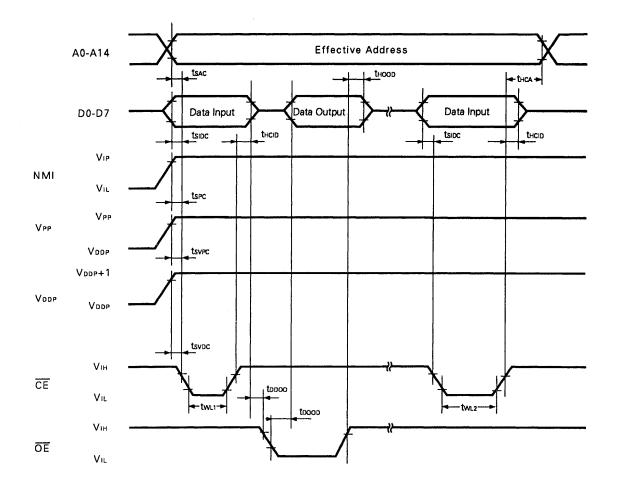
PROGRAM OPERATION

AC CHARACTERISTICS (Ta = +25 to $\pm 5 \text{ °C}$, V_{IP} *1 = +12.5 $\pm 0.5 \text{ V}$, V_{DD} = +6 $\pm 0.25 \text{ V}$, V_{PP} = +12.5 $\pm 0.3 \text{ V}$, V_{SS} = 0 V)

PARAMETER	SYMBOL	SYMBOL *2	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address setup time (to $\overline{CE}\downarrow$)	tsac	tas		2			μs
$\overline{\text{OE}}\downarrow$ hold time from data	tddoo	toes		2			μs
Input data setup time (to $\overline{CE} \downarrow$)	tsidc	tos		2			μs
Address hold time (from \overline{CE})	thca	tан		2			μs
Input data hold time (from $\overline{\text{CE}}$ \uparrow)	THCID	toн		2			μs
Output data hold time (from \overline{OE} \uparrow)	THOOD	to⊧		0		130	ns
VPP setup time (to CE↓)	tsvpc	tvps		1			ms
VDDP setup time (to $\overline{CE} \downarrow$)	tsvoc	tvcs		1			ms
Initial program pulse width	twL1	tew		0.95	1.0	1.05	ms
Additional program pulse width	twL2	topw		2.85		78.75	ms
NMI high-voltage input setup time (to $\overline{CE} \downarrow$)	tspc			2			μs
Data output time from OE ↓	tdood	toe				150	ns

* 1. Voltage applied to P20/NMI pin

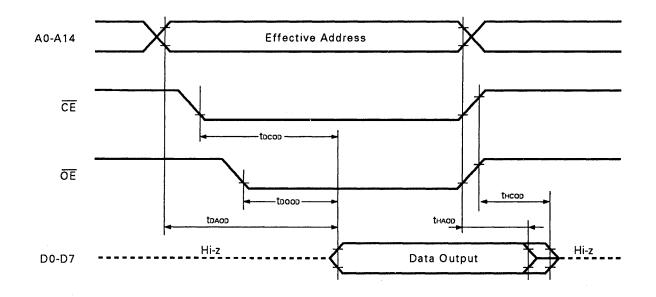
2. Symbol of the corresponding μ PD27C256A


READ OPERATION

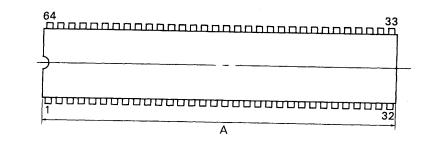
AC CHARACTERISTICS (Ta = +25 \pm 5 °C, V_{IP} *1 = +12.5 \pm 0.5 V, V_{DD} = +5 \pm 0.5 V, V_{PP} = V_{DDP}, V_{SS} = 0 V)

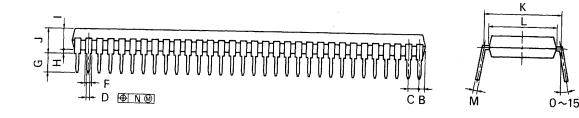
PARAMETER	SYMBOL	SYMBOL *2	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Address data output time	tdaod	tacc	CE = OE = VIL			200	ns
Data output time from $\overline{CE}\downarrow$	tocop	tce	OE = VIL			200	ns
Data output time from $\overline{OE}\downarrow$	toood	toe	CE = VIL			75	ns
Data hold time (from \overline{OE} \uparrow , \overline{CE} \uparrow)*3	tнсор	tdf	CE = VIL or OE = VIL	0		60	ns
Data hold time (from address)	thaod	tон	CE = OE = VIL	0			ns

- * 1. Voltage applied to P20/NMI pin
 - **2.** Symbol of the corresponding μ PD27C256A
 - 3. theor is the time from the point at which either \overline{OE} or \overline{CE} first reaches ViH.


PROM Write Mode Timing

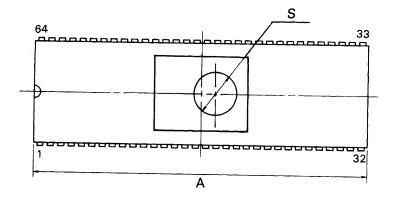
Note 1. Apply V_{DDP} before V_{PP} and shut it off after V_{PP} .

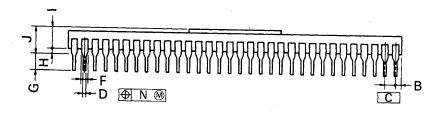

2. Do not allow V_{PP} to become +13 V or more including an overshoot.

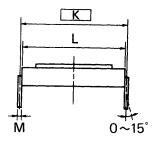

PROM Read Mode Timing

8. PACKAGE INFORMATION

64PIN PLASTIC SHRINK DIP (750 mil)

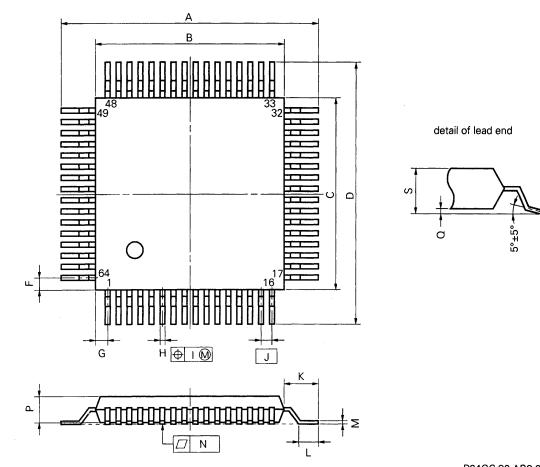

P64C-70-750A,C


NOTES


- Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ^{±0/10}	0.020+0.004
F	0.9 MIN.	0.035 MIN.
G	3.2 ^{±0:3}	0.126 ^{±0.012}
н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25-0.05	0.010+0.004
N	0.17	0.007

64PIN CERAMIC SHRINK DIP (CERDIP) (WINDOW) (750 mil)


P64DW-70-750A1

NOTES

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	58.68 MAX.	2.310 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.46 ^{±0.05}	0.018 ^{±0.002}
F	0.8 MIN.	0.031 MIN.
G	3.5 ^{±0.3}	0.138 ^{±0.012}
н	1.0 MIN.	0.039 MIN.
1	3.0	0.118
J	5.08 MAX.	0.200 MAX.
ĸ	19.05 (T.P.)	0.750 (T.P.)
L	18.8	0.740
м	0.25 ^{±0.05}	0.010 +0.002 -0.003
N	0.25	0.01
S	¢7.62	¢0.300

64 PIN PLASTIC QFP (114)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		P64GC-80-AB8-3
ITEM	MILLIMETERS	INCHES
А	17.6±0.4	0.693±0.016
В	14.0±0.2	0.551+0.009
С	14.0±0.2	0.551 ^{+0.009} _0.008
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	1.0	0.039
н	0.35±0.10	0.014 ^{+0.004} 0.005
	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
к	1.8±0.2	0.071±0.008
L	0.8±0.2	0.031+0.009
М	0.15+0.10	0.006+0.004
N	0.10	0.004
Р	2.55	0.100
Q	0.1±0.1	0.004±0.004
S	2.85 MAX.	0.112 MAX.

9. RECOMMENDED SOLDERING CONDITIONS

The μPD78P218A should be soldered and mounted under the conditions recommended in the table below. For details of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (IEI-1207).

For soldering methods and conditions other than those recommended below, contact our sales personnel.

Table 9-1 Surface Mounted Type Soldering Conditions

μ PD78P218AGC-AB8: 64-pin plastic QFP (\Box 14 mm)

[Soldering Method	Soldering Conditions	Recommended Condition Symbol
	Infrared reflow	Package peak temperature: 230°C Duration: 30 sec. max. (at 210°C or above) Number of times: Once Time limit: 2 days• (thereafter 16 hours prebaking required at 125°C)	IR30162-1
	VPS	Package peak temperature: 215°C Duration: 40 sec. max. (at 200°C or above) Number of times: Once Time limit: 2 days* (thereafter 16 hours prebaking required at 125°C)	VP15-162-1
*	Infrated reflow	Package peak temperature : 235°C Duration : 30 sec. max. (at 210°C or above) Number of times : once Time limit : 2 days* (thereafter 20 hours prebaking required at 125°C)	IR35-202-1
*	VPS	Package peak temperature : 215°C Duration : 40 sec. max. (at 200°C or above) Number of times : once Time limit : 2 days* (thereafter 20 hours prebaking required at 125°C)	VP15-202-1
	Pin part heating	Pin part temperature: 300°C max. Duration: 3 sec. max. (Per side of the device)	

* For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.

Note Use more than one soldering method should be avoided (except in the case of pin part heating).

Table 9-2 Insert Type Soldering Conditions

μ PD78P218ACW: 64-pin plastic shrink DIP (750 mil) μ PD78P218ADW: 64-pin ceramic shrink DIP (CERDIP)(with window) (750 mil)

Soldering Method	Soldering Conditions	
Wave soldering (lead part only)	Solder bath temperature : 260°C max. Duration: 10 sec. max.	
Pin part heating	Pin part temperature: 260°C max. Duration: 10 sec. max.	

Note The wave soldering applies to the lead part only. Ensure that no solder touches the body directly.

----- Notice -

A version of this product with improved recommended soldering conditions is available. For details (improvements such as infrared reflow peak temperature extension (235°C), number of times: twice, relaxation of time limit, etc.), contact NEC sales personnel.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using μ PD78P218A.

Language Processing Software

RA78K/II *1,2,3	78K/II series common assembler package
CC78K/II *1,2,3	78K/II series common C compiler package
CC78K/II-L *1,2,3	78K/II series common C compiler library source file

PROM Writing Tools

PG-1500	PROM programmer
PA-78P214CW PA-78P214GC	Programmer adapters connected to PG-1500
PG-1500 controller *1,2	PG-1500 control program

Debugging Tools

IE-78240-R-A IE-78240-R *4	μPD78218A subseries common in-circuit emulators	
IE-78200-R-BK	78K/II series common break board	
IE-78240-R-EM IE-78200-R-EM *4	μPD78218A subseries evaluation emulation boards	
EP-78210CW *4 EP-78240CW-R EP-78210GC *4 EP-78240GC-R	μPD78218A subseries common emulation probes	
EV-9200GC-64	Socket to be mounted on a user system board made for 64-pin plastic QFP	
SD78K/II *1,2	IE-78240-R-A screen debugger	
DF78210 *1,2	μPD78218A subseries device file	

Real-Time OS

RX78K/II *1,2,3	78K/II series common real-time OS

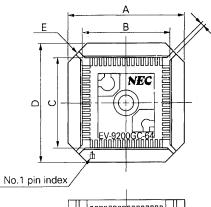
* 1. PC-9800 series (MS-DOS[™]) based

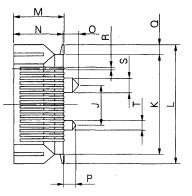
- 2. IBM PC/AT[™] (PC DOS[™]) based
- 3. HP9000 series 300[™] (HP-UX[™]) based, SPARCstation[™] (Sun OS[™]) based, EWS-4800 series[™] (EWS-UX/V[™]) based
- 4. No longer manufactured and not available for purchase

Fuzzy Inference Development Support System

FE9000 *1, FE9200 *2	Fuzzy knowledge data creation tool
FT9080 *1, FT9085 *2	Translator
Fi78K/II *1,2	Fuzzy inference module
FD78K/II *1,2	Fussy inference debugger

* 1. PC-9800 series (MS-DOS[™]) based
 2. IBM PC/AT[™] (PC DOS[™]) based

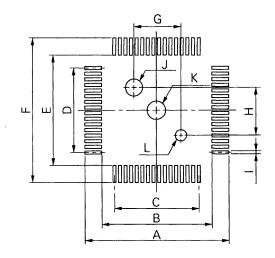

Remarks For third party development tools, see the **78K/II Series Development Tools Selection Guide** (EF-231).


APPENDIX B. EXTERNAL VIEW OF CONVERSION SOCKET AND **RECOMMANDED BOARD MOUNTING PATTERN**

The µPD78P218AGC-AB8 (64-pin plastic QFP (□14mm) is mounted on the board in conjunction with the conversion socket (EV-9200GC-64).

The external view of the conversion socket and recommended board mounting pattern are shown below.

Fig. B-1 EV-9200GC-64 External View (Reference)



		EV-9200GC-64-GC
ITEM	MILLIMETERS	INCHES
A	18.8	0.74
В	14.1	0.555
С	14.1	0.555
D	18.8	0.74
E	4-C 3.0	4-C 0.118
F	0.8	0.031
G	6.0	0.236
н	15.8	0.622
1	18.5	0.728
J	6.0	0.236
к	15.8	0.622
L	18.5	0.728
М	8.0	0.315
N	7.8	0.307
0	2.5	0.098
Р	2.0	0.079
Q	1.35	0.053
R	0.35±0.1	0.014+0.004
S	¢2.3	Ø0.091
T	¢1.5	¢0.059

Fig. B-2 Recommended EV-9200GC-64 Board Mounting Pattern (Reference)

EV-9200GC-64-P0

ITEM	MILLIMETERS	INCHES
A	19.5	0.768
В	14.8	0.583
С	$0.8\pm0.02\times15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 \!=\! 0.472^{+0.003}_{-0.002}$
D	$0.8\pm0.02\times15=12.0\pm0.05$	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$
E	14.8	0.583
F	19.5	0.768
G	6.00±0.08	0.236+0.004
н	6.00±0.08	0.236+0.004
I	0.5±0.02	0.197 ^{+0.001} -0.002
J	\$\$\p\$2.36±0.03	Ø0.093 ^{+0.001} -0.002
к	¢2.2±0.1	Ø0.087 ^{+0.004} -0.005
L	¢1.57±0.03	Ø0.062 ^{+0.001}

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

APPENDIX C. RELATED DOCUMENTS

Device Related Documents

Document Name µPD78218A Subseries User's Manual Hardware Volume 78K/II Series User's Manual Instruction Volume		Document No. (Japanese)	Document No. (English)
		IEU-755 IEU-754	IEU-1313 IEU-1311
Application Volume	IEA-700	IEA-1282	
Floating-Point Operation Program Volume	IEA-686	IEA-1273	
78K/II Series Selection Guide		IF-304	IF-1160
78K/II Series Instruction Application Table		IEM-5101	
78K/II Series Instruction Set		IEM-5102	
μ PD78218A Series Special Function Register Application Table		IEM-5532	

Development Tool Related Documents (User's Manuals)

Document Name		Document No. (Japanese)	Document No. (English)
	Operation Volume	EEU-809	EEU-1399
RA78K Series Assembler Package	Language Volum	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
	Operation Volume	EEU-656	EEU-1280
CC78K Series C Compiler	Language Volume	EEU-655	EEU-1284
CC78K Series Library Source File		EEU-777	
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller		EEU-704	EEU-1291
IE-78240-R-A In-Circuit Emulator		EEU-796	EEU-1395
IE-78240-R In-Circuit Emulator	Hardware Volume	EEU-705	EEU-1322
	Software Volume	EEU-706	EEU-1331
SD78K/II Screen Debugger MS-DOS Based	Primer	EEU-841	
SDYSKII SCIEEN DEBUYYEI WO-DOO Based	Reference	EEU-813	
SD78K/II Screen Debugger PC DOS Based	Primer		
	Reference		EEU-1447
78K/II Series Development Tools Selection Guide		EF-231	

Note The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

Built-In Software Related Documents (User's Manuals)

Document Name		Document No. (Japanese)	Document No. (English)
	Introductory Volume	EEU-910	
	Installation Volume	EEU-884	
RX78K/II Real-Time OS	Debugger Volume	EEU-895	
	Technical Volume	EEU-885	
Fuzzy Knowledge Data Creation Tools		EEU-829	EEU-1438
78/0, 78K/II, 87AD Series Fuzzy Inference Development Support System	Translator	EEU-862	EEU-1444
78K/II Series Fuzzy Inference Development Support System	Fuzzy Inference Module	EEU-860	EEU-1440
78K/II Series Fuzzy Inference Debugger		EEU-917	EEU-1459

Other Related Documents

Document Name	Document No. (Japanese)	Document No. (English)
QTOP Microcomputer Brochure	IB-5040	
Semiconductor Device Package Manual	IEI-635	IEI-1213A
Semiconductor Device Mounting Technology Manual	IEI-616	IEI-1207B
Quality Grades on Semiconductor Devices	IEI-620	IEI-1209A
NEC Semiconductor Device Reliability & Quality Control	IEM-5068	
Electrostatic Discharge (ESD) Test	MEM-539	
Guide to Quality Assurance for Semiconductor Devices	MEI-603	MEI-1202
Microcomputer Related Products Guide Other Manufacturers Volume	MEI-604	

Note The contents of the above related documents are subject to change without notice. The latest documents should be used for design, etc.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

QTOP is a trademark of NEC Corporation.

EWS-4800 series and EWS-UX/V are trademarks of NEC Corporation.

MS-DOS is a trademark of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

SPARCstation is a trademark of SPARC International, Inc.

Sun OS is a trademark of Sun Microsystems, Inc.

HP9000 series 300 and HP-UX are trademarks of Hewlett-Packard Company.