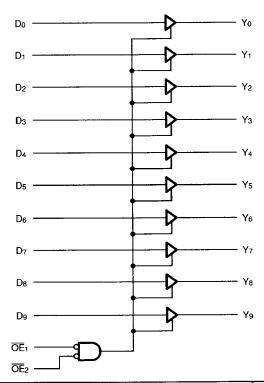
Am29827/Am29828

High Performance Buffers

Advanced **Devices**

DISTINCTIVE CHARACTERISTICS

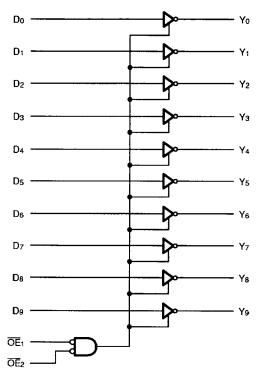
- High-speed buffers and inverters
 - Noninverting tpD = 5.0 ns typ
 - Inverting tpp = 4.5 ns tvp
- 200 mV minimum input hysteresis on input data
- Three-state outputs glitch-free during power-up and -down
- Outputs have Schottky clamp to ground


- 48 mA commercial lou
- High capacitance load capability
- Low capacitance inputs and outputs
- IOH specified 2.0 V and 2.4 V
- 24-pin 0.3" space saving package
- Fully TTL compatible inputs and outputs
- IMOX[™] high performance IMplanted OXide isolated process

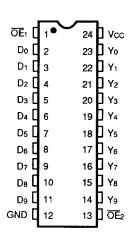
GENERAL DESCRIPTION

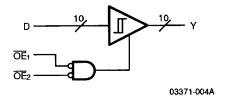
The Am29827 and Am29828 10-bit bus buffers provide high performance bus interface buffering for wide data/ address paths or buses carrying parity. The 10-bit buffers have NOR-ed output enables for maximum control flexibility. All buffer data inputs have 200 mV minimum input hysteresis to provide improved noise rejection.

All of the Am29800 high performance interface family are designed for high capacitance load drive capability while providing low capacitance bus loading at both inputs and outputs. All inputs are Schottky diode inputs, and all outputs are designed for low capacitance bus loading in the high impedance state.

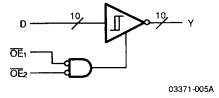

BLOCK DIAGRAMS Am29827

03371-001A


BLOCK DIAGRAMS (Continued) Am29828

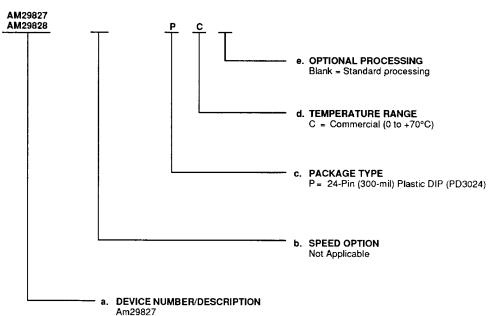

03371-002A

CONNECTION DIAGRAM


DIP

03371-003A

Am29827 (Noninverting)



Am29828 (Inverting)

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:

- a. Device Number
- b. Speed Option (if applicable)
 c. Package Type
 d. Temperature Range
- e. Optional Processing

10-Bit Noninverting Bus Buffer Am29828 10-Bit Inverting Bus Buffer

Valid Combinations				
AM29827				
AM29828	PC			

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

PIN DESCRIPTION

ŌĒi

Y_i

When both are LOW the outputs are enabled. When either one or both are HIGH the outputs are HI-Z.

10-bit data output.

 \mathbf{D}_{i}

10-bit data input.

FUNCTION TABLES

Am29827 (Noninverting)

Inp	uts	Outputs	
ŌĒ	Di	Yi	Function
L	Н	Н	Transparent
L	L	L	Transparent
Н	Х	Z	HI-Z

Am29828 (Inverting)

Inp	outs	Outputs	
ŌĒ	Di	Yi	Function
L	Н	L	Transparent
L	L	Н	Transparent
Н	Х	Z	HI-Z

H = HIGH

L = LOW

X = Don't Care

Z = High Impedance

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

-65°C to +150°C

Ambient Temperature with

Power Applied

-55°C to +125°C

Supply Voltage to Ground

Potential Continuous DC Voltage Applied to Output -0.5 V to +7.0 V

for High Output State

-1.5 V to +5.5 V

DC Input Voltage

-0.5 V to +5.5 V

DC Output Current, Into Outputs

100 mA

DC Input Current

-30 mA to +5.0 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature, (TA)

Supply Voltage, (Vcc)

0°C to +70°C

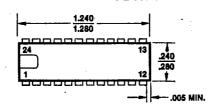
5.0 V ± 10% 4.5 V to 5.5 V

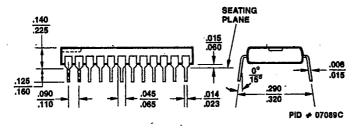
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges unless otherwise specified

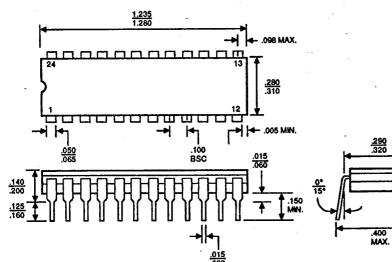
Parameter Symbol	Parameter Description	Test Conditions			Max.	Unit
Vон	Output HIGH Voltage	Vcc = 4.5 V I _{OH} = -15 mA		Min. 2.4		V
		VIN = VIH OF VIL	l _{OH} = −24 mA	2.0	·	V
V_{OL}	Output LOW Voltage	Vcc = 4.5 V	I _{OL} = 48 mA		0.5	v
		VIN = VIH Or VIL				
ViH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0		٧
V _{IL}	Input LOW Level	Guaranteed input logical LOW voltage for all inputs			0.8	V
Vı	Input Clamp Voltage	Vcc = 4.5 V, I _{IN} = -18 mA			-1.2	V
VHYST	Input Hysteresis	Output under test connected to AC load test circuit		200		mV
l _{IL}	Input LOW Current	Vcc = 5.5 V, V _{IN} = 0.4 V			-1.0	mA
lн	Input HIGH Current	Vcc = 5.5 V, V _{IN} = 2.7 V		†	50	μА
h	Input HIGH Current	Vcc = 5.5 V, V _{IN} = 5.5 V			1.0	mA
lozh	Output Off-State Output Current (HI-Z)	Vcc = 5.5 V, Vo = 2.4 V			50	μA
lozL	Output Off-State Output Current (HI-Z)	V _{CC} = 5.5 V, V _O = 0.4 V			-50	μА
Isc	Output Short Circuit Current	Vcc = 5.5 V		-75	-250	mA
lcc	Supply Current	Vcc = 5.5 V	Over Temperature Range		80	
		Outputs Open	+70°C		75	mA

SWITCHING CHARACTERISTICS (TA = 25°C, Vcc = 5.0 V)


Parameter Symbol	Parameter Description	Test Conditions*	Min.	Тур.	Max.	Unit
t _{PLH}	Data (D _i) to Output (Y _i) Am29827 (Noninverting)	C _L = 50 pF		4.8	6.0	ns
t PHL				5.2	6.2	ns
t PLH		C 200 pF		8.0	11	ns
t PHL		C _L = 300 pF		10.8	13.2	ns
t _{PLH}		0 50 5		4.0	5.2	ns
t PHL	Data (Di) to Output (Yi)	C _L = 50 pF		4.9	5.9	ns
tры	Am29828 (Inverting)	C _L = 300 pF		7.3	10	ns
t _{PHL}				10.5	12.9	ns
tzн		0 50 - 5		6.5	12	ns
tzı	Output Enable Time OE to V	C _L = 50 pF		9.5	12	ns
tzн	Output Enable Time OE to Yi	C. 200 pF		11	17	ns
tzL		C _L = 300 pF		18	21	ns
tHZ		C. 5.7		3.5	8.0	ns
tız	Output Disable Time OE to Yi	C _L = 5 pF		3.5	8.0	ns
tHZ		C _L = 50 pF		11.2	16	ns
tız				4.5	11	ns

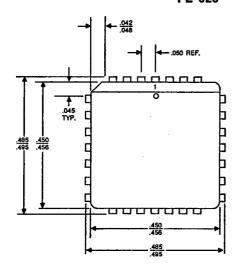

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified

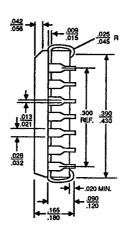
Parameter Symbol	Parameter Description	Test Conditions*	Min.	Max.	Unit
tplh	Data (Di) to Output (Yi)	C _L = 50 pF		8	ns
t _{PHL}				8	ns
t _{PLH}	Am29827 (Noninverting)	0 000 5		15	ns
t PHL		C _L = 300 pF		15	ns
1 PLH				7.0	ns
t PHL	Data (Di) to Output (Yi)	C _L = 50 pF		7.5	ns
t _{PLH}	Am29828 (Inverting)	C _L = 300 pF		14	ns
t _{PHL}				14	ns
tzн				15	ns
tzı	1	C _L = 50 pF		15	ns
tzıн	Output Enable Time OE to Yi	0 000 5		20	ns
tzı		C _L = 300 pF		23	ns
tHZ		0.5=5		9	ns
tız	Output Disable Time \overline{OE} to Y_i	C _L = 5 pF		9	ns
tHZ		C _L = 50 pF		17	ns
tız .				12	ns


^{*}See Test Circuit and Waveforms (Chapter 2).

PD3024

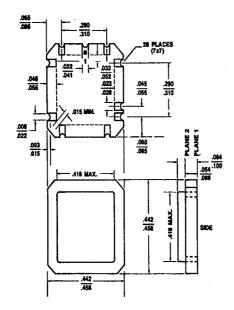
CD3024


*For reference only.


1954 G-03

T-90-20

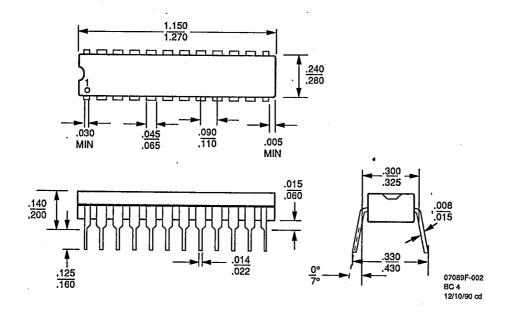
PL 028


PACKAGE OUTLINES (Cont'd.)

PID # 06751E

CL 028

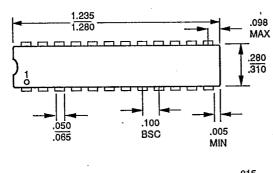
PIO # 06595D

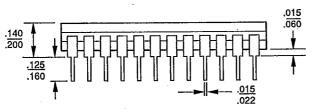

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, correlated testing, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

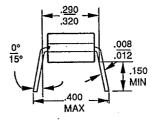
ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA TEL: (408) 732-2400 • TWX: 910-339-9280 • TELEX: 34-6306 • TOLL FREE: (800) 538-8450

© 1988 Advanced Micro Devices, Inc. Printed in U.S.A. AIS-WCP-20M-01/88-0

Bus Interface Products

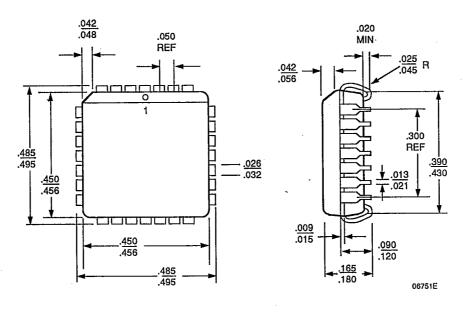

PD3024 24-Pin 300-mil Plastic SKINNYDIP



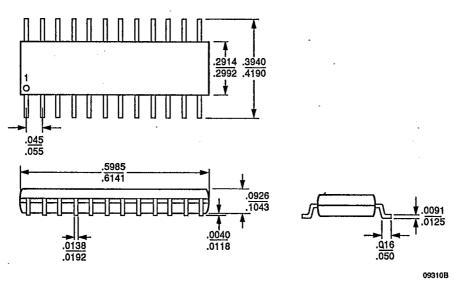

Note: For reference only. All dimensions measured in inches. BSC is an ANSI standard for Basic Space Centering.

T-90-20

CD3024 24-Pin 300-mil Ceramic SKINNYDIP



06850C


PL 028 28-Pin Plastic Leaded Chip Carrier

Bus Interface Products

\$0 024 24-Pin Plastic Small Outline Package

T-90-20

