DESCRIPTION

The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

FEATURES

- 120 MHz unity gain bandwidth
- Adjustable gains from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components
- MIL-STD processing available

PIN CONFIGURATIONS

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

BLOCK DIAGRAM

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
14-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE592N14	0405 B
14-Pin Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE592D14	0175 D
8-Pin Plastic Dual In-Line Package (DIP)	0 to $+70^{\circ} \mathrm{C}$	NE592N8	0404 B
8-Pin Small Outline (SO) package	0 to $+70^{\circ} \mathrm{C}$	NE592D8	0174 C

NOTES

N8, N14, D8 and D14 package parts also available in "High" gain version by adding "H" before package designation, i.e., NE592HDB

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5 ^ { \circ }} \mathrm{C}$, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	± 8	V
$\mathrm{~V}_{\text {IN }}$	Differential input voltage	± 5	V
$\mathrm{~V}_{\mathrm{CM}}$	Common-mode input voltage	± 6	V
$\mathrm{I}_{\mathrm{OUT}}$	Output current	10	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{D} \text { MAX }}$	Maximum power dissipation,		
	$\mathrm{T}_{\mathrm{A}=25^{\circ} \mathrm{C}(\text { (still air })^{1}}$		W
	$\mathrm{D}-14$ package	0.98	W
	$\mathrm{D}-8$ package	0.79	W
	$\mathrm{~N}-14$ package	1.44	W

NOTES:

1. Derate above $25^{\circ} \mathrm{C}$ at the following rates:
$\mathrm{D}-14$ package at $7.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
D-8 package at $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{N}-14$ package at $11.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{N}-8$ package at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \mathrm{V}_{\mathrm{SS}}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE592			UNIT
			Min	Typ	Max	
Avol	Differential voltage gain, standard part Gain 1^{1} Gain $2^{2,4}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	$\begin{gathered} 250 \\ 80 \end{gathered}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { V/V } \\ & \text { V/V } \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input resistance Gain 1^{1} Gain 22, 4		10	$\begin{aligned} & 4.0 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input capacitance ${ }^{2}$	Gain 2^{4}		2.0		pF
Ios	Input offset current			0.4	5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current			9.0	30	$\mu \mathrm{A}$
$\mathrm{V}_{\text {NOISE }}$	Input noise voltage	BW 1kHz to 10MHz		12		$\mu \mathrm{V}_{\text {RMS }}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			V
CMRR	Common-mode rejection ratio Gain 2^{4} Gain 2^{4}	$\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}=5 \mathrm{MHz}$	60	$\begin{aligned} & 86 \\ & 60 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
PSRR	Supply voltage rejection ratio Gain 2^{4}	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50	70		dB
$\mathrm{V}_{\text {OS }}$	Output offset voltage Gain 1 Gain 2^{4} Gain 3^{3}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$		0.35	$\begin{gathered} 1.5 \\ 1.5 \\ 0.75 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{CM}	Output common-mode voltage	$\mathrm{R}_{\mathrm{L}=\infty}$	2.4	2.9	3.4	V
$\mathrm{V}_{\text {OUT }}$	Output voltage swing differential	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	3.0	4.0		V
R OUT	Output resistance			20		Ω
I_{CC}	Power supply current	$\mathrm{R}_{\mathrm{L}=\infty}$		18	24	mA

NOTES:

1. Gain select Pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 14 -pin version only.

DC ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics $\mathrm{V}_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0,0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE592			UNIT
			Min	Typ	Max	
Avol	Differential voltage gain, standard part Gain 1^{1} Gain $2^{2,4}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	$\begin{gathered} 250 \\ 80 \end{gathered}$		$\begin{aligned} & 600 \\ & 120 \end{aligned}$	$\begin{aligned} & \text { V/V } \\ & \text { V/V } \end{aligned}$
RIN	Input resistance Gain $2^{2,4}$		8.0			k Ω
los	Input offset current				6.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BIAS }}$	Input bias current				40	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IN }}$	Input voltage range		± 1.0			V
CMRR	Common-mode rejection ratio Gain 2^{4}	$\mathrm{V}_{\mathrm{CM}} \pm 1 \mathrm{~V}, \mathrm{f}<100 \mathrm{kHz}$	50			dB
PSRR	Supply voltage rejection ratio Gain 2^{4}	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 0.5 \mathrm{~V}$	50			dB
$\mathrm{V}_{\text {OS }}$	Output offset voltage Gain 1 Gain 2^{4} Gain 3^{3}	$\mathrm{R}_{\mathrm{L}}=\infty$			$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.0 \end{aligned}$	V
$\mathrm{V}_{\text {OUT }}$	Output voltage swing differential	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.8			V
I_{CC}	Power supply current	$\mathrm{R}_{\mathrm{L}=\infty}$			27	mA

NOTES:

1. Gain select Pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 14-pin versions only.

AC ELECTRICAL CHARACTERISTICS

$T_{A}=+25^{\circ} \mathrm{C} \mathrm{V}_{S S}= \pm 6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$, unless otherwise specified. Recommended operating supply voltages $\mathrm{V}_{\mathrm{S}}= \pm 6.0 \mathrm{~V}$. All specifications apply to both standard and high gain parts unless noted differently.

SYMBOL	PARAMETER	TEST CONDITIONS	NE/SA592			UNIT
			Min	Typ	Max	
BW	Bandwidth Gain 1^{1} Gain $2^{2,4}$			$\begin{aligned} & 40 \\ & 90 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
t_{R}	Rise time Gain 1^{1} Gain $2^{2,4}$	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		$\begin{gathered} 10.5 \\ 4.5 \\ \hline \end{gathered}$	12	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
tpd	Propagation delay Gain 1^{11} Gain $2^{2,4}$	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}$		$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	10	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

NOTES:

1. Gain select Pins $G_{1 A}$ and $G_{1 B}$ connected together.
2. Gain select Pins $G_{2 A}$ and $G_{2 B}$ connected together.
3. All gain select pins open.
4. Applies to 14 -pin versions only.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TEST CIRCUITS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

TYPICAL APPLICATIONS

FILTER NETWORKS

Z NETWORK	FILTER TYPE	V_{0} (s) TRANSFER $V_{1}(s)$ FUNCTION
-	LOW PASS	$\frac{1.4 \times 10^{4}}{L} \quad\left[\frac{1}{s+R / L}\right]$
	HIGH PASS	$\frac{1.4 \times 10^{4}}{R} \quad\left[\frac{s}{s+1 / R C}\right]$
	BAND PASS	$\frac{1.4 \times 10^{4}}{L} \quad\left[\frac{s}{s^{2}+R / L s+1 / L C}\right]$
	BAND REJECT	$\frac{1.4 \times 10^{4}}{R} \quad\left[\frac{s^{2}+1 / L C}{s^{2}+1 / L C+s / R C}\right]$

NOTES:
In the networks above, the R value used is assumed to include $2 \mathrm{r}_{\mathrm{e}}$, or approximately 32Ω.
$S=j \omega$
$\omega=2 \pi f$

