Agilent Technologies
Innovating the HP Way

Infrared IrDA Compliant Transceiver

Technical Data

HSDL-1001

Features

- Fully Compliant to IrDA 1.0 - $115 \mathrm{~Kb} / \mathrm{s}$
- Compatible with ASK, Consumer IR/TV Remote
- Superb Nose-to-Nose Operation
- Low Power Consumption $3 \mu \mathrm{~A}$ in Shutdown
- Supply Voltage Range 2.7 V-5.5 V
- Operational Down to 2 V
- Free Netlist for IrDA Modulation Circuitry
- Low Latency $100 \mu \mathrm{~s}$
- Available in Tape \& Reel for Auto Insertion
- Drop in Replacement for HSDL-1000

* SIDE BUTTRESS LEADS ARE FOR MECHANICAL STABILITY AND SHOULD NOT BE CONNECTED TO ANY ELECTRICAL POTENTIAL.

Package Dimensions

Option 0X2*

NOTE:
THE -B- DATUM IS FORMED BY THE TWO HIGHEST POINTS OF THE COMBINDED SURFACE FORMED BY THIS SURFACE AND THE CORRESPONDING SURFACE OF THE SAME LEAD ON THE OPPOSITE SIDE OF THE PACKAGE.
$0=$ TAPE AND REEL.
X = STRIP OF 10.
1 = JEDEC STANDARD ARRAY.

dimensions in millimeters (inches).

Package Dimensions (continued)

Option X04

NOTE:
THE -B- DATUM IS FORMED BY THE TWO HIGHEST POINTS OF THE COMBINED SURFACE FORMED BY THIS SURFACE AND THE CORRESPONDING SURFACE OF THE SAME LEAD ON THE OPPOSITE SIDE OF THE PACKAGE.
*X POSITION INDICATES PACKAGING $0=$ TAPE AND REEL.
$1=$ JEDEC STANDARD ARRAY.

DIMENSIONS IN MILLIMETERS (INCHES).

Truth Table

Inputs			Outputs		
TXD	EII1]	SD	IE(LED)	LEDA	RXD
V_{IH}	X	X	High (On)	Low	NV
V_{IL}	$\mathrm{EI}_{\mathrm{IH}}{ }^{[2]}$	V_{IL}	Low (Off)	High	Low $^{[3]}$
V_{IL}	EI_{L}	V_{IL}	Low (Off)	High	High
V_{IL}	X	V_{IH}	Low (Off)	High	High

$X=$ Don't care
NV = Not Valid
Notes:

1. EI - Irradiance (light intensity) present at detector surface.
2. For in-band IrDA signals $\leq 115 \mathrm{~kb} / \mathrm{s}$.
3. RXD Low is a pulsed response. The condition is maintained for a duration dependent on the pattern and strength of the incident signal.

Pinout

Pin	Description	Symbol
1	Shutdown	SD
2	No Connection	
3	Supply Voltage	V_{CC}
4	Receiver Data Output	RXD
5	Ground	Gnd
6	Transmitter Data Input	TXD
7	LED Cathode	LEDC
8	LED Anode	LEDA

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Conditions
Storage Temperature	T_{S}	-20	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Lead Solder Temperature			260	${ }^{\circ} \mathrm{C}$	For 10 s (1.6mm below seating plane)
Average LED Current	$\mathrm{I}_{\text {LED }}(\mathrm{DC})$		100	mA	
Repetitive Pulsed LED Current	$\mathrm{I}_{\text {LED }}(\mathrm{RP})$		500	mA	$\leq 90 \mu \mathrm{~s}$ Pulse Width, $\leq 20 \%$ Duty Cycle
Peak LED Current	$\mathrm{I}_{\text {LED }}(\mathrm{PK})$		1.0	A	$\leq 2 \mu$ S Pulse Width, $\leq 10 \%$ Duty Cycle
LED Anode Voltage	$\mathrm{V}_{\text {LEDA }}$	-0.5	7.0	V	
LED Cathode Voltage	$\mathrm{V}_{\mathrm{LEDC}}$	-0.5	$\mathrm{~V}_{\text {LEDA }}$	V	
Supply Voltage	V_{CC}	0	7.0	V	
Transmitter Data Input Voltage	$\mathrm{V}_{\mathrm{TXD}}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}, 5.5$	V	
Receiver Data Output Voltage	$\mathrm{V}_{\mathrm{RXD}}$	-0.5	$\left(\mathrm{~V}_{\mathrm{CC}}+0.5\right), 5.5$	V	
Shutdown	V_{SD}	-0.5	$\mathrm{~V}_{\mathrm{CC}}, 5.5$	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Conditions
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	2.7	5.5	V	
Logic High Transmitter Input Voltage	$\mathrm{V}_{\mathrm{IH}}(\mathrm{TXD})$	2.5	$\mathrm{~V}_{\mathrm{CC}}$	V	
Logic Low Transmitter Input Voltage	$\mathrm{V}_{\mathrm{IL}}(\mathrm{TXD})$	0.0	0.8	V	
Logic Low Shutdown Input Voltage	$\mathrm{V}_{\mathrm{IL}}(\mathrm{SD})$	0.0	0.8	V	
Logic High Shutdown Input Voltage	$\mathrm{V}_{\mathrm{IH}}(\mathrm{SD})$	2.5	$\mathrm{~V}_{\mathrm{CC}}$	V	
Logic High Receiver Input Irradiance	$\mathrm{EI}_{\mathrm{IH}}$	0.0036	500	$\mathrm{~mW} / \mathrm{cm}^{2}$	For in-band signals*
Logic Low Receiver Input Irradiance	$\mathrm{EI}_{\mathrm{IL}}$		0.3	$\mu \mathrm{~W} / \mathrm{cm}^{2}$	For in-band signals*
LED (Logic High) Current Pulse Amplitude	$\mathrm{I}_{\mathrm{LEDA}}$	240		mA	For one metre links with daylight filters
Receiver Set-up Time		200		$\mu \mathrm{~s}$	For full sensitivity after transmitting
Signal Rate RXD		2.4	115	Kp / s	
Ambient Light				See IrDA Serial Infrared Physical Layer Link Specification, Appendix A for ambient levels.	

*Note: An in-band optical signal is a pulse/sequence where the peak wavelength, $\lambda \mathrm{p}$, is defined as $850 \mathrm{~nm} \leq \lambda \mathrm{p} \leq 900 \mathrm{~nm}$, the pulse repetition rate, PRR , is defined as $2.4 \mathrm{Kp} / \mathrm{s} \leq \mathrm{PRR} \leq 115.2 \mathrm{Kp} / \mathrm{s}$ and the pulse width, PW , is defined as $1.6 \mu \mathrm{~s} \leq \mathrm{PW} \leq(3 / 16) / \mathrm{PRR}$.

Electrical \& Optical Specifications

Specifications hold over $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and all typicals are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. Listed conditions represent worst case values for the parameters under test. Unspecified test conditions can be anywhere in their recommended operating range.

Parameter		Symbol	Min.	Typ.	Max.	Unit	Conditions
Receiver Data Output Voltage	Logic Low ${ }^{[2]}$	$\mathrm{V}_{\text {OL }}(\mathrm{RXD})^{[1,2]}$			0.4	V	$\begin{aligned} & \text { For in-band EI } \geq 3.6 \mu \\ & \text { W/ } \mathrm{cm}^{2}, \varphi^{1 / 2} \leq 15^{\circ} \end{aligned}$
	Logic High	$\mathrm{V}_{\mathrm{OH}}(\mathrm{RXD})$	$\mathrm{V}_{\mathrm{CC}}-0.6$			V	$\begin{aligned} & \mathrm{I}_{\mathrm{o}}=-20 \mu \mathrm{~A}, \text { for in-band EI } \\ & \leq 0.3 \mu \mathrm{~W} / \mathrm{cm}^{2} \end{aligned}$
Receiver Field of View	Twice HalfAngle	$2 \varphi^{1 / 2}$	30			-	Half-angle, $\varphi^{1 / 2}$, is the angle where receiver sensitivity $=3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}$.
Receiver Peak Sensitivity Wavelength		$\lambda \mathrm{p}$ (EI)		880		nm	
Effective Detector Area				0.16		cm^{2}	
Transmitter Radiant Intensity	Logic High Intensity	IEH	$\begin{aligned} & 55 \\ & 44 \end{aligned}$	109	250	$\mathrm{mW} / \mathrm{SR}$ mW/SR	$\begin{aligned} & \mathrm{I}_{\mathrm{LEDA}}=240 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=2.5 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$
	Peak Wavelength	$\lambda \mathrm{p}$ (IE)		875		nm	
	Spectral Line Half Width	$\Delta \lambda 1 / 2$		35		nm	
Transmitter Field of Emission	Twice HalfAngle	$2 \theta^{1 / 2}$	30		60	-	Half-angle, $\theta^{1 / 2}$, is the angle where radiant intensity $=$ $44 \mathrm{~mW} /$ SR .
Transmitter Data Input Current	Logic Low	I_{IL} (TXD)	-1.0		5.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{I}} \leq 0.8 \mathrm{~V}$
	Logic High	I_{IH} (TXD)		$\begin{gathered} \hline 40 \\ 125 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 100 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{I}}=5.0 \mathrm{~V} \\ \hline \end{array}$
LED Anode On State Voltage		$\mathrm{V}_{\text {ON }}($ LEDA $)$		2.1	2.50	V	$\begin{aligned} & \mathrm{I}_{\mathrm{LEDA}}=240 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
LED Anode Off State Leakage		$\mathrm{I}_{\text {LK }}$ (LEDA)		<0.2	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{LEDA}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0.3 \mathrm{~V} \end{aligned}$
Supply Current	Idle	$\mathrm{I}_{\mathrm{CC} 1}$		$\begin{aligned} & 190 \\ & 210 \end{aligned}$	$\begin{aligned} & \hline 260 \\ & 290 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{EI}=\mathrm{EI}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{I}}(\mathrm{TXD})=\mathrm{V}_{\mathrm{IL}} \end{aligned}$
	Active Receiver	$\mathrm{I}_{\mathrm{CC} 2}$		0.22	25	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{EI}=\mathrm{EI}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{I}}(\mathrm{TXD})=\mathrm{V}_{\mathrm{IL}} \end{aligned}$
	Active Transmitter	$\mathrm{I}_{\text {CC3 }}$			10	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{EI}=\mathrm{EI}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{I}}(\mathrm{TXD})=\mathrm{V}_{\mathrm{IH}} \end{aligned}$
	Shutdown	$\mathrm{I}_{\mathrm{CC}}(\mathrm{SD})$		$\begin{aligned} & \hline 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 14 \\ & 20 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{EI}=\mathrm{EI}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{I}}(\mathrm{TXD})=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{SD}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$
Shutdown Input Current	Logic High	$\mathrm{I}_{\mathrm{IH}}(\mathrm{SD})$		2.5	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \text { volts } \\ & \mathrm{V}_{\mathrm{SD}}=5.5 \text { volts } \end{aligned}$
		$\mathrm{I}_{\mathrm{IH}}(\mathrm{SD})$		2	8	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \text { volts } \\ & \mathrm{V}_{\mathrm{SD}}=3.6 \text { volts } \end{aligned}$
	Logic Low	$\mathrm{I}_{\text {IL }}(\mathrm{SD})$	-1.0		1	$\mu \mathrm{A}$	$\begin{aligned} & 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SD}} \leq 0.8 \mathrm{~V} \end{aligned}$

Notes:

1. Pulsed Response - Logic Low is a pulsed response. A receiver output low state $V_{O L}(R X D)$ is not indefinitely maintained but is instead a pulsed response. The output low state is maintained for a duration dependent on the incident bit pattern and incident intensity (EI).
2. The $\mathrm{E}_{\mathrm{I}} \geq 3.6 \mu \mathrm{~W} / \mathrm{cm}^{2}$ condition guarantees the IrDA minimum receiver sensitivity of $4.0 \mu \mathrm{~W} / \mathrm{cm}^{2}$ while allowing for 10% light loss through a cosmetic window placed in front of the HSDL-1001.

Switching Specifications

Specifications hold over $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$ and $0 \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and all typicals are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and T_{A} $=25^{\circ} \mathrm{C}$ unless otherwise specified. Listed conditions represent worst case values for the parameters under test. Unspecified test conditions can be anywhere in their recommended operating range.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Transmitter Optical Pulse Width	$\mathrm{t}_{\mathrm{pw}}(\mathrm{SD})$	1.45	1.7	2.15	$\mu \mathrm{~s}$	$\mathrm{R}_{\mathrm{LED}}=$ Recommended Value $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IH}}(\mathrm{TXD}) \leq \mathrm{V}_{\mathrm{CC}}$ $\mathrm{t}_{\mathrm{pw}}(\mathrm{TXD})=1.6 \mu \mathrm{~s}$
Transmitter Optical Rise Time	$\mathrm{t}_{\mathrm{r}}(\mathrm{SD})$		0.05	0.6	$\mu \mathrm{~s}$	
Transmitter Optical Fall Time	$\mathrm{t}_{\mathrm{f}}(\mathrm{SD})$		0.1	0.6	$\mu \mathrm{~s}$	
Receiver Pulse Width	$\mathrm{t}_{\mathrm{pw}}(\mathrm{RXD})$	0.5		8.2	$\mu \mathrm{~s}$	For in-band EI $\leq 115.2 \mathrm{~Kb} / \mathrm{s}$
Receiver Latency Time	$\mathrm{t}_{\mathrm{L}}(\mathrm{RXD})$		100	200	$\mu \mathrm{~s}$	
Receiver Wake-Up Time	$\mathrm{t}_{\mathrm{wu}}(\mathrm{RXD})$		40	100	$\mu \mathrm{~s}$	
Receiver Shutdown Time	$\mathrm{t}_{\mathrm{sd}}(\mathrm{RXD})$		10	100	$\mu \mathrm{~s}$	

Application Circuit

Component	Recommended Value
$\mathrm{R}_{\mathrm{LED}}$	$9.1 \Omega, \pm 5 \%, 0.5 \mathrm{~W}$, for $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$
	$3.3 \Omega, \pm 5 \%, 0.5 \mathrm{~W}$, for $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$
CX 3	$0.10 \mu \mathrm{~F} \pm 22 \%$. XR7 Ceramic, Lead Length $\leq 5 \mathrm{~mm}$.
CX 4	$4.7 \mu \mathrm{~F}$ minimum. Larger values recommended for
	noisy supplies or environments.

Appendix A. Test Methods

A.1. Background Light and Electromagnetic Field

There are four ambient interference conditions in which the receiver is to operate correctly. The conditions are to be applied separately:

1. Electromagnetic field: $3 \mathrm{~V} / \mathrm{m}$ maximum (refer to IEC 801-3. severity level 3 for details)
2. Sunlight: 10 kilolux maximum at the optical port

This is simulated with an IR source having a peak wavelength within the range 850 nm to 900 nm and a spectral width less than 50 nm biased to provide $490 \mu \mathrm{~W} / \mathrm{cm}^{2}$ (with no modulation) at the optical port. The light source faces the optical port.

This simulates sunlight within the IrDA spectral range. The effect of longer wavelength radiation is covered by the incandescent condition.
3. Incandescent Lighting: 1000 lux maximum

This is produced with general service, tungsten-filament, gasfilled, inside-frosted lamps in the 60 Watt to 150 Watt range to generate 1000 lux over the horizontal surface on which the equipment under test rests. The light sources are above the test area. The source is expected to have a filament temperature in the 2700 to 3050 degrees Kelvin range and a spectral peak in the 850 nm to 1050 nm range.
4. Fluorescent Lighting: 1000 lux maximum

This is simulated with an IR source having a peak wavelength within the range 850 nm to 900 nm and a spectral width of less than 50 nm biased and modulated to provide an optical square wave signal ($0 \mu \mathrm{~W} / \mathrm{cm}^{2}$ minimum and $0.3 \mu \mathrm{~W} / \mathrm{cm}^{2}$ peak amplitude with 10% to 90% rise and fall times less than or equal to 100 ns) over the horizontal surface on which the equipment under test rests. The light sources are above the test area. The frequency of the optical signal is swept over the frequency range from 20 kHz to 200 kHz .

Due to the variety of fluorescent lamps and the range of IR emissions, this condition is not expected to cover all circumstances. It will provide a common floor for IrDA operation.

