HN27C101A Series

1M (128K x 8-bit) UV and OTP EPROM

DESCRIPTION

The Hitachi HN27C101A is a 1-Megabit Ultraviolet Erasable and One-Time Programmable Electrically Programmable Read Only Memory organized as 131,072 x 8-bits.

The HN27C101A features fast address access times and low power dissipation. This combination makes the HN27C101A suitable for high speed microcomputer systems. The HN27C101A offers high speed programming using page programming mode.

Hitachi's HN27C101A is offered in JEDEC-Standard Byte-Wide EPROM pinouts in 32-pin Ceramic and Plastic DIP and 32-lead Plastic SOP and TSOP packages. This allows socket replacement with Flash Memory and Mask ROMs. The HN27C101A TSOP package is offered in both standard and reverse bend pinouts.

The Ceramic DIP package is erasable by exposure to Ultraviolet light. The Plastic DIP, SOP and TSOP packaged devices are One-Time Programmable and once programmed, can not be rewritten.

FEATURES

· Fast Access Times:

100 ns/120 ns/150 ns/200 ns (max)

Single Power Supply:

V_{cc} = 5 V ± 10%
• Low Power Dissipation:

Active Mode: 50 mW/MHz (typ)

Standby Mode: 5 μW (typ)

· High Speed Page and Word Programming:

Page Programming Time: 14 sec (typ)

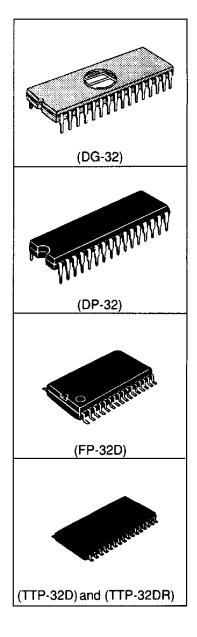
· Programming Power Supply:

 $V_{pp} = 12.5 \text{ V} \pm 0.3 \text{ V}$

Pin Arrangement:

JEDEC Standard Byte-Wide EPROM

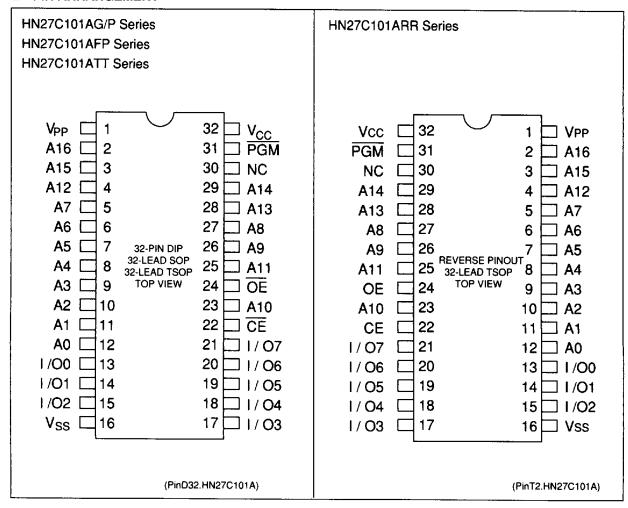
Flash Memory and Mask ROM Compatible


Packages:

32-pin Ceramic DIP

32-pin Plastic DIP

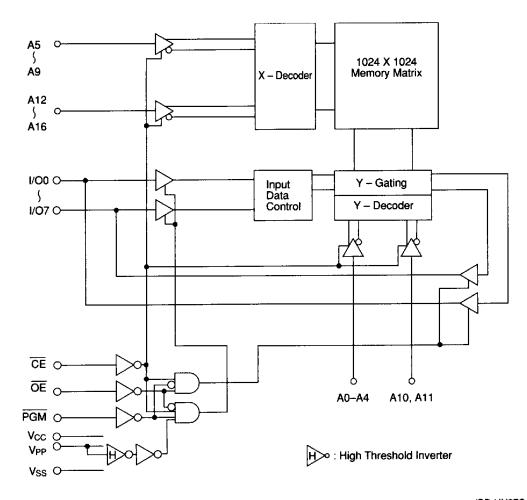
32-lead Plastic SOP


32-lead Plastic TSOP (Type II)

ORDERING INFORMATION

Type No.	Access Time	Package
HN27C101AG-10	100 ns	
HN27C101AG-12	120 ns	32-pin Ceramic DIP
HN27C101AG-15	150 ns	(DG-32)
HN27C101AG-20	200 ns	
HN27C101AP-12	120 ns	32-pin Plastic DIP
HN27C101AP-15	150 ns	(DP-32)
HN27C101AP-20	200 ns	
HN27C101AFP-12	120 ns	32-lead Plastic SOP
HN27C101AFP-15	150 ns	(FP-32D)
HN27C101AFP-20	200 ns	
HN27C101ATT-12	120 ns	32-lead Plastic TSOP
HN27C101ATT-15	150 ns	(TTP-32D)
HN27C101ATT-20	200 ns	
HN27C101ARR-12	120 ns	32-lead Plastic TSOP
HN27C101ARR-15	150 ns	(TTP-32DR)
HN27C101ARR-20	200 ns	Reverse bend

■ PIN ARRANGEMENT


4496203 0025396 217

HITACHI

■ PIN DESCRIPTION

Pin Name	Function					
A _o - A ₁₆	Address					
1/O ₀ - 1/O ₇	Input/Output					
CE	Chip Enable					
ŌĒ	Output Enable					
V _{cc}	Power Supply					
V _{PP}	Programming Supply					
V _{ss}	Ground					
PGM	Programming Enable					
NC	No Connection					

■ BLOCK DIAGRAM

(BD.HN27C101A)

MODE SELECTION

Mode	V _{PP}	V _{cc}	CE	ŌĒ	PGM	A ₉	1/0
Read	V _{cc}	V _{cc}	V _{IL}	V _{IL}	V _{IH}	X 1	D _{out}
Output Disable	V _{cc}	V _{cc}	V _{IL}	V _{IH}	V _{IH}	X	High-Z
Standby	V _{cc}	V _{cc}	V _{IH}	Х	Х	X	High-Z
Program	V _{PP}	V _{cc}	V _{IL}	V _{IH}	V _{IL}	X	D _{iN}
Program Verify	V _{PP}	V _{cc}	VIL	V, L	V _{iH}	Х	D _{out}
Page Data Latch	V _{PP}	V _{cc}	V _{IH}	V _{tL}	V _{IH}	Х	D _{IN}
Page Program	V _{PP}	V _{cc}	V _{IH}	V _{IH}	V	Х	High-Z
Program Inhibit	V_{cc}	V _{cc}	V _{IL}	Vil	Vil	X	High-Z
	V _{pp}	V _{cc}	V _{IL}	V _{IH}	V _{IH}	Х	High-Z
	V _{PP}	V _{cc}	V _{IH}	VIL	V _{IL}	Х	High-Z
	V _{PP}	V _{cc}	V _{IH}	V _{IH}	V _{IH}	Х	High-Z
Identifier	V _{cc}	V _{cc}	V _{IL}	V _{IL}	V _{IH}	V _H	ID

- X = Don't Care. V_{pp} = 0 V to V_{CC} . 11.5 V \leq V_H \leq 12.5 V

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
Supply Voltage ¹	V _{cc}	-0.6 to +7.0	٧
Programming Voltage 1	V _{PP}	-0.6 to +13.5	V
All Input and Output Voltage 1.2	VIN, VOUT	-0.6 to +7.0	V
A ₉ and OE Voltage ²	V _{iD}	-0.6 to +13.0	V
Operating Temperature Range	T _{OPR}	0 to +70	° C
Storage Temperature Range	T _{STG}	-65 to +125 ³ -55 to +125 ⁴	° C
Storage Temperature Under Bias	T _{BIAS}	0 to +80	° C

Notes:

- Relative to V_{ss} . V_{IN} , V_{OUT} , and V_{ID} min = -1.0V for pulse width \leq 20 ns. HN27C101AG.
- 3.
- HN27C101AP, HN27C101AFP, HN27C101ATT and HN27C101ARR.

■ CAPACITANCE $(T_a = 25^{\circ}C, f = 1 MHz)$

Item	Symbol	Min.	Max.	Unit	Test Condition	
Input Capacitance	C _{IN}	-	10	pF	$V_{IN} = 0V$	
Output Capacitance	C _{OUT}	-	15	pF	V _{OUT} = 0V	

HN27C101A Series

DC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

 $(V_{CC} = 5V \pm 10\%, V_{PP} = V_{SS} \text{ to } V_{CC}, T_a = 0 \text{ to } 70^{\circ}\text{C})$

ltem	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Input Leakage Current	l _u	-	-	2	μΑ	V _{IN} = 5.5 V
Output Leakage Current	l _{LO}	-	-	2	μΑ	V _{OUT} = 5.5 V/0.45 V
Operating V _{cc} Current	I _{CC1}	-	-	30	mA	$I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$
	l _{cc2}	-	-	30	mA	I _{OUT} = 0 mA, f = 5 MHz
	l _{cc3}	-	-	50	mA	I _{OUT} = 0 mA, f = 10 MHz
Standby V _{cc} Current	I _{SB}	-	-	1	mA	CE = V _{IH}
V _{PP} Current	I _{PP1}	-	1	20	μΑ	V _{pp} = 5.5 V
Input Voltage	V _{IH}	2.2	-	V _{cc} + 1 ²	٧	
	V _{IL}	-0.3 ¹	-	0.8	>	
Output Voltage	V _{OH}	2.4	-	-	٧	I _{OH} = -400 μA
	V _{OL}	•	-	0.45	٧	I _{OL} = 2.1 mA

Notes:

- 1. V_{IL} min = -1.0 V for pulse width \leq 50 ns.

 $V_{\rm H}^{\rm FL}$ max = $V_{\rm CC}$ + 1.5 V for pulse width \leq 20 ns. If $V_{\rm H}$ is over the specified maximum value, Read operation can not be guaranteed.

■ AC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

 $(V_{CC} = 5V \pm 10\%, V_{PP} = V_{SS} \text{ to } V_{CC}, T_a = 0 \text{ to } 70^{\circ}\text{C})$

Test Conditions

· Input pulse levels:

0.45 V / 2.4 V

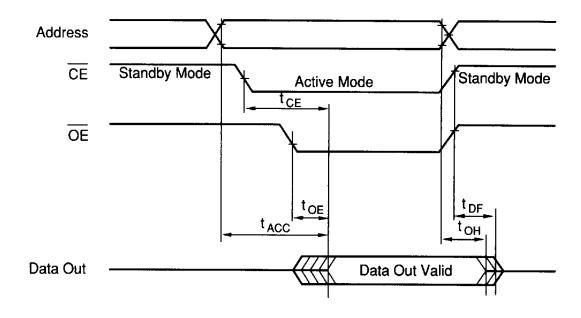
Input rise and fall times:

≤ 10 ns

Output load:

1 TTL Gate + 100 pF (Including scope and jig)

Reference levels for measuring timing: 0.8 V/2.0 V


		-1	10	-1	12	-1	15	-2	20		Test
Item	Symbol	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Max.	Unit	Condition
Address Access Time	t _{ACC}	-	100	-	120	-	150	-	200	ns	CE = OE = V,L
Chip Enable Access Time	t _{ce}	-	100	-	120	-	150	-	200	ns	OE = VIL
Output Enable Access Time	t _{OE}	•	60	-	60	-	70	-	70	ns	CE = V _{IL}
Output Disable to High-Z ¹	t _{DF}	0	50	0	50	0	50	0	50	пѕ	CE = V _{IL}
Output Hold to Address Change	t _{OH}	0	-	0	-	0	-	0	-	ns	CE = OE = V _{IL}

Note:

 $t_{\text{\tiny DF}}$ is defined as the time at which the output becomes an open circuit and data is no longer driven.

4

■ READ TIMING WAVEFORM

(TD.R.HN27C101A)

■ DC ELECTRICAL CHARACTERISTICS FOR PROGRAMMING OPERATIONS

 $(V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}, V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}, T_a = 25 \text{ °C} \pm 5 \text{ °C})$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Input Leakage Current	l _{L1}	-	-	2	μA	V _{IN} = 0 V to V _{CC}
Operating V _{cc} Current	I _{cc}	-	-	30	mA	
Operating V _{PP} Current	I _{PP}	-	-	40	mA	CE = PGM = V _{IL}
Input Voltage ³	V _{IH}	2.2	-	V _{cc} +.5 ⁶	>	
	V _{IL}	- 0.1 ⁵	-	0.8	٧	
Output Voltage	V _{OH}	2.4	-	-	٧	l _{OH} = -400 μA
	V _{oL}	-	-	0.45	٧	I _{OH} = 2.1 mA

Notes:

- V_{cc} must be applied before V_{pp} and removed after V_{pp}.
- 2. V_{pp} must not exceed 13 V, including overshoot.
- 3. Device reliability may be adversely affected if the device is installed or removed while $V_{pp} = 12.5 \text{ V}$.
- 4. Do not change V_{PP} from V_{IL} to 12.5 V or 12.5 V to V_{IL} when $\overline{CE} = low$.
- 5. $V_{IL} \min = -0.6 \text{ V for pulse width} \le 20 \text{ ns.}$
- 6. If \tilde{V}_{H} is over the specified maximum value, programming operation can not be guaranteed.

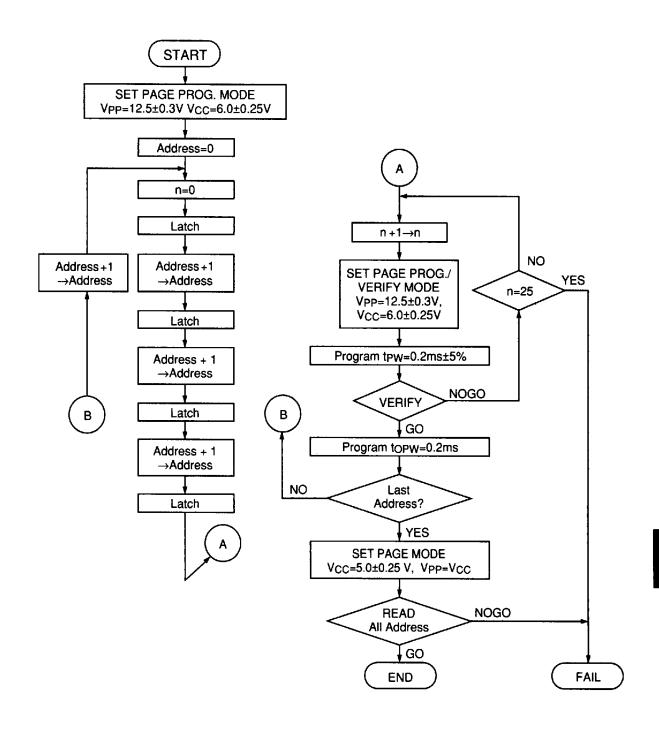
HN27C101A Series

■ AC ELECTRICAL CHARACTERISTICS FOR PROGRAMMING OPERATIONS

 $(V_{\rm CC} = 6.25 \; V \pm 0.25 \; V, \, V_{\rm PP} = 12.5 \; v \pm 0.3 \; V, \, T_a = 25^{\circ} C \pm 5^{\circ} C)$

Test Conditions

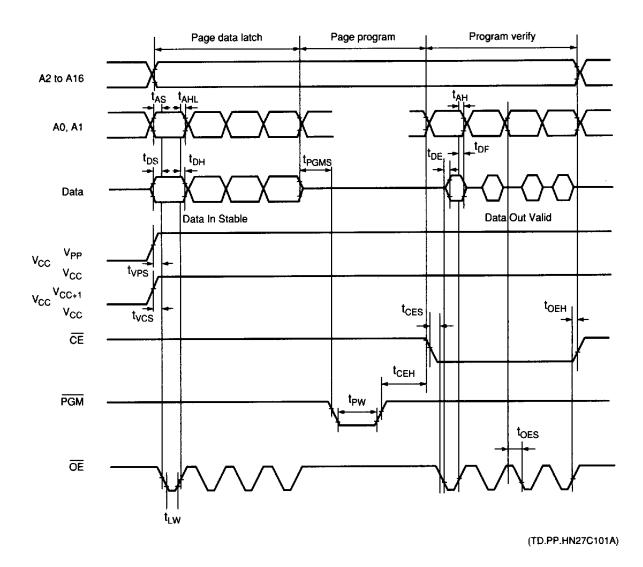
Input pulse levels: 0.45 V / 2.4 V
 Input rise and fall times: ≤ 20 ns


Reference levels for measuring timing: 0.8 V / 2.0V

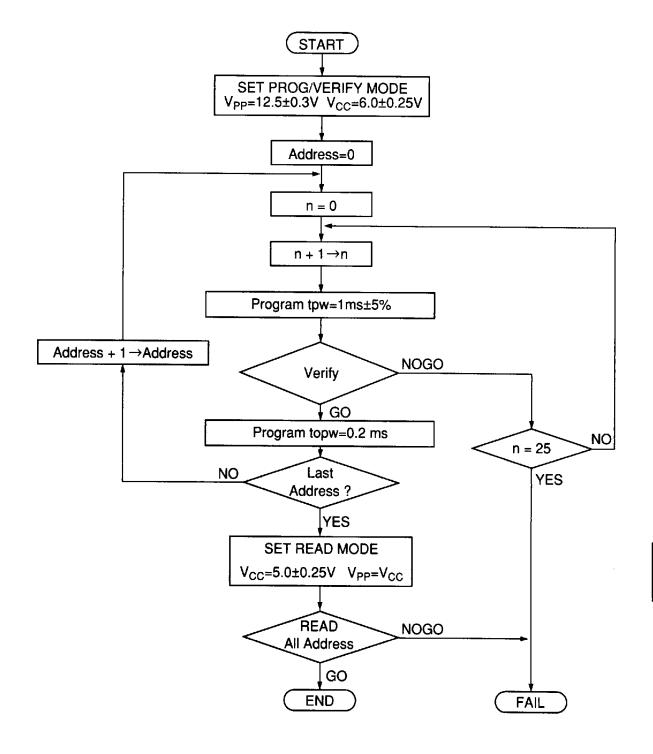
Item	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Address Setup Time	t _{AS}	2	-	-	μs	
Address Hold Time	t _{AH}	0	-	-	μs	
Data Setup Time	t _{os}	2	-	-	μs	
Data Hold Time	t _{oH}	2	-	-	μs	
Chip Enable Setup Time	t _{ces}	2	-	-	μs	
V _{PP} Setup Time	t _{vPS}	2	-	-	μs	
V _{cc} Setup Time	t _{vcs}	2	-	-	μs	
Output Enable Setup Time	t _{oes}	2	-	-	μs	
Output Disable Time	t _{of}	0	-	130	ns	
PGM Initial Programming Pulse Width	t _{PW}	0.19	0.20	0.21	ms	
PGM Overprogramming Pulse Width	t _{opw}	0.19	-	5.25	ms	
Data Valid from Output Enable Time	t _{o∈}	0	-	150	ns	
Output Enable Pulse During Data Latch	t _{LW}	1	-	-	μs	
Output Enable Hold Time	t _{oeh}	2	-	-	μs	
Chip Enable Hold Time	t _{ceh}	2	-		μs	
PGM Setup Time	t _{PGMS}	2	-	-	μs	

Note: 1. t_{DF} is defined as the time at which the output becomes an open circuit and data is no longer driven.

■ PAGE PROGRAMMING FLOWCHART


The Hitachi HN27C101A can be programmed with the high performance Page Programming algorithm shown in the following flowchart. This algorithm provides a fast programming time without voltage stress to the device or deterioration in reliability of programmed data.

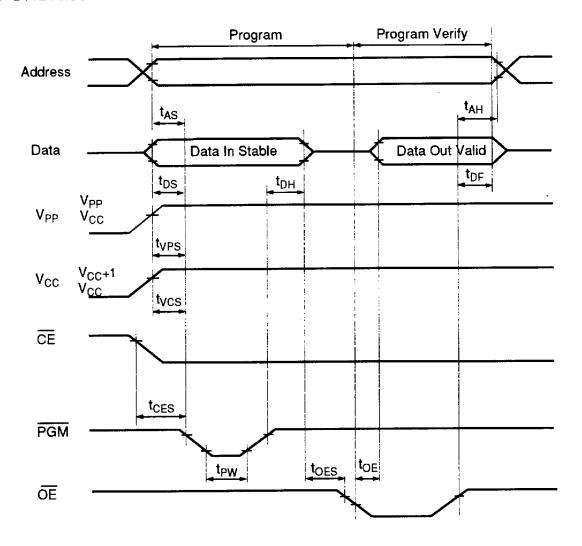
(FC.PP.HN27C101A)


4496203 0025402 340 **■ HITACHI**

■ PAGE PROGRAMMING TIMING WAVEFORM

■ BYTE PROGRAMMING FLOWCHART

The Hitachi HN27C101A can be programmed with the high performance Byte Programming algorithm shown in the following flowchart. This algorithm provides a fast programming time without voltage stress to the device or deterioration in reliability of programmed data.



(FC.P.HN27C101A)

🖿 4496203 0025404 113 🕶 🕒

HITACHI

■ BYTE PROGRAMMING TIMING WAVEFORM

(TD.P.HN27C101A)

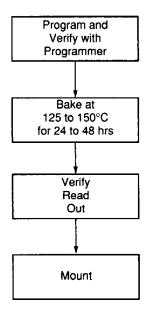
■ ERASING THE HN27C101A

The Hitachi HN27C101A Ceramic DIP package allow the device to be erased by exposure to ultraviolet light of 2537Å. All of the data is changed to "1" after this erasure procedure. The minimum integrated dose (UV intensity x exposure time) for erasure is 15 W-sec/cm².

■ DEVICE IDENTIFIER MODE DESCRIPTION

The Device Identifier Mode allows binary codes to be read from the outputs that identify the manufacturer and the type of device. Using this mode with programming equipment, the device will automatically match its own erase and programming algorithm.

■ HN27C101A SERIES IDENTIFIER CODE


Identifier	A _o	I/O,	I/O ₆	1/O ₅	I/O ₄	I/O ₃	1/O ₂	1/0,	I/O ₀	Hex Data
Manufacturer Code	V	0	0	0	0	0	1	1	1	07
Device Code	V _{IH}	0	0	1	1	1	0	0	0	38

Notes:

- 1. $V_{cc} = 5.0 \text{ V} \pm 10\%$
- 2. $A_9 = 12.0 \text{ V} \pm 0.5 \text{V}$
- 3. $A_1^3 A_8$, $A_{10} A_{16}$, \overline{CE} , $\overline{OE} = V_{1L}$, $\overline{PGM} = V_{1H}$
- 4. X = Don't Care

■ HN27C101AP/FP/TT/RR RECOMMENDED SCREENING CONDITIONS

Before mounting the HN27C101A plastic packages, please make the following screening (baking without bias) shown below:

(RSC.EPROM)