# mos integrated circuit $\mu PD75P3018A$

# **4-BIT SINGLE-CHIP MICROCONTROLLER**

# DESCRIPTION

NEC

The  $\mu$ PD75P3018A replaces the  $\mu$ PD753017A's internal mask ROM with a one-time PROM, and features expanded ROM capacity. The  $\mu$ PD75P3018A inherits the function of the  $\mu$ PD75P3018, and enables high-speed operation at a low supply voltage of 1.8 V.

Because the  $\mu$ PD75P3018A supports programming by users, it is suitable for use in evaluation of systems in development stages using the  $\mu$ PD753012A, 753016A, or 753017A, and for use in small-scale production.

The following document describes further details of the functions. Please make sure to read this document before starting design.

μPD753017 User's Manual : U11282E

# FEATURES

 $\bigcirc$  Compatible with  $\mu$ PD753017A

O Memory capacity:

 $\bullet$  PROM : 32768  $\times$  8 bits

• RAM :  $1024 \times 4$  bits

 $\bigcirc$  Can operate in the same power supply voltage as the mask version  $\mu$ PD753017A

• VDD = 1.8 to 5.5 V

 $\bigcirc$  LCD controller/driver

# ORDERING INFORMATION

|   | Part Number            | Package                                                                      |
|---|------------------------|------------------------------------------------------------------------------|
|   | µPD75P3018AGC-3B9      | 80-pin plastic QFP (14 $	imes$ 14 mm, resin thickness 2.7 mm)                |
|   | $\mu$ PD75P3018AGC-8BT | 80-pin plastic QFP (14 $	imes$ 14 mm, resin thickness 1.4 mm)                |
|   | μPD75P3018AGK-BE9      | 80-pin plastic TQFP (fine pitch) (12 $	imes$ 12 mm, resin thickness 1.05 mm) |
| • | $\mu$ PD75P3018AGK-9EU | 80-pin plastic TQFP (fine pitch) (12 $	imes$ 12 mm, resin thickness 1.00 mm) |

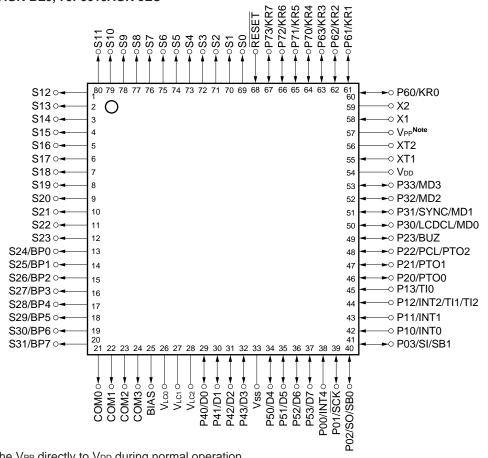
\*

Caution Mask-option pull-up resistors are not provided in this device.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Document No. U11917EJ2V0DS00 (2nd edition) Date Published July 2000 N CP (K) Printed in Japan The mark  $\bigstar$  shows major revised points.

# FUNCTION OUTLINE


|                     | Item                         |                                                                                                                                                                                                                                                         | Function                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|---------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Instruction executi | on time                      | <ul> <li>0.95, 1.91, 3.81, 15.3 μs (main system clock: at 4.19 MHz operation)</li> <li>0.67, 1.33, 2.67, 10.7 μs (main system clock: at 6.0 MHz operation)</li> <li>122 μs (subsystem clock: at 32.768 kHz operation)</li> </ul>                        |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Internal memory     | PROM                         | 32768 × 8 bits                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                     | RAM                          | 1024 >                                                                                                                                                                                                                                                  | $1024 \times 4$ bits                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| General-purpose     | register                     |                                                                                                                                                                                                                                                         | operation: $8 \times 4$ banks<br>operation: $4 \times 4$ banks                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Input/output port   | CMOS input                   | 8                                                                                                                                                                                                                                                       | On-chip pull-up resistor connection can be specified by using software: 23                                                                                                                                                                             |  |  |  |  |  |  |  |
|                     | CMOS input/output            | 16                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                     | CMOS output                  | 8                                                                                                                                                                                                                                                       | Also used for segment pins                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| -                   | N-ch open-drain input/output | 8                                                                                                                                                                                                                                                       | 13 V breakdown voltage                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                     | Total                        | 40                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| LCD controller/driv | LCD controller/driver        |                                                                                                                                                                                                                                                         | <ul> <li>Segment number selection : 24/28/32 segments (can be changed to CMOS output port in unit of 4; max. 8)</li> <li>Display mode selection : Static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bias) 1/3 duty (1/3 bias), 1/4 duty (1/3 bias)</li> </ul> |  |  |  |  |  |  |  |
| Timer               |                              | <ul> <li>5 channels:</li> <li>8-bit timer/event counter: 3 channels (can be used for 16-bit timer/event counter, carrier generator, timer with gate)</li> <li>Basic interval timer/watchdog timer: 1 channel</li> <li>Watch timer: 1 channel</li> </ul> |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Serial interface    |                              | <ul> <li>3-wire serial I/O mode MSB or LSB can be selected for transferring first bit</li> <li>2-wire serial I/O mode</li> <li>SBI mode</li> </ul>                                                                                                      |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Bit sequential buff | er (BSB)                     | 16 bits                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Clock output (PCL   | .)                           | <ul> <li>Φ, 524, 262, 65.5 kHz (main system clock: at 4.19 MHz operation)</li> <li>Φ, 750, 375, 93.8 kHz (main system clock: at 6.0 MHz operation)</li> </ul>                                                                                           |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Buzzer output (BL   | IZ)                          | <ul> <li>• 2, 4, 32 kHz (main system clock: at 4.19 MHz operation or subsystem clock: at 32.768 kHz operation)</li> <li>• 2.93, 5.86, 46.9 kHz (main system clock: at 6.0 MHz operation)</li> </ul>                                                     |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Vectored interrupt  |                              |                                                                                                                                                                                                                                                         | rnal : 3<br>nal : 5                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Test input          |                              | External : 1     Internal : 1                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| System clock osci   | llator                       | <ul> <li>Ceramic or crystal oscillator for main system clock oscillation</li> <li>Crystal oscillator for subsystem clock oscillation</li> </ul>                                                                                                         |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Standby function    |                              | STOP/HALT mode                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| Power supply volta  | age                          | Vdd =                                                                                                                                                                                                                                                   | 1.8 to 5.5 V                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| Package             |                              |                                                                                                                                                                                                                                                         | in plastic QFP (14 $\times$ 14 mm)<br>in plastic TQFP (fine pitch) (12 $\times$ 12 mm)                                                                                                                                                                 |  |  |  |  |  |  |  |

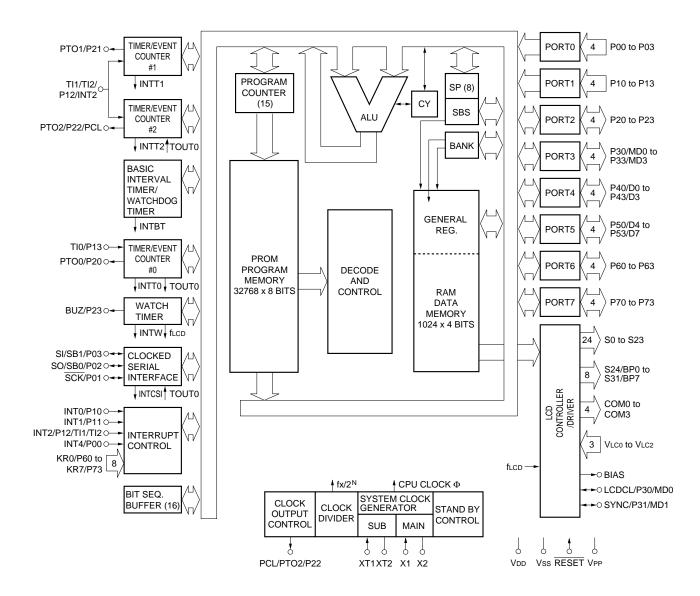
# CONTENTS

|                            | PIN CONFIGURATION (Top View)                                                                                                                                                                                                                                           | 4                                                  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 2.                         | BLOCK DIAGRAM                                                                                                                                                                                                                                                          | 5                                                  |
| 3.                         | PIN FUNCTIONS                                                                                                                                                                                                                                                          | 6                                                  |
|                            | 3.1 Port Pins                                                                                                                                                                                                                                                          | 6                                                  |
|                            | 3.2 Non-port Pins                                                                                                                                                                                                                                                      | 8                                                  |
|                            | 3.3 Pin Input/Output Circuits                                                                                                                                                                                                                                          | 10                                                 |
|                            | 3.4 Recommended Connection for Unused Pins                                                                                                                                                                                                                             | 12                                                 |
| 4.                         | SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE                                                                                                                                                                                                                    | 13                                                 |
|                            | 4.1 Difference between Mk I Mode and Mk II Mode                                                                                                                                                                                                                        | 13                                                 |
|                            | 4.2 Setting of Stack Bank Selection Register (SBS)                                                                                                                                                                                                                     | 14                                                 |
| 5.                         | DIFFERENCES BETWEEN $\mu$ PD75P3018A AND $\mu$ PD753012A, 753016A, AND 753017A                                                                                                                                                                                         | 15                                                 |
| 6.                         | MEMORY CONFIGURATION                                                                                                                                                                                                                                                   | 16                                                 |
|                            | 6.1 Program Counter (PC)                                                                                                                                                                                                                                               | 16                                                 |
|                            | 6.2 Program Memory (PROM)                                                                                                                                                                                                                                              | 16                                                 |
|                            | 6.3 Data Memory (RAM)                                                                                                                                                                                                                                                  | 19                                                 |
|                            |                                                                                                                                                                                                                                                                        |                                                    |
| 7.                         | INSTRUCTION SET                                                                                                                                                                                                                                                        | 20                                                 |
|                            | INSTRUCTION SET<br>ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY                                                                                                                                                                                                     |                                                    |
|                            |                                                                                                                                                                                                                                                                        | 30                                                 |
|                            | ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY                                                                                                                                                                                                                        | 30<br>30                                           |
|                            | ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY<br>8.1 Operation Modes for Program Memory Write/Verify                                                                                                                                                                 | 30<br>30<br>31                                     |
|                            | ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY<br>8.1 Operation Modes for Program Memory Write/Verify<br>8.2 Program Memory Write Procedure                                                                                                                           | 30<br>30<br>31<br>32                               |
| 8.                         | ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY         8.1 Operation Modes for Program Memory Write/Verify         8.2 Program Memory Write Procedure         8.3 Program Memory Read Procedure                                                                       | 30<br>30<br>31<br>32<br>33                         |
| 8.<br>9.                   | ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY         8.1       Operation Modes for Program Memory Write/Verify         8.2       Program Memory Write Procedure         8.3       Program Memory Read Procedure         8.4       One-time PROM Screening           | 30<br>30<br>31<br>32<br>33<br>34                   |
| 8.<br>9.<br>10             | ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY         8.1 Operation Modes for Program Memory Write/Verify         8.2 Program Memory Write Procedure         8.3 Program Memory Read Procedure         8.4 One-time PROM Screening         ELECTRICAL SPECIFICATIONS | 30<br>30<br>31<br>32<br>33<br>34<br>48             |
| 8.<br>9.<br>10             | ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY                                                                                                                                                                                                                        | 30<br>30<br>31<br>32<br>33<br>34<br>48<br>52       |
| 8.<br>9.<br>10<br>11<br>AF | ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY                                                                                                                                                                                                                        | 30<br>30<br>31<br>32<br>33<br>34<br>48<br>52<br>54 |

Data Sheet U11917EJ2V0DS00

- 1. PIN CONFIGURATION (Top View)
- 80-pin plastic QFP (14 imes 14 mm)
- **★** μPD75P3018AGC-3B9, 75P3018AGC-8BT
  - 80-pin plastic TQFP (fine pitch) (12 imes 12 mm)
- **★** μ**PD75P3018AGK-BE9, 75P3018AGK-9EU**




Note Connect the VPP directly to VDD during normal operation.

#### **PIN IDENTIFICATIONS**

| -          |                                       |           |                                      |
|------------|---------------------------------------|-----------|--------------------------------------|
| BIAS       | : LCD Power Supply Bias Control       | P70-P73   | : Port7                              |
| BP0-BP7    | : Bit Port 0-7                        | PCL       | : Programmable Clock                 |
| BUZ        | : Buzzer Clock                        | PTO0-PTO2 | : Programmable Timer Output 0-2      |
| COM0-COM3  | : Common Output 0-3                   | RESET     | : Reset                              |
| D0-D7      | : Data Bus 0-7                        | S0-S31    | : Segment Output 0-31                |
| INT0, 1, 4 | : External Vectored Interrupt 0, 1, 4 | SB0, SB1  | : Serial Bus 0,1                     |
| INT2       | : External Test Input 2               | SCK       | : Serial Clock                       |
| KR0-KR7    | : Key Return 0-7                      | SI        | : Serial Input                       |
| LCDCL      | : LCD Clock                           | SO        | : Serial Output                      |
| MD0-MD3    | : Mode Selection 0-3                  | SYNC      | : LCD Synchronization                |
| P00-P03    | : Port0                               | TI0-TI2   | : Timer Input 0-2                    |
| P10-P13    | : Port1                               | Vdd       | : Positive Power Supply              |
| P20-P23    | : Port2                               | VLC0-VLC2 | : LCD Power Supply 0-2               |
| P30-P33    | : Port3                               | Vpp       | : Programming Power Supply           |
| P40-P43    | : Port4                               | Vss       | : Ground                             |
| P50-P53    | : Port5                               | X1, X2    | : Main System Clock Oscillation 1, 2 |
| P60-P63    | : Port6                               | XT1, XT2  | : Subsystem Clock Oscillation 1, 2   |
|            |                                       |           |                                      |

Downloaded from Elcodis.com electronic components distributor

# 2. BLOCK DIAGRAM

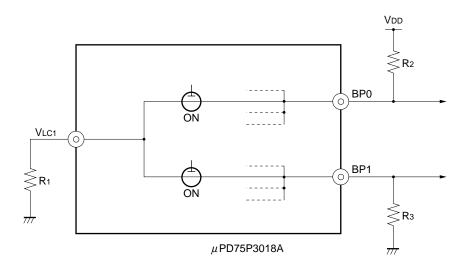


# 3. PIN FUNCTIONS

# 3.1 Port Pins (1/2)

| Pin Name              | I/O      | Alternate Function | Function                                                                                                         | 8-bit<br>I/O | After Reset | I/O Circuit<br>Type <sup>Note 1</sup> |
|-----------------------|----------|--------------------|------------------------------------------------------------------------------------------------------------------|--------------|-------------|---------------------------------------|
| P00                   | Input    | INT4               | This is a 4-bit input port (PORT0).<br>P01 to P03 are 3-bit pins for which an internal                           | _            | Input       | <b></b>                               |
| P01                   |          | SCK                | pull-up resistor connection can be specified                                                                     |              |             | <f>-A</f>                             |
| P02                   |          | SO/SB0             | by software.                                                                                                     |              |             | <f>-B</f>                             |
| P03                   |          | SI/SB1             |                                                                                                                  |              |             | <m>-C</m>                             |
| P10                   | Input    | INT0               | This is a 4-bit input port (PORT1).                                                                              | _            | Input       | <b>-C</b>                             |
| P11                   |          | INT1               | These are 4-bit pins for which an internal pull-up resistor connection can be specified by software.             |              |             |                                       |
| P12                   |          | TI1/TI2/INT2       | P10/INT0 can select noise elimination circuit.                                                                   |              |             |                                       |
| P13                   | 1        | ТІО                |                                                                                                                  |              |             |                                       |
| P20                   | I/O PTO0 |                    | This is a 4-bit I/O port (PORT2).                                                                                | _            | Input       | E-B                                   |
| P21                   |          | PTO1               | These are 4-bit pins for which an internal pull-up resistor connection can be specified by software.             |              |             |                                       |
| P22                   |          | PCL/PTO2           |                                                                                                                  |              |             |                                       |
| P23                   | 1        | BUZ                |                                                                                                                  |              |             |                                       |
| P30                   | I/O      | LCDCL/MD0          | This is a programmable 4-bit I/O port (PORT3).                                                                   | _            | Input       | E-B                                   |
| P31                   | SYNC/MD1 |                    | Input and output in single-bit units can be specified.<br>When set for 4-bit units, an internal pull-up resistor |              |             |                                       |
| P32                   |          | MD2                | connection can be specified by software.                                                                         |              |             |                                       |
| P33                   | MD3      |                    |                                                                                                                  |              |             |                                       |
| P40 <sup>Note 2</sup> | I/O      | D0                 | This is an N-ch open-drain 4-bit I/O port (PORT4).                                                               | $\checkmark$ | High        | M-E                                   |
| P41 <sup>Note 2</sup> | D1<br>D2 |                    | When set to open-drain, voltage is 13 V.<br>Also functions as data I/O pin (low-order 4 bits)                    |              | impedance   |                                       |
| P42 <sup>Note 2</sup> |          |                    | for program memory (PROM) write/verify.                                                                          |              |             |                                       |
| P43 <sup>Note 2</sup> |          | D3                 |                                                                                                                  |              |             |                                       |
| P50 <sup>Note 2</sup> | I/O      | D4                 | This is an N-ch open-drain 4-bit I/O port (PORT5).                                                               |              | High        | M-E                                   |
| P51 <sup>Note 2</sup> | 1        | D5                 | When set to open-drain, voltage is 13 V.<br>Also functions as data I/O pin (high-order 4 bits)                   |              | impedance   |                                       |
| P52 <sup>Note 2</sup> | 1        | D6                 | for program memory (PROM) write/verify.                                                                          |              |             |                                       |
| P53 <sup>Note 2</sup> | 1        | D7                 |                                                                                                                  |              |             |                                       |

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.


2. Low-level input leakage current increases when input instructions or bit manipulation instructions are executed.

# 3.1 Port Pins (2/2)

| Pin Name | I/O    | Alternate Function | Function                                                                                                 | 8-bit<br>I/O | After Reset | I/O Circuit<br>Type <sup>Note 1</sup> |
|----------|--------|--------------------|----------------------------------------------------------------------------------------------------------|--------------|-------------|---------------------------------------|
| P60      | I/O    | KR0                | This is a programmable 4-bit I/O port (PORT6).<br>Input and output in single-bit units can be specified. | V            | Input       | <f>-A</f>                             |
| P61      |        | KR1                | When set for 4-bit units, an internal pull-up resistor connection can be specified by software.          |              |             |                                       |
| P62      |        | KR2                | connection can be specified by software.                                                                 |              |             |                                       |
| P63      |        | KR3                |                                                                                                          |              |             |                                       |
| P70      | I/O    | KR4                | This is a 4-bit I/O port (PORT7).                                                                        |              | Input       | <f>-A</f>                             |
| P71      |        | KR5                | When set for 4-bit units, an internal pull-up resistor connection can be specified by software.          |              |             |                                       |
| P72      |        | KR6                |                                                                                                          |              |             |                                       |
| P73      |        | KR7                |                                                                                                          |              |             |                                       |
| BP0      | Output | S24                | 1-bit output port (BIT PORT). These pins are also                                                        |              | Note 2      | H-A                                   |
| BP1      |        | S25                | used as segment output pin.                                                                              |              |             |                                       |
| BP2      | 1      | S26                |                                                                                                          |              |             |                                       |
| BP3      | ]      | S27                |                                                                                                          |              |             |                                       |
| BP4      | Output | S28                |                                                                                                          |              |             |                                       |
| BP5      | ]      | S29                |                                                                                                          |              |             |                                       |
| BP6      |        | S30                |                                                                                                          |              |             |                                       |
| BP7      |        | S31                |                                                                                                          |              |             |                                       |

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

- 2. VLC1 is selected as the input source for BP0 to BP7. The output level varies depending on the external circuit for BP0 to BP7 and VLC1.
- **Example:** As shown below, BP0 to BP7 are mutually connected via the  $\mu$ PD75P3018A, so the output levels of BP0 to BP7 are determined by the sizes of R<sub>1</sub>, R<sub>2</sub>, and R<sub>3</sub>.



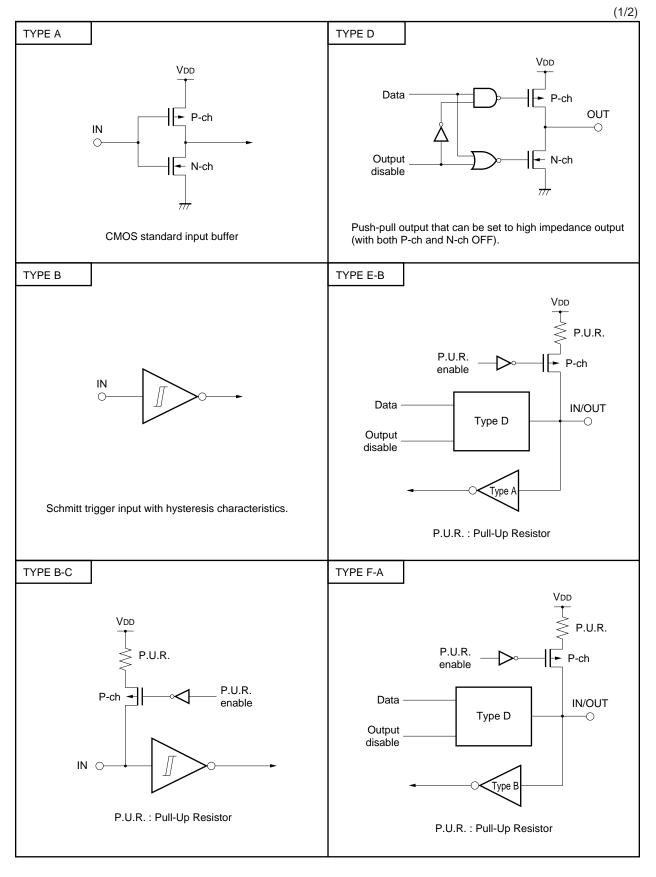
#### 3.2 Non-port Pins (1/2)

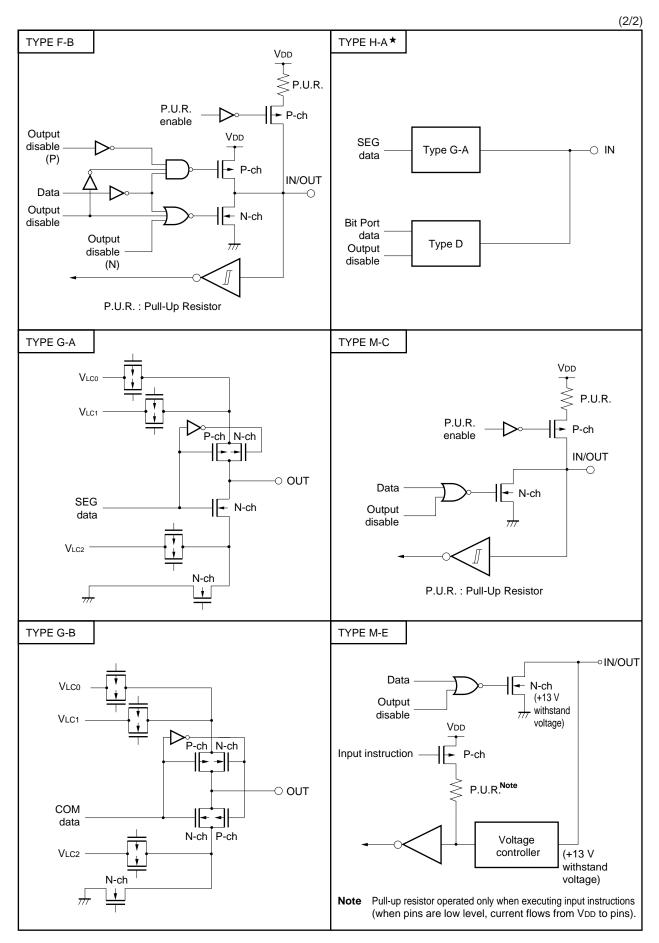
| Pin Name              | I/O    | Alternate Function | Function                                                                                                                                            | After Reset                                                 | I/O Circuit<br>Type <sup>Note 1</sup> |           |
|-----------------------|--------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-----------|
| TIO                   | Input  | P13                | External event pulse input to timer/even                                                                                                            | Input                                                       | <b>-C</b>                             |           |
| TI1, TI2              |        | P12/INT2           |                                                                                                                                                     |                                                             |                                       |           |
| PTO0                  | Output | P20                | Timer/event counter output                                                                                                                          |                                                             | Input                                 | E-B       |
| PTO1                  |        | P21                |                                                                                                                                                     |                                                             |                                       |           |
| PTO2                  |        | P22                |                                                                                                                                                     |                                                             |                                       |           |
| PCL                   |        | P22                | Clock output                                                                                                                                        |                                                             |                                       |           |
| BUZ                   | _      | P23                | Optional frequency output (for buzzer or s                                                                                                          | ystem clock trimming)                                       |                                       |           |
| SCK                   | I/O    | P01                | Serial clock I/O                                                                                                                                    |                                                             | Input                                 | <f>-A</f> |
| SO/SB0                |        | P02                | Serial data output<br>Serial data bus I/O                                                                                                           |                                                             | *                                     | <f>-B</f> |
| SI/SB1                |        | P03                | Serial data input<br>Serial data bus I/O                                                                                                            |                                                             |                                       | <m>-C</m> |
| INT4                  | Input  | P00                | Edge detection vectored interrupt input (both rising and falling edges detection)                                                                   |                                                             |                                       | <b></b>   |
| INT0                  | Input  | P10                | Edge detection vectored interrupt input (detected edge is selectable) Noise elimination circuit/ asynchronous is selectable                         |                                                             | Input                                 | <b>-C</b> |
| INT1                  |        | P11                | INT0/P10 can select noise elimination circuit.                                                                                                      | INT0/P10 can select noise elimination circuit. Asynchronous |                                       |           |
| INT2                  |        | P12/TI1/TI2        | Rising edge detection testable input                                                                                                                | Asynchronous                                                |                                       |           |
| KR0-KR3               | Input  | P60-P63            | Falling edge detection testable input                                                                                                               | 1                                                           | Input                                 | <f>-A</f> |
| KR4-KR7               | Input  | P70-P73            | Falling edge detection testable input                                                                                                               |                                                             | Input                                 | <f>-A</f> |
| X1                    | Input  | _                  | Ceramic/crystal oscillation circuit connectock. If using an external clock, input to                                                                | _                                                           | _                                     |           |
| X2                    |        |                    | inverted phase to X2.                                                                                                                               |                                                             |                                       |           |
| XT1                   | Input  | _                  | Crystal oscillation circuit connection for<br>If using an external clock, input to XT1 a                                                            | _                                                           | _                                     |           |
| XT2                   | _      |                    | phase to XT2. XT1 can be used as a 1-                                                                                                               |                                                             |                                       |           |
| RESET                 | Input  | _                  | System reset input (low level active)                                                                                                               |                                                             | —                                     | <b></b>   |
| MD0                   | Input  | P30/LCDCL          | Mode selection for program memory (PI                                                                                                               | ROM) write/verify                                           | Input                                 | E-B       |
| MD1                   |        | P31/SYNC           |                                                                                                                                                     |                                                             |                                       |           |
| MD2, MD3              |        | P32, P33           |                                                                                                                                                     |                                                             |                                       |           |
| D0-D3                 | I/O    | P40-P43            | Data bus for program memory (PROM)                                                                                                                  | write/verify                                                | Input                                 | M-E       |
| D4-D7                 |        | P50-P53            |                                                                                                                                                     |                                                             |                                       |           |
| VPP <sup>Note 2</sup> | -      | _                  | Program power supply voltage for progr<br>(PROM) write/verify.<br>For normal operation, connect directly to<br>Apply +12.5 V for PROM write/verify. | -                                                           | _                                     |           |
| Vdd                   |        |                    | Positive power supply                                                                                                                               |                                                             |                                       |           |
| Vss                   |        | _                  | Ground                                                                                                                                              |                                                             |                                       |           |

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

2. The VPP pin does not operate correctly during normal operation unless connected to the VDD pin.

# 3.2 Non-port Pins (2/2)


| Pin Name                | I/O    | Alternate Function | Function                                                      | After Reset       | I/O Circuit<br>Type |
|-------------------------|--------|--------------------|---------------------------------------------------------------|-------------------|---------------------|
| S0-S23                  | Output | —                  | Segment signal output                                         | Note 1            | G-A                 |
| S24-S31                 | Output | BP0-BP7            | Segment signal output                                         | Note 1            | H-A                 |
| COM0-COM3               | Output |                    | Common signal output                                          | Note 1            | G-B                 |
| VLC0-VLC2               | _      | —                  | Power source for LCD driver                                   | _                 | _                   |
| BIAS                    | Output | _                  | Output for external split resistor cut                        | High<br>impedance | —                   |
| LCDCL <sup>Note 2</sup> | I/O    | P30/MD0            | Clock output for driving external expansion driver            | Input             | E-B                 |
| SYNC <sup>Note 2</sup>  | I/O    | P31/MD1            | Clock output for synchronization of external expansion driver | Input             | E-B                 |


**Notes 1.** The V<sub>LCX</sub> (X = 0, 1, 2) shown below are selected as the input source for the display outputs. S0-S31: V<sub>LC1</sub>, COM0-COM2: V<sub>LC2</sub>, COM3: V<sub>LC0</sub>

2. These pins are provided for future system expansion. Currently, only P30 and P31 are used.

#### 3.3 Pin Input/Output Circuits

The input/output circuits for the  $\mu$ PD75P3018A's pins are shown in abbreviated form below.





Data Sheet U11917EJ2V0DS00

#### 3.4 Recommended Connection for Unused Pins

| Pin                 | Recommended Connection                                                                 |
|---------------------|----------------------------------------------------------------------------------------|
| P00/INT4            | Connect to Vss or VDD                                                                  |
| P01/SCK             | Connect to Vss or VDD via a resistor individually                                      |
| P02/SO/SB0          |                                                                                        |
| P03/SI/SB1          | Connect to Vss                                                                         |
| P10/INT0, P11/INT1  | Connect to Vss or VDD                                                                  |
| P12/TI1/TI2/INT2    |                                                                                        |
| P13/TI0             |                                                                                        |
| P20/PTO0            | Input $:$ Connect to Vss or VDD via a resistor individually                            |
| P21/PTO1            | Output : Leave open                                                                    |
| P22/PTO2/PCL        |                                                                                        |
| P23/BUZ             |                                                                                        |
| P30/LCDCL/MD0       |                                                                                        |
| P31/SYNC/MD1        |                                                                                        |
| P32/MD2, P33/MD3    |                                                                                        |
| P40/D0-P43/D3       | Connect to Vss                                                                         |
| P50/D4-P53/D7       |                                                                                        |
| P60/KR0-P63/KR3     | Input : Connect to Vss or Vbb via a resistor individually                              |
| P70/KR4-P73/KR7     | Output : Leave open                                                                    |
| S0-S23              | Leave open                                                                             |
| S24/BP0-S31/BP7     |                                                                                        |
| COM0-COM3           |                                                                                        |
| VLC0-VLC2           | Connect to Vss                                                                         |
| BIAS                | Connect to Vss only when VLC0 to VLC2 are all not used.<br>In other cases, leave open. |
| XT1 <sup>Note</sup> | Connect to Vss                                                                         |
| XT2 <sup>Note</sup> | Leave open                                                                             |

★

**Note** When subsystem clock is not used, specify SOS.0 = 1 (indicates that internal feedback resistor is disconnected).

# 4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

Setting a stack bank selection (SBS) register for the  $\mu$ PD75P3018A enables the program memory to be switched between Mk I mode and Mk II mode. This function is applicable when using the  $\mu$ PD75P3018A to evaluate the  $\mu$ PD753012A, 753016A, or 753017A.

When the SBS bit 3 is set to 1 : sets Mk I mode (supports Mk I mode for  $\mu$ PD753012A, 753016A, and 753017A) When the SBS bit 3 is set to 0 : sets Mk II mode (supports Mk II mode for  $\mu$ PD753012A, 753016A, and 753017A)

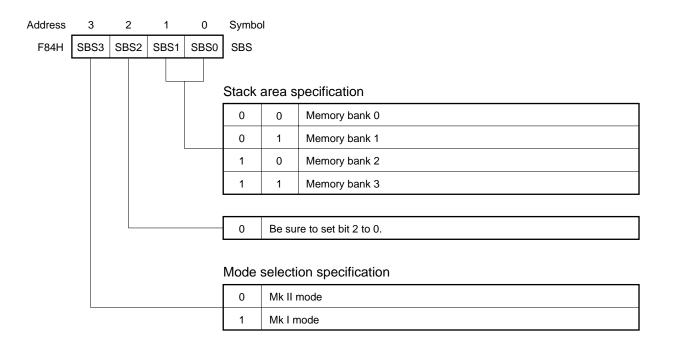
#### 4.1 Difference between Mk I Mode and Mk II Mode

Table 4-1 lists points of difference between the Mk I mode and the Mk II mode for the  $\mu$ PD75P3018A.

|                    | Item                                               | Mk I Mode                                                  | Mk II Mode                                                  |  |  |
|--------------------|----------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|--|--|
| Program count      | er                                                 | PC13-0<br>PC14 is fixed at 0                               | PC14-0                                                      |  |  |
| Program memo       | ory (bytes)                                        | 16384                                                      | 32768                                                       |  |  |
| Data memory (bits) |                                                    | 1024 × 4                                                   |                                                             |  |  |
| Stack Stack bank   |                                                    | Selectable via memory banks 0 to 3                         |                                                             |  |  |
|                    | No. of stack bytes                                 | 2 bytes                                                    | 3 bytes                                                     |  |  |
| Instruction        | BRA !addr1 instruction<br>CALLA !addr1 instruction | Not available                                              | Available                                                   |  |  |
| Instruction        | CALL laddr instruction                             | 3 machine cycles                                           | 4 machine cycles                                            |  |  |
| execution time     | CALLF !faddr instruction                           | 2 machine cycles                                           | 3 machine cycles                                            |  |  |
| Supported mas      | k ROMs                                             | When set to Mk I mode:<br>μPD753012A, 753016A, and 753017A | When set to Mk II mode:<br>μPD753012A, 753016A, and 753017A |  |  |

#### Table 4-1. Difference between Mk I Mode and Mk II Mode

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL series. Therefore, this mode is effective for enhancing software compatibility with products that have a program area of more than 16 Kbytes.


With regard to the number of stack bytes during execution of subroutine call instructions, the usable area increases by 1 byte per stack compared to the Mk I mode when the Mk II mode is selected. However, when the CALL laddr and CALLF lfaddr instructions are used, the machine cycle becomes longer by 1 machine cycle. Therefore, if more emphasis is placed on RAM use efficiency and processing performance than on software compatibility, the Mk I mode should be used.

#### 4.2 Setting of Stack Bank Selection Register (SBS)

Use the stack bank selection register to switch between Mk I mode and Mk II mode. Figure 4-1 shows the format for doing this.

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to  $10XXB^{Note}$  at the beginning of the program. When using the Mk II mode, be sure to initialize it to  $00XXB^{Note}$ .

**Note** Set the desired value for XX.



#### Figure 4-1. Format of Stack Bank Selection Register

- Cautions 1. SBS3 is set to "1" after RESET input, and consequently the CPU operates in Mk I mode. When using instructions for Mk II mode, set SBS3 to "0" and set Mk II mode before using the instructions.
  - 2. When using Mk II mode, execute a subroutine call instruction and an interrupt instruction after RESET input and after setting the stack bank selection register.

## 5. DIFFERENCES BETWEEN $\mu\text{PD75P3018A}$ AND $\mu\text{PD753012A}, 753016A, \text{AND}$ 753017A

The  $\mu$ PD75P3018A replaces the internal mask ROM in the  $\mu$ PD753012A, 753016A, and 753017A with a one-time PROM and features expanded ROM capacity. The  $\mu$ PD75P3018A's Mk I mode supports the Mk I mode in the  $\mu$ PD753012A, 753016A, and 753017A and the  $\mu$ PD75P3018A's Mk II mode supports the Mk II mode in the  $\mu$ PD753012A, 753016A, and 753017A.

Table 5-1 lists differences among the  $\mu$ PD75P3018A and the  $\mu$ PD753012A, 753016A, and 753017A. Be sure to check the differences among these products before using them with PROMs for debugging or prototype testing of application systems or, later, when using them with a mask ROM for full-scale production.

For the CPU functions and internal hardwares, refer to µPD753017 User's Manual (U11282E).

| Item                   |                                          | μPD753012A                                                                                         | μPD753016A               | μPD753017A       | μPD75P3018A |  |
|------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|------------------|-------------|--|
| Program counter        |                                          | 14 bits                                                                                            |                          |                  |             |  |
| Program memory (bytes) |                                          | Mask ROM                                                                                           |                          | One-time PROM    |             |  |
|                        | During<br>Mk I mode                      | 12288                                                                                              | 3 16384 16384            |                  | 16384       |  |
|                        | During<br>Mk II mode                     | 12288                                                                                              | 16384                    | 24576            | 32768       |  |
| Data memory (× 4       | bits)                                    | 1024                                                                                               |                          |                  |             |  |
| Mask options           | Pull-up resistor for<br>PORT4 and PORT5  | Yes (Can be specif                                                                                 | No (Cannot incorporate)  |                  |             |  |
|                        | LCD split resistor                       |                                                                                                    |                          |                  |             |  |
|                        | Feedback resistor<br>for subsystem clock | Yes (Can be specif                                                                                 | No (used)                |                  |             |  |
|                        | Wait time<br>during RESET                | Yes (Can be specif                                                                                 | No (Fixed at 215/fx)Note |                  |             |  |
| Pin configuration      | Pin Nos. 29 to 32                        | P40 to P43                                                                                         | P40/D0 to P43/D3         |                  |             |  |
|                        | Pin Nos. 34 to 37                        | P50 to P53                                                                                         | P50/D4 to P53/D7         |                  |             |  |
|                        | Pin No. 50                               | P30/LCDCL                                                                                          | P30/LCDCL/MD0            |                  |             |  |
|                        | Pin No. 51                               | P31/SYNC                                                                                           |                          | P31/SYNC/MD1     |             |  |
|                        | Pin Nos. 52 and 53                       | P32, P33                                                                                           |                          | P32/MD2, P33/MD3 |             |  |
|                        | Pin No. 57                               | IC                                                                                                 | Vpp                      |                  |             |  |
| Other                  |                                          | Noise resistance and noise radiation may differ due to the different circuit sizes and ma layouts. |                          |                  |             |  |

Table 5-1. Differences between  $\mu$ PD75P3018A and  $\mu$ PD753012A, 753016A, and 753017A

**Note** For 2<sup>17</sup>/fx, during 6.0 MHz operation is 21.8 ms, and during 4.19 MHz operation is 31.3 ms. For 2<sup>15</sup>/fx, during 6.0 MHz operation is 5.46 ms, and during 4.19 MHz operation is 7.81 ms.

Caution Noise resistance and noise radiation are different in PROM and mask ROMs. In transferring to mask ROM version from the PROM version in a process between prototype development and full production, be sure to fully evaluate the mask ROM version's CS (not ES).

# 6. MEMORY CONFIGURATION

#### 6.1 Program Counter (PC) ... 15 bits

This is a 15-bit binary counter that stores program memory address data.

Bit 15 is valid during Mk II mode. But PC14 is fixed at zero during Mk I mode, and the lower 14 bits are all valid.

#### Figure 6-1. Configuration of Program Counter

| PC14       | PC13 | PC12 | PC11 | PC10 | PC9 | PC8 | PC7 | PC6 | PC5 | PC4 | PC3 | PC2 | PC1 | PC0 | PC |
|------------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Fixed at a |      | ring |      |      |     |     |     |     |     |     |     |     |     |     | •  |

#### 6.2 Program Memory (PROM) ... 32768 × 8 bits

The program memory consists of  $32768 \times 8$ -bit one-time PROM. The program memory address can be selected as shown below by setting the stack bank selection (SBS) register.

|                | Mk I Mode      | Mk II Mode     |  |  |
|----------------|----------------|----------------|--|--|
| Usable address | 0000H to 3FFFH | 0000H to 7FFFH |  |  |

Figures 6-2 and 6-3 show the addressing ranges for the program memory and branch instruction and the subroutine call instruction, during Mk I and Mk II modes.

16

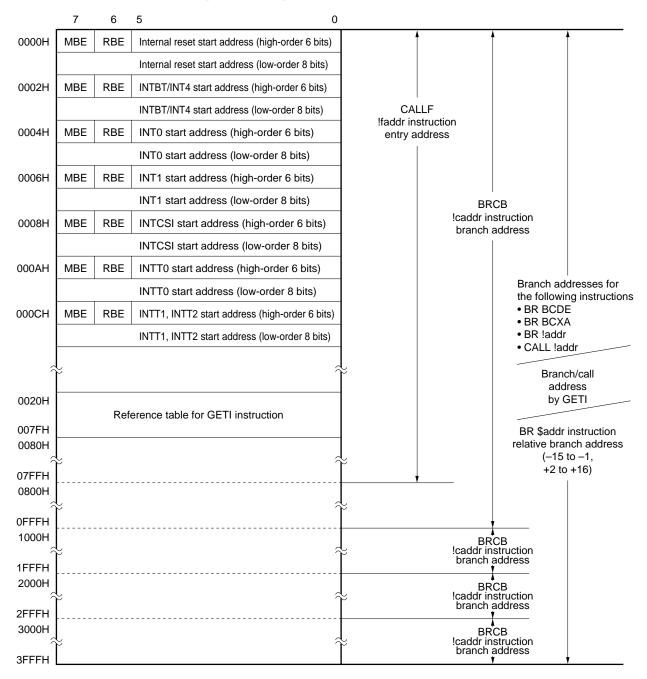
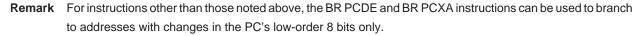
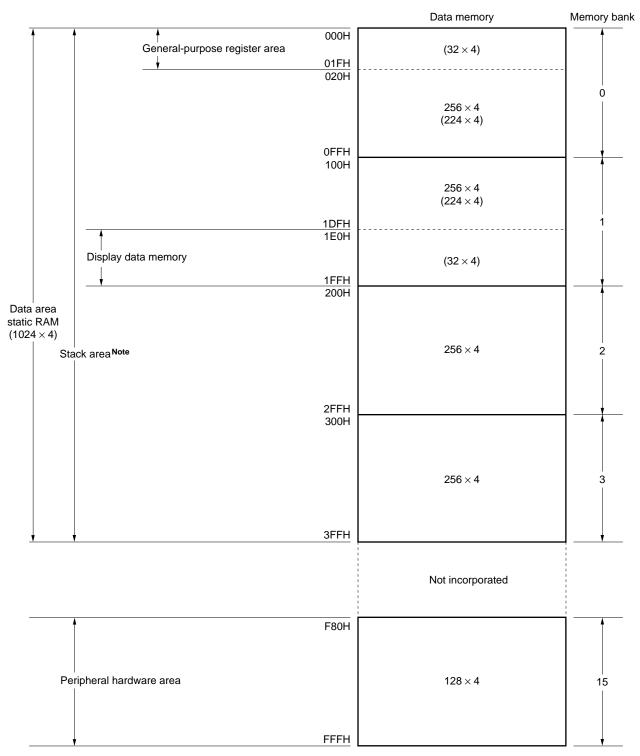




Figure 6-2. Program Memory Map (Mk I mode)



|                | 7        | 6   | 5 Figure 6-3. Program Me                         | mory Map             | o (Mk II moo        | de)                        |                 |                      |
|----------------|----------|-----|--------------------------------------------------|----------------------|---------------------|----------------------------|-----------------|----------------------|
| 0000H          | ,<br>MBE | RBE | Internal reset start address (high-order 6 bits) | · · · ·              | • · · ·             | •                          | •               |                      |
|                |          |     | Internal reset start address (low-order 8 bits)  |                      |                     |                            |                 |                      |
| 0002H          | MBE      | RBE | INTBT/INT4 start address (high-order 6 bits)     |                      |                     |                            |                 |                      |
|                |          |     | INTBT/INT4 start address (low-order 8 bits)      | CA                   | LLF                 |                            |                 |                      |
| 0004H          | MBE      | RBE | INT0 start address (high-order 6 bits)           | faddr in:<br>entry a | struction<br>ddress |                            |                 | dresses for          |
|                |          |     | INT0 start address (low-order 8 bits)            | ,                    |                     |                            | • BR 1          | instructions<br>BCDE |
| 0006H          | MBE      | RBE | INT1 start address (high-order 6 bits)           |                      |                     |                            | • BR  <br>• BRA | BCXA<br>!addr1       |
|                |          |     | INT1 start address (low-order 8 bits)            |                      |                     |                            | • CALL/         | A !addr1             |
| 0008H          | MBE      | RBE | INTCSI start address (high-order 6 bits)         |                      |                     |                            | BR \$addr1      | instruction          |
|                |          |     | INTCSI start address (low-order 8 bits)          |                      |                     |                            | relative brar   | nch address          |
| 000AH          | MBE      | RBE | INTT0 start address (high-order 6 bits)          |                      |                     |                            |                 | to –1,<br>+16)       |
|                |          |     | INTT0 start address (low-order 8 bits)           |                      | !caddr in           | CB<br>struction            |                 |                      |
| 000CH          | MBE      | RBE | INTT1, INTT2 start address (high-order 6 bits)   |                      | branch a            | address                    |                 |                      |
|                |          |     | INTT1, INTT2 start address (low-order 8 bits)    |                      |                     |                            |                 |                      |
| â              | L        |     |                                                  | L.                   |                     |                            |                 |                      |
|                |          |     | · · · · · · · · · · · · · · · · · · ·            | Ŭ,                   |                     | в                          | R               |                      |
| 0020H          |          | Ref | erence table for GETI instruction                |                      |                     | laddr in:                  | struction       |                      |
| 007FH          |          |     |                                                  |                      |                     | branch a                   |                 |                      |
| 0080H<br>≈     | Į        |     | ~                                                | L.                   |                     |                            | struction       |                      |
| 07FFH          |          |     |                                                  |                      | ,                   | branch a                   | address         |                      |
| 0800H          | Ļ        |     | 2                                                | <u> </u>             |                     |                            | ch/call<br>ress |                      |
| 0FFFH          |          |     |                                                  |                      |                     | by G                       | GETI            |                      |
| 1000H<br>≈     | Ļ        |     | 2                                                | Ş                    | !caddr in           | CB                         |                 |                      |
| 1FFFH<br>2000H |          |     |                                                  |                      | branch              | address                    |                 |                      |
| \$             | Ļ        |     | 2                                                | <u> </u>             | !caddr in           | CB<br>struction            |                 |                      |
| 2FFFH<br>3000H |          |     |                                                  |                      | branch              | address                    |                 |                      |
| 2              | Ļ        |     | \$                                               | y .                  | !caddr in           | CB                         |                 |                      |
| 3FFFH<br>4000H |          |     |                                                  |                      |                     | address                    |                 |                      |
| ~              | Ļ        |     | 2                                                | ¥                    | !caddr in           | CB<br>struction<br>address |                 |                      |
| 4FFFH<br>5000H |          |     |                                                  |                      |                     | <b>I</b>                   |                 |                      |
| ~              | Ļ        |     | 2                                                | Ş                    | !caddr in           | CB<br>struction<br>address |                 |                      |
| 5FFFH<br>6000H |          |     |                                                  |                      |                     | <b></b>                    |                 |                      |
| ~              | Ļ        |     | 2                                                | Ļ                    | !caddr in           | CB<br>struction<br>address |                 |                      |
| 6FFFH<br>7000H |          |     |                                                  |                      |                     | <u> </u>                   |                 |                      |
| \$             | Ļ        |     | 2                                                | <u> </u>             | !caddr in           | CB<br>struction<br>address |                 |                      |
| 7FFFH          |          |     |                                                  |                      | Jianon              |                            |                 |                      |

Figure 6-3. Program Memory Map (Mk II mode)


# Caution To allow the vectored interrupt's 14-bit start address (noted above), set the address within a 16K area (0000H to 3FFFH).

Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch to addresses with changes in the PC's low-order 8 bits only.

#### 6.3 Data Memory (RAM) ... 1024 $\times\,4$ bits

Figure 6-4 shows the data memory configuration.

Data memory consists of a data area and a peripheral hardware area. The data area consists of 1024 × 4-bit static RAM.



#### Figure 6-4. Data Memory Map

Note Memory bank 0, 1, 2, or 3 can be selected as the stack area.

# 7. INSTRUCTION SET

#### (1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, see the RA75X Assembler Package User's Manual Language

★ (U12385E)). When there are several codes, select and use just one. Codes that consist of uppercase letters and + or - symbols are key words that should be entered as they are.

For immediate data, enter an appropriate numerical value or label.

Enter register flag symbols as label descriptors instead of mem, fmem, pmem, bit, etc. (For details, refer to the  $\mu$ PD753017 User's Manual (U11282E)). The number of labels that can be entered for fmem and pmem are restricted.

| Representation | Coding Format                                         |
|----------------|-------------------------------------------------------|
| reg            | X, A, B, C, D, E, H, L                                |
| reg1           | X, B, C, D, E, H, L                                   |
| rp             | XA, BC, DE, HL                                        |
| rp1            | BC, DE, HL                                            |
| rp2            | BC, DE                                                |
| rp'            | XA, BC, DE, HL, XA', BC', DE', HL'                    |
| rp'1           | BC, DE, HL, XA', BC', DE', HL'                        |
| rpa            | HL, HL+, HL–, DE, DL                                  |
| rpa1           | DE, DL                                                |
| n4             | 4-bit immediate data or label                         |
| n8             | 8-bit immediate data or label                         |
| mem            | 8-bit immediate data or label <sup>Note</sup>         |
| bit            | 2-bit immediate data or label                         |
| fmem           | FB0H-FBFH, FF0H-FFFH immediate data or label          |
| pmem           | FC0H-FFFH immediate data or label                     |
| addr           | 0000H-3FFFH immediate data or label                   |
| addr1          | 0000H-7FFFH immediate data or label (Mk II mode only) |
| caddr          | 12-bit immediate data or label                        |
| faddr          | 11-bit immediate data or label                        |
| taddr          | 20H-7FH immediate data (however, bit0 = 0) or label   |
| PORTn          | PORT0-PORT7                                           |
| IEXXX          | IEBT, IECSI, IET0, IET1, IET2, IE0-IE2, IE4, IEW      |
| RBn            | RB0-RB3                                               |
| MBn            | MB0-MB3, MB15                                         |

Note When processing 8-bit data, only even-numbered addresses can be specified.

| (2) Operati | on legend                               |
|-------------|-----------------------------------------|
| А           | : A register; 4-bit accumulator         |
| В           | : B register                            |
| С           | : C register                            |
| D           | : D register                            |
| Е           | : E register                            |
| Н           | : H register                            |
| L           | : L register                            |
| Х           | : X register                            |
| XA          | : Register pair (XA); 8-bit accumulator |
| BC          | : Register pair (BC)                    |
| DE          | : Register pair (DE)                    |
| HL          | : Register pair (HL)                    |
| XA'         | : Expansion register pair (XA')         |
| BC'         | : Expansion register pair (BC')         |
| DE'         | : Expansion register pair (DE')         |
| HL'         | : Expansion register pair (HL')         |
| PC          | : Program counter                       |
| SP          | : Stack pointer                         |
| CY          | : Carry flag; bit accumulator           |
| PSW         | : Program status word                   |
| MBE         | : Memory bank enable flag               |
| RBE         | : Register bank enable flag             |
| PORTn       | : Port n (n = 0 to 7)                   |
| IME         | : Interrupt master enable flag          |
| IPS         | : Interrupt priority selection register |
| IEXXX       | : Interrupt enable flag                 |
| RBS         | : Register bank selection register      |
| MBS         | : Memory bank selection register        |
| PCC         | : Processor clock control register      |
|             | : Delimiter for address and bit         |
| (XX)        | : Addressed data                        |
| XXH         | : Hexadecimal data                      |
|             |                                         |

#### (3) Description of symbols used in addressing area

|     |                                                       | L                            |
|-----|-------------------------------------------------------|------------------------------|
| *1  | $MB = MBE \bullet MBS$                                | Ī                            |
| 1   | MBS = 0-3, 15                                         |                              |
| *2  | MB = 0                                                |                              |
| *3  | MBE = 0 : MB = 0 (000H-07FH)                          |                              |
|     | MB = 15 (F80H-FFFH)                                   | Data memory<br>addressing    |
|     | MBE = 1 : MB = MBS                                    | g                            |
|     | MBS = 0-3, 15                                         |                              |
| *4  | MB = 15, fmem = FB0H-FBFH, FF0H-FFFH                  |                              |
| *5  | MB = 15, pmem = FC0H-FFFH                             |                              |
| *6  | addr = 0000H-3FFFH                                    | l f                          |
| *7  | addr, addr1 = (Current PC) -15 to (Current PC) -1     |                              |
|     | (Current PC) +2 to (Current PC) +16                   |                              |
| *8  | caddr = 0000H-0FFFH (PC14, 13, 12 = 000B) or          |                              |
|     | 1000H-1FFFH (PC14, 13, 12 = 001B) or                  |                              |
|     | 2000H-2FFFH (PC14, 13, 12 = 010B) or                  |                              |
|     | 3000H-3FFFH (PC14, 13, 12 = 011B) or                  |                              |
|     | 4000H-4FFFH (PC14, 13, 12 = 100B: Mk II mode only) or | Program memory<br>addressing |
|     | 5000H-5FFFH (PC14, 13, 12 = 101B: Mk II mode only) or |                              |
|     | 6000H-6FFFH (PC14, 13, 12 = 110B: Mk II mode only) or |                              |
|     | 7000H-7F7FH (PC14, 13, 12 = 111B: Mk II mode only)    |                              |
| *9  | faddr = 0000H-07FFH                                   |                              |
| *10 | taddr = 0020H-007FH                                   |                              |
| *11 | addr1 = 0000H-7FFFH (Mk II mode only)                 | l l                          |

Remarks 1. MB indicates access-enabled memory banks.

- **2.** In area \*2, MB = 0 for both MBE and MBS.
- **3.** In areas \*4 and \*5, MB = 15 for both MBE and MBS.
- 4. Areas \*6 to \*11 indicate corresponding address-enabled areas.

#### (4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

- No skip ...... S = 0
- Skipped instruction is 1-byte or 2-byte instruction  $\dots$  S = 1

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, CALLA !addr1

#### Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle (= tcr) of the CPU clock  $\Phi$ . Use the PCC setting to select among four cycle times.

| Instruction<br>Group | Mnemonic               | Operand   | No. of<br>Bytes | Machine<br>Cycle | Operation                                          | Addressing<br>Area | Skip<br>Condition |
|----------------------|------------------------|-----------|-----------------|------------------|----------------------------------------------------|--------------------|-------------------|
| Transfer MOV         | MOV                    | A, #n4    | 1               | 1                | A ← n4                                             |                    | String-effect A   |
|                      |                        | reg1, #n4 | 2               | 2                | reg1← n4                                           |                    |                   |
|                      |                        | XA, #n8   | 2               | 2                | $XA \leftarrow n8$                                 |                    | String-effect A   |
|                      |                        | HL, #n8   | 2               | 2                | $HL \leftarrow n8$                                 |                    | String-effect B   |
|                      |                        | rp2, #n8  | 2               | 2                | rp2 ← n8                                           |                    |                   |
|                      |                        | A, @HL    | 1               | 1                | $A \leftarrow (HL)$                                | *1                 |                   |
|                      |                        | A, @HL+   | 1               | 2+S              | $A \leftarrow (HL)$ , then $L \leftarrow L+1$      | *1                 | L=0               |
|                      |                        | A, @HL-   | 1               | 2+S              | $A \leftarrow (HL)$ , then $L \leftarrow L-1$      | *1                 | L=FH              |
|                      |                        | A, @rpa1  | 1               | 1                | $A \leftarrow (rpa1)$                              | *2                 |                   |
|                      |                        | XA, @HL   | 2               | 2                | $XA \gets (HL)$                                    | *1                 |                   |
|                      |                        | @HL, A    | 1               | 1                | $(HL) \gets A$                                     | *1                 |                   |
|                      |                        | @HL, XA   | 2               | 2                | $(HL) \leftarrow XA$                               | *1                 |                   |
|                      |                        | A, mem    | 2               | 2                | $A \leftarrow (mem)$                               | *3                 |                   |
|                      |                        | XA, mem   | 2               | 2                | $XA \leftarrow (mem)$                              | *3                 |                   |
|                      |                        | mem, A    | 2               | 2                | $(mem) \gets A$                                    | *3                 |                   |
|                      |                        | mem, XA   | 2               | 2                | $(mem) \leftarrow XA$                              | *3                 |                   |
|                      |                        | A, reg    | 2               | 2                | $A \leftarrow reg$                                 |                    |                   |
|                      |                        | XA, rp'   | 2               | 2                | $XA \leftarrow rp'$                                |                    |                   |
|                      |                        | reg1, A   | 2               | 2                | $reg1 \leftarrow A$                                |                    |                   |
|                      |                        | rp'1, XA  | 2               | 2                | rp'1 ← XA                                          |                    |                   |
|                      | ХСН                    | A, @HL    | 1               | 1                | $A \leftrightarrow (HL)$                           | *1                 |                   |
|                      |                        | A, @HL+   | 1               | 2+S              | $A \leftrightarrow (HL)$ , then $L \leftarrow L+1$ | *1                 | L=0               |
|                      |                        | A, @HL-   | 1               | 2+S              | A $\leftrightarrow$ (HL), then L $\leftarrow$ L–1  | *1                 | L=FH              |
|                      |                        | A, @rpa1  | 1               | 1                | $A \leftrightarrow (rpa1)$                         | *2                 |                   |
|                      |                        | XA, @HL   | 2               | 2                | $XA \leftrightarrow (HL)$                          | *1                 |                   |
|                      |                        | A, mem    | 2               | 2                | $A \leftrightarrow (mem)$                          | *3                 |                   |
|                      |                        | XA, mem   | 2               | 2                | $XA \leftrightarrow (mem)$                         | *3                 |                   |
|                      |                        | A, reg1   | 1               | 1                | $A \leftrightarrow reg1$                           |                    |                   |
|                      |                        | XA, rp'   | 2               | 2                | $XA \leftrightarrow rp'$                           |                    |                   |
| Table                | MOVT <sup>Note 1</sup> | XA, @PCDE | 1               | 3                | XA ← (PC13-8+DE)ROM                                |                    |                   |
| reference            |                        |           |                 |                  | $XA \leftarrow (PC_{14-8}+DE)ROM$                  |                    |                   |
|                      |                        | XA, @PCXA | 1               | 3                | $XA \leftarrow (PC_{13-8}+XA)$ rom                 |                    |                   |
|                      |                        |           |                 |                  | $XA \leftarrow (PC_{14-8+XA})_{ROM}$               |                    |                   |
|                      |                        | XA, @BCDE | 1               | 3                | $XA \leftarrow (BCDE)_{ROM^{Note 2}}$              | *6                 |                   |
|                      |                        |           |                 |                  | $XA \gets (BCDE)_{ROM^{Note 2}}$                   | *11                |                   |
|                      |                        | XA, @BCXA | 1               | 3                | $XA \leftarrow (BCXA)_{ROM^{Note 2}}$              | *6                 |                   |
|                      |                        |           |                 |                  | $XA \leftarrow (BCXA)_{ROM^{Note 2}}$              | *11                |                   |

Notes 1. Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

2. Only the low-order 3 bits in the B register are valid.

| Instruction<br>Group | Mnemonic | Operand        | No. of<br>Bytes | Machine<br>Cycle | Operation                                      | Addressing<br>Area | Skip<br>Condition |
|----------------------|----------|----------------|-----------------|------------------|------------------------------------------------|--------------------|-------------------|
| Bit transfer         | MOV1     | CY, fmem.bit   | 2               | 2                | CY← (fmem.bit)                                 | *4                 |                   |
|                      |          | CY, pmem.@L    | 2               | 2                | $CY \leftarrow (pmem7-2+L3-2.bit(L1-0))$       | *5                 |                   |
|                      |          | CY, @H+mem.bit | 2               | 2                | CY ← (H+mem3-0.bit)                            | *1                 |                   |
|                      |          | fmem.bit, CY   | 2               | 2                | $(\text{fmem.bit}) \leftarrow \text{CY}$       | *4                 |                   |
|                      |          | pmem.@L, CY    | 2               | 2                | $(pmem7-2+L3-2.bit(L1-0)) \leftarrow CY$       | *5                 |                   |
|                      |          | @H+mem.bit, CY | 2               | 2                | (H+mem₃-o.bit) ← CY                            | *1                 |                   |
| Arithmetic           | ADDS     | A, #n4         | 1               | 1+S              | $A \leftarrow A+n4$                            |                    | carry             |
|                      |          | XA, #n8        | 2               | 2+S              | $XA \leftarrow XA + n8$                        |                    | carry             |
|                      |          | A, @HL         | 1               | 1+S              | $A \leftarrow A\text{+}(HL)$                   | *1                 | carry             |
|                      |          | XA, rp'        | 2               | 2+S              | $XA \gets XA\text{+}rp'$                       |                    | carry             |
|                      |          | rp'1, XA       | 2               | 2+S              | $rp'1 \leftarrow rp'1+XA$                      |                    | carry             |
|                      | ADDC     | A, @HL         | 1               | 1                | $A,CY \gets A\text{+}(HL)\text{+}CY$           | *1                 |                   |
| SUE                  |          | XA, rp'        | 2               | 2                | $XA, CY \gets XA \texttt{+} rp' \texttt{+} CY$ |                    |                   |
|                      |          | rp'1, XA       | 2               | 2                | $rp'1, CY \leftarrow rp'1+XA+CY$               |                    |                   |
|                      | SUBS     | A, @HL         | 1               | 1+S              | $A \leftarrow A\text{-}(HL)$                   | *1                 | borrow            |
|                      |          | XA, rp'        | 2               | 2+S              | $XA \leftarrow XA\text{rp'}$                   |                    | borrow            |
|                      |          | rp'1, XA       | 2               | 2+S              | $rp'1 \leftarrow rp'1-XA$                      |                    | borrow            |
|                      | SUBC     | A, @HL         | 1               | 1                | $A,CY \gets A\text{-}(HL)\text{-}CY$           | *1                 |                   |
|                      |          | XA, rp'        | 2               | 2                | $XA, CY \gets XA\text{-}rp\text{'-}CY$         |                    |                   |
|                      |          | rp'1, XA       | 2               | 2                | $rp'1, CY \leftarrow rp'1–XA–CY$               |                    |                   |
|                      | AND      | A, #n4         | 2               | 2                | $A \leftarrow A \land n4$                      |                    |                   |
|                      |          | A, @HL         | 1               | 1                | $A \leftarrow A \land (HL)$                    | *1                 |                   |
|                      |          | XA, rp'        | 2               | 2                | $XA \leftarrow XA \wedge rp'$                  |                    |                   |
|                      |          | rp'1, XA       | 2               | 2                | $rp'1 \leftarrow rp'1_{\wedge}XA$              |                    |                   |
|                      | OR       | A, #n4         | 2               | 2                | $A \leftarrow A \lor n4$                       |                    |                   |
|                      |          | A, @HL         | 1               | 1                | $A \leftarrow A \lor (HL)$                     | *1                 |                   |
|                      |          | XA, rp'        | 2               | 2                | $XA \leftarrow XA \lor rp'$                    |                    |                   |
|                      |          | rp'1, XA       | 2               | 2                | $rp'1 \leftarrow rp'1 \lor XA$                 |                    |                   |
|                      | XOR      | A, #n4         | 2               | 2                | $A \leftarrow A \forall n4$                    |                    |                   |
|                      |          | A, @HL         | 1               | 1                | $A \leftarrow A \nleftrightarrow (HL)$         | *1                 |                   |
|                      |          | XA, rp'        | 2               | 2                | $XA \leftarrow XA \lor rp'$                    |                    |                   |
|                      |          | rp'1, XA       | 2               | 2                | $rp'1 \leftarrow rp'1 \lor XA$                 |                    |                   |
| Accumulator          | RORC     | A              | 1               | 1                | $CY \gets A0,  A3 \gets CY,  An-1 \gets An$    |                    |                   |
| nanipulation         | NOT      | A              | 2               | 2                | $\overline{A} \gets \overline{A}$              |                    |                   |
| ncrement/            | INCS     | reg            | 1               | 1+S              | $reg \leftarrow reg+1$                         |                    | reg=0             |
| decrement            |          | rp1            | 1               | 1+S              | rp1 ← rp1+1                                    |                    | rp1=00H           |
|                      |          | @HL            | 2               | 2+S              | $(HL) \leftarrow (HL)+1$                       | *1                 | (HL)=0            |
|                      |          | mem            | 2               | 2+S              | $(mem) \leftarrow (mem)+1$                     | *3                 | (mem)=0           |
|                      | DECS     | reg            | 1               | 1+S              | reg ← reg-1                                    |                    | reg=FH            |
|                      |          | rp'            | 2               | 2+S              | rp' ← rp'–1                                    |                    | rp'=FFH           |

| Instruction<br>Group | Mnemonic | Operand        | No. of<br>Bytes | Machine<br>Cycle | Operation                                                    | Addressing<br>Area | Skip<br>Condition |
|----------------------|----------|----------------|-----------------|------------------|--------------------------------------------------------------|--------------------|-------------------|
| Comparison           | SKE      | reg, #n4       | 2               | 2+S              | Skip if reg=n4                                               |                    | reg=n4            |
|                      |          | @HL, #n4       | 2               | 2+S              | Skip if (HL)=n4                                              | *1                 | (HL)=n4           |
|                      |          | A, @HL         | 1               | 1+S              | Skip if A=(HL)                                               | *1                 | A=(HL)            |
|                      |          | XA, @HL        | 2               | 2+S              | Skip if XA=(HL)                                              | *1                 | XA=(HL)           |
|                      |          | A, reg         | 2               | 2+S              | Skip if A=reg                                                |                    | A=reg             |
|                      |          | XA, rp'        | 2               | 2+S              | Skip if XA=rp'                                               |                    | XA=rp'            |
| Carry flag           | SET1     | CY             | 1               | 1                | CY ← 1                                                       |                    |                   |
| manipulation         | CLR1     | CY             | 1               | 1                | $CY \leftarrow 0$                                            |                    |                   |
|                      | SKT      | CY             | 1               | 1+S              | Skip if CY=1                                                 |                    | CY=1              |
|                      | NOT1     | CY             | 1               | 1                | $CY \leftarrow \overline{CY}$                                |                    |                   |
| Memory bit           | SET1     | mem.bit        | 2               | 2                | (mem.bit) $\leftarrow$ 1                                     | *3                 |                   |
| manipulation         |          | fmem.bit       | 2               | 2                | (fmem.bit) ← 1                                               | *4                 |                   |
|                      |          | pmem.@L        | 2               | 2                | (pmem7-2+L3-2.bit(L1-0))← 1                                  | *5                 |                   |
|                      |          | @H+mem.bit     | 2               | 2                | (H+mem₃-0.bit)← 1                                            | *1                 |                   |
|                      | CLR1     | mem.bit        | 2               | 2                | (mem.bit)←0                                                  | *3                 |                   |
|                      |          | fmem.bit       | 2               | 2                | (fmem.bit)←0                                                 | *4                 |                   |
|                      |          | pmem.@L        | 2               | 2                | (pmem7-2+L3-2.bit(L1-0))←0                                   | *5                 |                   |
|                      |          | @H+mem.bit     | 2               | 2                | (H+mem₃-₀.bit)← 0                                            | *1                 |                   |
|                      | SKT      | mem.bit        | 2               | 2+S              | Skip if(mem.bit)=1                                           | *3                 | (mem.bit)=1       |
|                      |          | fmem.bit       | 2               | 2+S              | Skip if(fmem.bit)=1                                          | *4                 | (fmem.bit)=1      |
|                      |          | pmem.@L        | 2               | 2+S              | Skip if(pmem7-2+L3-2.bit(L1-0))=1                            | *5                 | (pmem.@L)=1       |
|                      |          | @H+mem.bit     | 2               | 2+S              | Skip if(H+mem3-0.bit)=1                                      | *1                 | (@H+mem.bit)=1    |
|                      | SKF      | mem.bit        | 2               | 2+S              | Skip if(mem.bit)=0                                           | *3                 | (mem.bit)=0       |
|                      |          | fmem.bit       | 2               | 2+S              | Skip if(fmem.bit)=0                                          | *4                 | (fmem.bit)=0      |
|                      |          | pmem.@L        | 2               | 2+S              | Skip if(pmem7-2+L3-2.bit(L1-0))=0                            | *5                 | (pmem.@L)=0       |
|                      |          | @H+mem.bit     | 2               | 2+S              | Skip if(H+mem3-0.bit)=0                                      | *1                 | (@H+mem.bit)=0    |
|                      | SKTCLR   | fmem.bit       | 2               | 2+S              | Skip if(fmem.bit)=1 and clear                                | *4                 | (fmem.bit)=1      |
|                      |          | pmem.@L        | 2               | 2+S              | Skip if(pmem7-2+L3-2.bit (L1-0))=1 and clear                 | *5                 | (pmem.@L)=1       |
|                      |          | @H+mem.bit     | 2               | 2+S              | Skip if(H+mem3-0.bit)=1 and clear                            | *1                 | (@H+mem.bit)=1    |
|                      | AND1     | CY, fmem.bit   | 2               | 2                | $CY \leftarrow CY_{\wedge}$ (fmem.bit)                       | *4                 |                   |
|                      |          | CY, pmem.@L    | 2               | 2                | $CY \leftarrow CY_{\wedge} \text{ (pmem7-2+L3-2.bit(L1-0))}$ | *5                 |                   |
|                      |          | CY, @H+mem.bit | 2               | 2                | $CY \leftarrow C \land (H+mem_{3-0}.bit)$                    | *1                 |                   |
|                      | OR1      | CY, fmem.bit   | 2               | 2                | $CY \gets CY \lor (fmem.bit)$                                | *4                 |                   |
|                      |          | CY, pmem.@L    | 2               | 2                | $CY \leftarrow CY \lor (pmem7-2+L3-2.bit(L1-0))$             | *5                 |                   |
|                      |          | CY, @H+mem.bit | 2               | 2                | $CY \leftarrow CY \lor (H+mem_{3-0}.bit)$                    | *1                 |                   |
|                      | XOR1     | CY, fmem.bit   | 2               | 2                | $CY \leftarrow CY \forall \text{ (fmem.bit)}$                | *4                 |                   |
|                      |          | CY, pmem.@L    | 2               | 2                | CY ← CY ∀ (pmem7-2+L3-2.bit(L1-0))                           | *5                 |                   |
|                      |          | CY, @H+mem.bit | 2               | 2                | $CY \leftarrow C \lor (H+mem_{3-0}.bit)$                     | *1                 |                   |

26

| N | EC |
|---|----|
|   |    |

| Instruction<br>Group        | Mnemonic               | Operand | No. of<br>Bytes | Machine<br>Cycle                                                                                                                                                                                                                                                                                    | Operation                                                                                                                                                                | Addressing<br>Area | Skip<br>Condition |
|-----------------------------|------------------------|---------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| Branch BR <sup>Note 1</sup> | addr                   |         | _               | $\begin{array}{c} PC14 \leftarrow 0,  PC13\text{-}0 \leftarrow  addr \\ (\text{Use the assembler to select the} \\ \text{most appropriate instruction} \\ \text{among the following.} \\ \bullet  BR  \texttt{!addr} \\ \bullet  BRCB  \texttt{!caddr} \\ \bullet  BR  \texttt{\$addr} \end{array}$ | *6                                                                                                                                                                       |                    |                   |
|                             |                        | addr1   | _               | _                                                                                                                                                                                                                                                                                                   | PC14-0 ← addr1<br>Use the assembler to select<br>the most appropriate instruction<br>among the following.<br>• BRA !addr1<br>• BR !addr<br>• BRCB !caddr<br>• BR \$addr1 | *11                |                   |
|                             |                        | !addr   | 3               | 3                                                                                                                                                                                                                                                                                                   | $PC_{14} \leftarrow 0, PC_{13-0} \leftarrow addr$                                                                                                                        | *6                 |                   |
|                             |                        | \$addr  | 1               | 2                                                                                                                                                                                                                                                                                                   | $PC_{14} \leftarrow 0, PC_{13-0} \leftarrow addr$                                                                                                                        | *7                 |                   |
|                             |                        | \$addr1 | 1               | 2                                                                                                                                                                                                                                                                                                   | PC14-0 ← addr1                                                                                                                                                           |                    |                   |
|                             |                        | PCDE    | 2               | 3                                                                                                                                                                                                                                                                                                   | $PC_{14} \leftarrow 0, PC_{13-0} \leftarrow PC_{13-8} + DE$                                                                                                              |                    |                   |
|                             |                        |         |                 |                                                                                                                                                                                                                                                                                                     | PC14-0 ← PC14-8+DE                                                                                                                                                       |                    |                   |
|                             |                        | PCXA    | 2               | 3                                                                                                                                                                                                                                                                                                   | PC14 ← 0, PC13-0 ← PC13-8+XA                                                                                                                                             |                    |                   |
|                             |                        |         |                 |                                                                                                                                                                                                                                                                                                     | $PC_{14-0} \leftarrow PC_{14-8} + XA$                                                                                                                                    |                    |                   |
|                             |                        | BCDE    | 2               | 3                                                                                                                                                                                                                                                                                                   | $PC_{14} \leftarrow 0,  PC_{13\text{-}0} \leftarrow BCDE^{Note 2}$                                                                                                       | *6                 |                   |
|                             |                        |         |                 |                                                                                                                                                                                                                                                                                                     | $PC_{14\text{-}0} \gets BCDE^{Note 2}$                                                                                                                                   | *11                |                   |
|                             |                        | BCXA    | 2               | 3                                                                                                                                                                                                                                                                                                   | $PC_{14} \leftarrow 0,  PC_{13\text{-}0} \leftarrow BCXA^{Note 2}$                                                                                                       | *6                 |                   |
|                             |                        |         |                 |                                                                                                                                                                                                                                                                                                     | $PC_{14\text{-}0} \gets BCXA^{Note 2}$                                                                                                                                   | *11                |                   |
|                             | BRA <sup>Note 1</sup>  | !addr   | 3               | 3                                                                                                                                                                                                                                                                                                   | $PC_{14} \leftarrow 0, PC_{13-0} \leftarrow addr$                                                                                                                        | *6                 |                   |
|                             |                        |         | 3               | 3                                                                                                                                                                                                                                                                                                   | PC14-0 ← addr1                                                                                                                                                           | *11                |                   |
|                             | BRCB <sup>Note 1</sup> | !caddr  | 2               | 2                                                                                                                                                                                                                                                                                                   | $PC_{14} \leftarrow 0,  PC_{13\text{-}0} \leftarrow PC_{13\text{, 12+caddr11-}0}$                                                                                        | *8                 |                   |
|                             |                        |         |                 |                                                                                                                                                                                                                                                                                                     | PC14-0 ← PC14, 13, 12+caddr11-0                                                                                                                                          |                    |                   |

Notes 1. Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

2. The only following bits are valid in the B register.

For Mk I mode : Low-order 2 bits For Mk II mode : Low-order 3 bits

| Instruction<br>Group | Mnemonic              | Operand | No. of<br>Bytes | Machine<br>Cycle | Operation                                                                                         | Addressing<br>Area | Skip<br>Condition |
|----------------------|-----------------------|---------|-----------------|------------------|---------------------------------------------------------------------------------------------------|--------------------|-------------------|
| Subroutine           | CALLA <sup>Note</sup> | !addr1  | 3               | 3                | (SP–5) ← 0, PC14-12                                                                               | *11                |                   |
| stack control        |                       |         |                 |                  | $(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$                                                         |                    |                   |
|                      |                       |         |                 |                  | $(SP-2) \gets X,  X,  MBE,  RBE$                                                                  |                    |                   |
|                      |                       |         |                 |                  | $PC_{14-0} \gets addr1, SP \gets SP-\!6$                                                          |                    |                   |
|                      | CALL <sup>Note</sup>  | !addr   | 3               | 3                | $(SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0}$                                                         | *6                 |                   |
|                      |                       |         |                 |                  | $(SP-3) \leftarrow MBE, RBE, PC_{13, 12}$                                                         |                    |                   |
|                      |                       |         |                 |                  | $PC_{14} \leftarrow 0,  PC_{130} \leftarrow addr,  SP \leftarrow SP4$                             |                    |                   |
|                      |                       |         |                 | 4                | (SP–5) ← 0, PC14-12                                                                               |                    |                   |
|                      |                       |         |                 |                  | $(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$                                                         |                    |                   |
|                      |                       |         |                 |                  | (SP–2)← X, X, MBE, RBE                                                                            |                    |                   |
|                      |                       |         |                 |                  | $PC14 \leftarrow 0,  PC13-0 \leftarrow addr,  SP \leftarrow SP-6$                                 |                    |                   |
|                      | CALLF <sup>Note</sup> | !faddr  | 2               | 2                | (SP-4)(SP-1)(SP-2) ← PC11-0                                                                       | *9                 |                   |
|                      |                       |         |                 |                  | $(SP-3) \leftarrow MBE, RBE, PC_{13, 12}$                                                         |                    |                   |
|                      |                       |         |                 |                  | $PC_{14} \leftarrow 0,  PC_{13\text{-}0} \leftarrow 000\text{+}faddr,  SP \leftarrow SP\text{-}4$ |                    |                   |
|                      |                       |         |                 | 3                | (SP–5) ← 0, PC14-12                                                                               |                    |                   |
|                      |                       |         |                 |                  | (SP-6)(SP-3)(SP-4) ← PC11-0                                                                       |                    |                   |
|                      |                       |         |                 |                  | $(SP-2) \leftarrow X, X, MBE, RBE$                                                                |                    |                   |
|                      |                       |         |                 |                  | $PC_{14-0} \leftarrow 0000+faddr, SP \leftarrow SP-6$                                             |                    |                   |
|                      | RET <sup>Note</sup>   |         | 1               | 3                | MBE, RBE, PC13, 12 ← (SP+1)                                                                       |                    |                   |
|                      |                       |         |                 |                  | $PC_{11-0} \leftarrow (SP)(SP+3)(SP+2)$                                                           |                    |                   |
|                      |                       |         |                 |                  | $PC_{14} \leftarrow 0, SP \leftarrow SP+4$                                                        |                    |                   |
|                      |                       |         |                 |                  | X, X, MBE, RBE $\leftarrow$ (SP+4)                                                                |                    |                   |
|                      |                       |         |                 |                  | 0, PC14-12 ← (SP+1)                                                                               |                    |                   |
|                      |                       |         |                 |                  | $PC_{11-0} \leftarrow (SP)(SP+3)(SP+2)$                                                           |                    |                   |
|                      |                       |         |                 |                  | SP ← SP+6                                                                                         |                    |                   |
|                      | RETS <sup>Note</sup>  |         | 1               | 3+S              | MBE, RBE, PC13, 12 ← (SP+1)                                                                       |                    | Unconditional     |
|                      |                       |         |                 |                  | PC11-0 ← (SP)(SP+3)(SP+2)                                                                         |                    |                   |
|                      |                       |         |                 |                  | $PC_{14} \leftarrow 0, SP \leftarrow SP+4$                                                        |                    |                   |
|                      |                       |         |                 |                  | then skip unconditionally                                                                         |                    |                   |
|                      |                       |         |                 |                  | X, X, MBE, RBE $\leftarrow$ (SP+4)                                                                |                    |                   |
|                      |                       |         |                 |                  | 0, PC14-12 ← (SP+1)                                                                               |                    |                   |
|                      |                       |         |                 |                  | PC11-0 ← (SP)(SP+3)(SP+2)                                                                         |                    |                   |
|                      |                       |         |                 |                  | SP ← SP+6                                                                                         |                    |                   |
|                      |                       |         |                 |                  | then skip unconditionally                                                                         |                    |                   |
|                      | RETINote              |         | 1               | 3                | MBE, RBE, PC13, 12 $\leftarrow$ (SP+1), PC14 $\leftarrow$ 0                                       |                    |                   |
|                      |                       |         |                 |                  | $PC_{11-0} \leftarrow (SP)(SP+3)(SP+2)$                                                           |                    |                   |
|                      |                       |         |                 |                  | $PSW \leftarrow (SP+4)(SP+5), SP \leftarrow SP+6$                                                 |                    |                   |
|                      |                       |         |                 |                  | 0, PC14-12 ← (SP+1)                                                                               |                    |                   |
|                      |                       |         |                 |                  | $PC_{11-0} \leftarrow (SP)(SP+3)(SP+2)$                                                           |                    |                   |
|                      |                       |         |                 |                  | $PSW \leftarrow (SP+4)(SP+5), SP \leftarrow SP+6$                                                 |                    |                   |
|                      |                       |         |                 |                  | $-500 \leftarrow (5+4)(5+5), 5+ \leftarrow 5+6$                                                   |                    |                   |

Note Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

| Instruction<br>Group | Mnemonic              | Operand   | No. of<br>Bytes | Machine<br>Cycle | Operation                                                                                                             | Addressing<br>Area | Skip<br>Condition                          |
|----------------------|-----------------------|-----------|-----------------|------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------|
| Subroutine           | PUSH                  | rp        | 1               | 1                | $(SP-1)(SP-2) \gets rp,  SP \gets SP-2$                                                                               |                    |                                            |
| stack control        |                       | BS        | 2               | 2                | $(SP-1) \gets MBS, (SP-2) \gets RBS, SP \gets SP-2$                                                                   |                    |                                            |
|                      | POP                   | rp        | 1               | 1                | $rp \leftarrow (SP+1)(SP), SP \leftarrow SP+2$                                                                        |                    |                                            |
|                      |                       | BS        | 2               | 2                | $MBS \leftarrow (SP+1), RBS \leftarrow (SP), SP \leftarrow SP+2$                                                      |                    |                                            |
| Interrupt            | EI                    |           | 2               | 2                | $IME(IPS.3) \leftarrow 1$                                                                                             |                    |                                            |
| control              |                       | IEXXX     | 2               | 2                | $IEXXX \leftarrow 1$                                                                                                  |                    |                                            |
|                      | DI                    |           | 2               | 2                | $IME(IPS.3) \leftarrow 0$                                                                                             |                    |                                            |
|                      |                       | IEXXX     | 2               | 2                | $IEXXX \leftarrow 0$                                                                                                  |                    |                                            |
| I/O                  | IN <sup>Note 1</sup>  | A, PORTn  | 2               | 2                | $A \leftarrow PORTn$ (n=0-7)                                                                                          |                    |                                            |
| (                    |                       | XA, PORTn | 2               | 2                | XA ← PORTn+1, PORTn (n=4, 6)                                                                                          |                    |                                            |
|                      | OUT <sup>Note 1</sup> | PORTn, A  | 2               | 2                | $PORTn \leftarrow A$ (n=2-7)                                                                                          |                    |                                            |
|                      |                       | PORTn, XA | 2               | 2                | PORTn+1, PORTn $\leftarrow$ XA (n=4, 6)                                                                               |                    |                                            |
| CPU control          | HALT                  |           | 2               | 2                | Set HALT Mode(PCC.2 $\leftarrow$ 1)                                                                                   |                    |                                            |
|                      | STOP                  |           | 2               | 2                | Set STOP Mode(PCC.3 ←1)                                                                                               |                    |                                            |
|                      | NOP                   |           | 1               | 1                | No Operation                                                                                                          |                    |                                            |
| Special              | SEL                   | RBn       | 2               | 2                | $RBS \leftarrow n (n=0-3)$                                                                                            |                    |                                            |
|                      |                       | MBn       | 2               | 2                | MBS ← n (n=0-3, 15)                                                                                                   |                    |                                            |
|                      | GETINote 2, 3         | taddr     | 1               | 3                | When using TBR instruction                                                                                            | *10                |                                            |
|                      |                       |           |                 |                  | $PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1), PC_{14} \leftarrow 0$                                                |                    |                                            |
|                      |                       |           |                 |                  | When using TCALL instruction                                                                                          | -                  |                                            |
|                      |                       |           |                 |                  | (SP-4)(SP-1)(SP-2) ← PC11-0                                                                                           |                    |                                            |
|                      |                       |           |                 |                  | $(SP-3) \leftarrow MBE, RBE, PC13, 12, PC14 \leftarrow 0$                                                             |                    |                                            |
|                      |                       |           |                 |                  | $PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1)$                                                                      |                    |                                            |
|                      |                       |           |                 |                  | $SP \leftarrow SP-4$                                                                                                  |                    |                                            |
|                      |                       |           |                 |                  | <ul> <li>When using instruction other than<br/>TBR or TCALL</li> <li>Execute (taddr)(taddr+1) instructions</li> </ul> |                    | Determined by<br>referenced<br>instruction |
|                      |                       |           | 1               | 3                | When using TBR instruction                                                                                            | *10                |                                            |
|                      |                       |           |                 |                  | $PC_{13-0} \leftarrow (taddr)_{5-0+}(taddr+1), PC_{14} \leftarrow 0$                                                  |                    |                                            |
|                      |                       |           |                 | 4                | When using TCALL instruction                                                                                          | -                  |                                            |
|                      |                       |           |                 |                  | (SP–5) ← 0, PC14-12                                                                                                   |                    |                                            |
|                      |                       |           |                 |                  | (SP–6)(SP–3)(SP–4) ← PC11-0                                                                                           |                    |                                            |
|                      |                       |           |                 |                  | $(SP-2) \leftarrow X, X, MBE, RBE, PC14 \leftarrow 0$                                                                 |                    |                                            |
|                      |                       |           |                 |                  | PC13-0 ← (taddr)5-0+(taddr+1)                                                                                         |                    |                                            |
|                      |                       |           |                 |                  | $SP \leftarrow SP-6$                                                                                                  |                    |                                            |
|                      |                       |           |                 | 3                | When using instruction other than<br>TBR or TCALL<br>Execute (taddr)(taddr+1) instructions                            |                    | Determined by<br>referenced<br>instruction |

Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBS to 15.

- 2. TBR and TCALL instructions are assembler pseudo-instructions for the GETI instruction's table definitions.
- 3. Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

# 8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The program memory contained in the  $\mu$ PD75P3018A is a 32768 × 8-bit one-time PROM that can be electrically written one time only. The pins listed in the table below are used for this one-time PROM's write/verify operations. Clock input from the X1 pin is used instead of address input as a method for updating addresses.

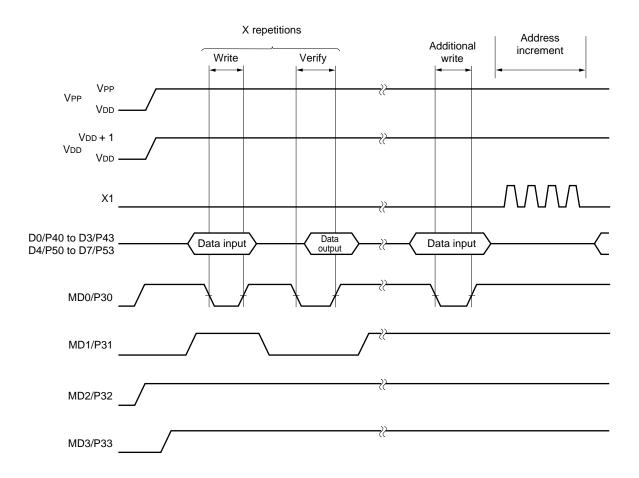
| Pin                                                                               | Function                                                                                                                                         |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Vpp                                                                               | Pin where program voltage is applied during program memory write/verify (usually $V_{\rm DD}$ potential)                                         |
| X1, X2                                                                            | Clock input pins for address updating during program memory write/verify. Input the X1 pin's inverted signal to the X2 pin.                      |
| MD0-MD3                                                                           | Operation mode selection pin for program memory write/verify                                                                                     |
| D0/P40 to D3/P43<br>(low-order 4 bits)<br>D4/P50 to D7/P53<br>(high-order 4 bits) | 8-bit data I/O pins for program memory write/verify                                                                                              |
| Vdd                                                                               | Pin where power supply voltage is applied.<br>Applies $V_{DD}$ = 1.8 to 5.5 V in normal operation mode and +6 V for program memory write/verify. |

★ Caution Pins not used for program memory write/verify should be connected to Vss via a resistor individually.

#### 8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the V<sub>DD</sub> pin and +12.5 V to the V<sub>PP</sub> pin, the  $\mu$ PD75P3018A enters the program memory write/verify mode. The following operation modes can be specified by setting pins MD0 to MD3 as shown below.

| Operation Mode Specification |      |     |     | Operation Mode |     |                                   |  |  |
|------------------------------|------|-----|-----|----------------|-----|-----------------------------------|--|--|
| Vpp                          | Vdd  | MD0 | MD1 | MD2            | MD3 |                                   |  |  |
| +12.5 V                      | +6 V | Н   | L   | Н              | L   | Zero-clear program memory address |  |  |
|                              |      | L   | Н   | Н              | Н   | Write mode                        |  |  |
|                              |      | L   | L   | Н              | Н   | Verify mode                       |  |  |
|                              |      | Н   | Х   | Н              | Н   | Program inhibit mode              |  |  |

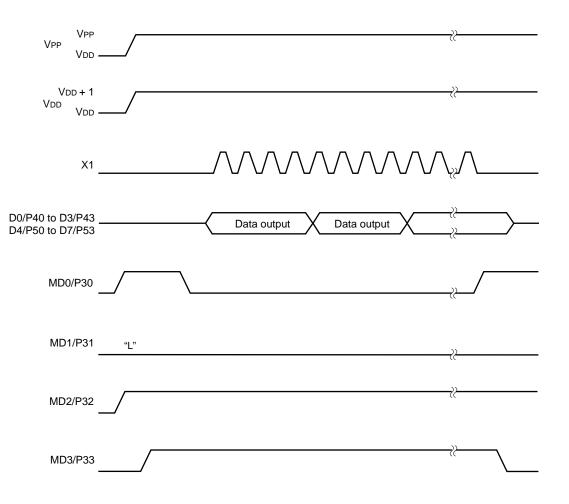

X: L or H

#### 8.2 Program Memory Write Procedure

Program memory can be written at high speed using the following procedure.

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 μs.
- (4) Select the zero-clear program memory address mode.
- (5) Supply 6 V to the VDD and 12.5 V to the VPP pins.
- (6) Write data in the 1 ms write mode.
- (7) Select the verify mode. If the data is correct, go to step (8) and if not, repeat steps (6) and (7).
- (8) (X : number of write operations from steps (6) and (7))  $\times$  1 ms additional write.
- (9) Apply four pulses to the X1 pin to increment the program memory address by one.
- (10) Repeat steps (6) to (9) until the end address is reached.
- (11) Select the zero-clear program memory address mode.
- (12) Return the VDD and VPP pins back to 5 V.
- (13) Turn off the power.

The following figure shows steps (2) to (9).




#### 8.3 Program Memory Read Procedure

The  $\mu$ PD75P3018A can read program memory contents using the following procedure.

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 μs.
- (4) Select the zero-clear program memory address mode.
- (5) Supply 6 V to the VDD and 12.5 V to the VPP pins.
- (6) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one address.
- (7) Select the zero-clear program memory address mode.
- (8) Return the VDD and VPP pins back to 5 V.
- (9) Turn off the power.

The following figure shows steps (2) to (7).



#### 8.4 One-time PROM Screening

Due to its structure, the one-time PROM cannot be fully tested before shipment by NEC. Therefore, NEC recommends that after the required data is written and the PROM is stored under the temperature and time conditions shown below, the PROM should be verified via a screening.

| Storage Temperature | Storage Time |
|---------------------|--------------|
| 125°C               | 24 hours     |

# 9. ELECTRICAL SPECIFICATIONS

#### Absolute Maximum Ratings (T<sub>A</sub> = 25°C)

| Parameter                     | Symbol | Conditions                             | Ratings                       | Unit |
|-------------------------------|--------|----------------------------------------|-------------------------------|------|
| Supply voltage                | Vdd    |                                        | -0.3 to +7.0                  | V    |
| PROM supply voltage           | Vpp    |                                        | -0.3 to +13.5                 | V    |
| Input voltage                 | VI1    | Other than ports 4 and 5               | -0.3 to V <sub>DD</sub> + 0.3 | V    |
|                               | VI2    | Ports 4 and 5 (During N-ch open drain) | -0.3 to +14                   | V    |
| Output voltage                | Vo     |                                        | -0.3 to V <sub>DD</sub> + 0.3 | V    |
| High-level output current     | Іон    | Per pin                                | -10                           | mA   |
|                               |        | Total of all pins                      | -30                           | mA   |
| Low-level output current      | lo∟    | Per pin                                | 30                            | mA   |
|                               |        | Total of all pins                      | 220                           | mA   |
| Operating ambient temperature | TA     |                                        | -40 to +85 <sup>Note</sup>    | °C   |
| Storage temperature           | Tstg   |                                        | -65 to +150                   | °C   |

**Note** To drive LCD in normal mode,  $T_A = -10$  to  $+85^{\circ}C$ 

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

#### Capacitance (T<sub>A</sub> = $25^{\circ}$ C, V<sub>DD</sub> = 0 V)

| Parameter          | Symbol | Conditions                      | MIN. | TYP. | MAX. | Unit |
|--------------------|--------|---------------------------------|------|------|------|------|
| Input capacitance  | CIN    | f = 1 MHz                       |      |      | 15   | pF   |
| Output capacitance | Соит   | Unmeasured pins returned to 0 V |      |      | 15   | pF   |
| I/O capacitance    | Сю     |                                 |      |      | 15   | pF   |

| Resonator            | Recommended Circuit | Parameter                                           | Conditions                                                                         | MIN. | TYP. | MAX.                  | Unit |
|----------------------|---------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|------|------|-----------------------|------|
| Ceramic<br>resonator |                     | Oscillation frequency<br>(fx) <sup>Note 1</sup>     |                                                                                    | 1.0  |      | 6.0 <sup>Note 2</sup> | MHz  |
|                      |                     | Oscillation<br>stabilization time <sup>Note 3</sup> | After V <sub>DD</sub> has<br>reached MIN. value<br>of oscillation voltage<br>range |      |      | 4                     | ms   |
| Crystal<br>resonator | X1 X2               | Oscillation frequency<br>(fx) <sup>Note 1</sup>     |                                                                                    | 1.0  |      | 6.0 <sup>Note 2</sup> | MHz  |
|                      |                     | Oscillation<br>stabilization time <sup>Note 3</sup> | V <sub>DD</sub> = 4.5 to 5.5 V                                                     |      |      | 10                    | ms   |
|                      | VDD                 |                                                     |                                                                                    |      |      | 30                    |      |
| External<br>clock    | X1 X2               | X1 input frequency<br>(fx) <sup>Note 1</sup>        |                                                                                    | 1.0  |      | 6.0 <sup>Note 2</sup> | MHz  |
|                      |                     | X1 input high-/<br>low-level width<br>(txн, txL)    |                                                                                    | 83.3 |      | 500                   | ns   |

#### Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

- **Notes 1.** The oscillation frequency and X1 input frequency shown above indicate characteristics of the oscillator only. For the instruction execution time, refer to **AC Characteristics**.
  - 2. If the oscillation frequency is 4.19 MHz < fx  $\leq$  6.0 MHz at 1.8 V  $\leq$  V<sub>DD</sub> < 2.7 V, do not select processor clock control register (PCC) = 0011. If PCC = 0011, one machine cycle is less than 0.95  $\mu$ s, falling short of the rated value of 0.95  $\mu$ s.
  - **3.** The oscillation stabilization time is the time required for oscillation to be stabilized after V<sub>DD</sub> has been applied or STOP mode has been released.
- Caution When using the main system clock oscillator, wire the portion enclosed in the broken line in the above figure as follows to prevent adverse influence due to wiring capacitance:
  - Keep the wiring length as short as possible.
  - Do not cross the wiring with other signal lines.
  - Do not route the wiring in the vicinity of a line through which a high alternating current flows.
  - Always keep the ground point of the capacitor of the oscillator at the same potential as VDD.
  - Do not ground to a power supply pattern through which a high current flows.
  - Do not extract signals from the oscillator.
- Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

| Resonator            | Recommended Circuit | Parameter                                                     | Conditions                     | MIN. | TYP.   | MAX. | Unit |
|----------------------|---------------------|---------------------------------------------------------------|--------------------------------|------|--------|------|------|
| Crystal<br>resonator | XT1 XT2             | Oscillation frequency<br>(f <sub>XT</sub> ) <sup>Note 1</sup> |                                | 32   | 32.768 | 35   | kHz  |
|                      |                     | Oscillation<br>stabilization time <sup>Note 2</sup>           | V <sub>DD</sub> = 4.5 to 5.5 V |      | 1.0    | 2    | S    |
|                      | VDD                 |                                                               |                                |      |        | 10   |      |
| External<br>clock    |                     | XT1 input frequency<br>(f <sub>XT</sub> ) <sup>Note 1</sup>   |                                | 32   |        | 100  | kHz  |
|                      |                     | XT1 input high-/<br>low-level width<br>(txTH, txTL)           |                                | 5    |        | 15   | μs   |

#### Subsystem Clock Oscillator Characteristics ( $T_A = -40$ to $+85^{\circ}C$ , $V_{DD} = 1.8$ to 5.5 V)

**Notes 1.** The oscillation frequency and XT1 input frequency shown above indicate characteristics of the oscillator only. For the instruction execution time, refer to **AC Characteristics**.

2. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied.

# Caution When using the subsystem clock oscillator, wire the portion enclosed in the broken line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillator at the same potential as VDD.
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillator.

The subsystem clock oscillator has a low amplification factor to reduce current consumption and is more susceptible to noise than the main system clock oscillator. Therefore, exercise utmost care in wiring the subsystem clock oscillator.

★ Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

36

# DC Characteristics (T<sub>A</sub> = -40 to $+85^{\circ}$ C, V<sub>DD</sub> = 1.8 to 5.5 V)

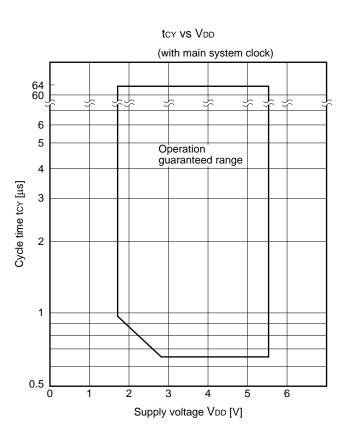
| Parameter                           | Symbol |                 | Conditions                | MIN.     | TYP.                                    | MAX.      | Unit |        |    |
|-------------------------------------|--------|-----------------|---------------------------|----------|-----------------------------------------|-----------|------|--------|----|
| Low-level output                    | Iol    | Per pin         |                           |          |                                         |           |      | 15     | mA |
| current                             |        | Total of all pi | ns                        |          |                                         |           |      | 150    | mA |
| High-level input                    | VIH1   | Ports 2, 3      |                           | 2.7 V    | $\leq V_{DD} \leq 5.5 \text{ V}$        | 0.7Vdd    |      | Vdd    | V  |
| voltage                             |        |                 |                           | 1.8 V    | $\leq$ Vdd < 2.7 V                      | 0.9Vdd    |      | Vdd    | V  |
|                                     | VIH2   | Ports 0, 1, 6,  | 7, RESET                  | 2.7 V    | $\leq V_{DD} \leq 5.5 \text{ V}$        | 0.8Vdd    |      | Vdd    | V  |
|                                     |        |                 |                           | 1.8 V    | $\leq$ Vdd < 2.7 V                      | 0.9Vdd    |      | Vdd    | V  |
|                                     | Vінз   | Ports 4, 5      |                           | 2.7 V    | $\leq V_{\text{DD}} \leq 5.5 \text{ V}$ | 0.7Vdd    |      | 13     | V  |
|                                     |        | (N-ch open-c    | Irain)                    | 1.8 V    | $\leq$ Vdd < 2.7 V                      | 0.9Vdd    |      | 13     | V  |
|                                     | VIH4   | X1, XT1         |                           |          |                                         | Vdd - 0.1 |      | Vdd    | V  |
| Low-level input                     | VIL1   | Ports 2 to 5    |                           | 2.7 V    | $\leq V_{DD} \leq 5.5 \text{ V}$        | 0         |      | 0.3Vdd | V  |
| voltage                             |        |                 |                           | 1.8 V    | $\leq$ Vdd < 2.7 V                      | 0         |      | 0.1Vdd | V  |
|                                     | VIL2   | Ports 0, 1, 6,  | 7, RESET                  | 2.7 V    | $\leq V_{DD} \leq 5.5 \text{ V}$        | 0         |      | 0.2Vdd | V  |
|                                     |        |                 |                           | 1.8 V    | $\leq$ Vdd < 2.7 V                      | 0         |      | 0.1Vdd | V  |
|                                     | VIL3   | X1, XT1         |                           |          |                                         | 0         |      | 0.1    | V  |
| High-level output                   | Vон    | SCK, SO, Po     | orts 2, 3, 6, 7, BP0 to   | BP7      |                                         | Vdd - 0.5 |      |        | V  |
| voltage                             |        | Іон = -1.0 m/   | \<br>\                    |          |                                         |           |      |        |    |
| Low-level output                    | Vol1   | SCK, SO, Po     | orts 2 to 7,              | Iol =    | 15 mA                                   |           | 0.2  | 2.0    | V  |
| voltage                             |        | BP0 to BP7      |                           | VDD =    | 4.5 to 5.5 V                            |           |      |        |    |
|                                     |        |                 |                           | Iol =    | 1.6 mA                                  |           |      | 0.4    | V  |
|                                     | Vol2   | SB0, SB1        | N-ch open-drain           | 1        |                                         |           |      | 0.2Vdd | V  |
|                                     |        |                 | Pull-up resistor $\geq$ 1 | kΩ       |                                         |           |      |        |    |
| High-level input                    | Ішні   | Vin = Vdd       | Pins other than X1        | , XT1    |                                         |           |      | 3      | μΑ |
| leakage current                     | ILIH2  |                 | X1, XT1                   |          |                                         |           |      | 20     | μΑ |
|                                     | Ілнз   | VIN = 13 V      | Ports 4, 5 (N-ch op       | en-dra   | in)                                     |           |      | 20     | μΑ |
| Low-level input                     |        | $V_{IN} = 0 V$  | Pins other than X1        | , XT1,   | Ports 4, 5                              |           |      | -3     | μΑ |
| leakage current                     |        |                 | X1, XT1                   |          |                                         |           |      | -20    | μΑ |
|                                     | ILIL3  |                 | Ports 4, 5 (N-ch op       | en-dra   | in)                                     |           |      | -3     | μΑ |
|                                     |        |                 | When input instruc        | tion is  | not executed                            |           |      |        |    |
|                                     |        |                 | Ports 4, 5 (N-ch op       | en-      |                                         |           |      | -30    | μΑ |
|                                     |        |                 | drain). When inpu         | t        | VDD = 5.0 V                             |           | -10  | -27    | μΑ |
|                                     |        |                 | instruction is execu      | uted     | VDD = 3.0 V                             |           | -3   | -8     | μΑ |
| High-level output                   | ILOH1  | Vout = Vdd      | SCK, SO/SB0, SB           | 1, Ports | s 2, 3, 6, 7                            |           |      | 3      | μΑ |
| leakage current                     | ILOH2  | Vоит = 13 V     | Ports 4, 5 (N-ch op       | en-dra   | in)                                     |           |      | 20     | μA |
| Low-level output<br>leakage current | Ilol   | Vout = 0 V      |                           |          |                                         |           |      | -3     | μΑ |
| Internal pull-up<br>resistor        | RL     | VIN = 0 V       | Ports 0 to 3, 6, 7 (6     | except   | P00 pin)                                | 50        | 100  | 200    | kΩ |

#### DC Characteristics (T<sub>A</sub> = -40 to $+85^{\circ}$ C, V<sub>DD</sub> = 1.8 to 5.5 V)

| Parameter                        | Symbol |                              |                        | Conditic                                      | ons       |                              | MIN. | TYP. | MAX. | Unit |
|----------------------------------|--------|------------------------------|------------------------|-----------------------------------------------|-----------|------------------------------|------|------|------|------|
| LCD drive voltage                | VLCD   | VAC0 = 0                     | TA = -4                | $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$ |           |                              | 2.7  |      | Vdd  | V    |
|                                  |        |                              | TA = -1                | 0 to +85                                      | °C        |                              | 2.2  |      | Vdd  | V    |
|                                  |        | VAC0 = 1                     |                        |                                               |           |                              | 1.8  |      | Vdd  | V    |
| VAC current <sup>Note 1</sup>    | Ivac   | VAC0 = 1, VDD                | = 2.0 V                | ±10%                                          |           |                              |      | 1    | 4    | μA   |
| LCD output voltage               | Vodc   | lo = ±1.0 μA                 | VLCD0 =                | VLCD                                          |           |                              | 0    |      | ±0.2 | V    |
| deviation <sup>Note 2</sup>      |        |                              | VLCD1 =                | VLCD X                                        | 2/3       |                              |      |      |      |      |
| (common)                         |        |                              | VLCD2 =                | VLCD X                                        | 1/3       |                              |      |      |      |      |
| LCD output voltage               | Vods   | lo = ±0.5 μA                 | 1.8 V ≤                | ≤ Vlcd ≤                                      | Vdd       |                              | 0    |      | ±0.2 | V    |
| deviationNote 2                  |        |                              |                        |                                               |           |                              |      |      |      |      |
| (segment)                        |        |                              |                        |                                               |           |                              |      |      |      |      |
| Supply current <sup>Note 3</sup> |        | 6.0 MHz <sup>Note 4</sup>    | Vdd = 5                | 5.0 V ±10                                     | )%Note 5  |                              |      | 3.7  | 11.0 | mA   |
|                                  |        | crystal                      | VDD = 3                | 5.0 V ±10                                     | )%Note 6  |                              |      | 0.73 | 2.2  | mA   |
|                                  | IDD2   | oscillation                  | HALT                   | VDD = 5                                       | 5.0 V ±10 | )%                           |      | 0.92 | 2.6  | mA   |
|                                  |        | C1 = C2 = 22 pF              | mode                   | Vdd = 3                                       | 8.0 V ±10 | )%                           |      | 0.3  | 0.9  | mA   |
|                                  | IDD1   | 4.19 MHz <sup>Note 4</sup>   | Vdd = 5                | 5.0 V ±10                                     | )%Note 5  |                              |      | 2.7  | 8.0  | mA   |
|                                  |        | crystal                      | VDD = 3                | 5.0 V ±10                                     | )%Note 6  |                              |      | 0.57 | 1.7  | mA   |
|                                  | IDD2   | oscillation                  | HALT                   | VDD = 5                                       | 5.0 V ±10 | )%                           |      | 0.90 | 2.5  | mA   |
|                                  |        | C1 = C2 = 22 pF              | mode                   | Vdd = 3                                       | 8.0 V ±10 | )%                           |      | 0.28 | 0.8  | mA   |
|                                  | Ірдз   | 32.768                       | Low-                   | Vdd = 3                                       | 8.0 V ±10 | )%                           |      | 42   | 126  | μA   |
|                                  |        | kHz <sup>Note 7</sup>        | voltage                | Vdd = 2                                       | 2.0 V ±10 | )%                           |      | 37   | 110  | μA   |
|                                  |        | crystal                      | mode <sup>Note 8</sup> | Vdd = 3                                       | 8.0 V, TA | = 25°C                       |      | 42   | 84   | μA   |
|                                  |        | oscillation                  | Low current consump-   | Vdd = 3                                       | 8.0 V ±10 | )%                           |      | 39   | 117  | μΑ   |
|                                  |        |                              | e                      | Vdd = 3                                       | 8.0 V, TA | = 25°C                       |      | 39   | 78   | μΑ   |
|                                  | DD4    |                              | HALT                   | Low-                                          | VDD = 3   | .0 V ±10%                    |      | 8.5  | 25   | μA   |
|                                  |        |                              | mode                   | voltage                                       | Vdd = 2   | .0 V ±10%                    |      | 5.8  | 17   | μA   |
|                                  |        |                              |                        | mode <sup>Note 8</sup>                        | Vdd = 3   | .0 V, T <sub>A</sub> = 25°C  |      | 8.5  | 17   | μA   |
|                                  |        |                              |                        | Low current consump-                          | Vdd = 3   | .0 V ±10%                    |      | 3.5  | 12   | μA   |
|                                  |        |                              |                        | tion<br>mode <sup>Note 9</sup>                | VDD = 3   | 5.0 V, T <sub>A</sub> = 25°C |      | 3.5  | 7    | μΑ   |
|                                  | IDD5   | XT1 = 0 V <sup>Note 10</sup> | Vdd = 5                | 5.0 V ±10                                     | )%        |                              |      | 0.05 | 10   | μA   |
|                                  |        | STOP mode                    | VDD = 3                | 8.0 V ±10                                     | )%        |                              |      | 0.02 | 5    | μA   |
|                                  |        |                              |                        |                                               |           | $T_A = 25^{\circ}C$          |      | 0.02 | 3    | μA   |

**Notes 1.** Clear VAC0 to 0 in the low current consumption mode and STOP mode. When VAC0 is set to 1, the current increases by about 1 μA.

- 2. Voltage deviation is the difference between the ideal values (VLCDn; n = 0, 1, 2) of the segment and common outputs and the output voltage.
- 3. The current flowing through the internal pull-up resistor is not included.
- 4. Including the case when the subsystem clock oscillates.
- 5. When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
- 6. When the device operates in low-speed mode with PCC set to 0000.
- 7. When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
- 8. When the sub-oscillation circuit control register (SOS) is set to 0000.
- 9. When the SOS is set to 0010.
- 10. When the SOS is set to 00x1, and the feedback resistor of the sub-oscillator is cut (x: don't care).


| Parameter                       | Symbol       | Conditions                     |                                | MIN.   | TYP. | MAX. | Unit |
|---------------------------------|--------------|--------------------------------|--------------------------------|--------|------|------|------|
| CPU clock cycle time Note 1     | tcy          | Operation with                 | V <sub>DD</sub> = 2.7 to 5.5 V | 0.67   |      | 64   | μs   |
| (minimum instruction execution  |              | main system clock              |                                | 0.95   |      | 64   | μs   |
| time = 1 machine cycle)         |              | Operation with subsystem       | clock                          | 114    | 122  | 125  | μs   |
| TI0, TI1, TI2 input frequency   | fтı          | VDD = 2.7 to 5.5 V             |                                | 0      |      | 1.0  | MHz  |
|                                 |              |                                |                                | 0      |      | 275  | kHz  |
| TI0, TI1, TI2 input high-/      | t⊤ıн, t⊤ı∟   | V <sub>DD</sub> = 2.7 to 5.5 V |                                | 0.48   |      |      | μs   |
| low-level width                 |              |                                |                                | 1.8    |      |      | μs   |
| Interrupt input high-/low-level | tinth, tintl | INT0                           | IM02 = 0                       | Note 2 |      |      | μs   |
| width                           |              |                                | IM02 = 1                       | 10     |      |      | μs   |
|                                 |              | INT1, 2, 4                     |                                | 10     |      |      | μs   |
|                                 |              | KR0-7                          |                                | 10     |      |      | μs   |
| RESET low-level width           | trsl         |                                |                                | 10     |      |      | μs   |

AC Characteristics (TA = -40 to  $+85^{\circ}$ C, V<sub>DD</sub> = 1.8 to 5.5 V)

Notes 1. The cycle time (minimum instruction execution time) of the CPU clock  $(\Phi)$  is determined by the oscillation frequency of the connected resonator (and external clock), the system clock control register (SCC), and processor clock control register (PCC).

The figure on the right shows the supply voltage V<sub>DD</sub> vs. cycle time tcY characteristics when the device operates with the main system clock.

 2tcy or 128/fx depending on the setting of the interrupt mode register (IM0).



#### Serial transfer operation

#### 2-wire and 3-wire serial I/O modes (SCK ... internal clock output): (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V)

| Parameter                                                               | Symbol        | Condit                               | ons                            | MIN.        | TYP. | MAX. | Unit |
|-------------------------------------------------------------------------|---------------|--------------------------------------|--------------------------------|-------------|------|------|------|
| SCK cycle time                                                          | <b>t</b> ксү1 | V <sub>DD</sub> = 2.7 to 5.5 V       |                                | 1300        |      |      | ns   |
|                                                                         |               |                                      |                                |             |      |      | ns   |
| SCK high-/low-level width                                               | tĸ∟ı, tĸнı    | V <sub>DD</sub> = 2.7 to 5.5 V       |                                | tксү1/2-50  |      |      | ns   |
|                                                                         |               |                                      |                                | tксү1/2–150 |      |      | ns   |
| SI <sup>Note 1</sup> setup time (to $\overline{\text{SCK}} \uparrow$ )  | tsik1         | V <sub>DD</sub> = 2.7 to 5.5 V       |                                | 150         |      |      | ns   |
|                                                                         |               |                                      |                                | 500         |      |      | ns   |
| SI <sup>Note 1</sup> hold time (from $\overline{\text{SCK}} \uparrow$ ) | tksi1         | V <sub>DD</sub> = 2.7 to 5.5 V       |                                | 400         |      |      | ns   |
|                                                                         |               |                                      |                                | 600         |      |      | ns   |
| $\overline{SCK} \downarrow \to SO^{Note 1}$ output                      | tkso1         | $R_{L} = 1 \ k\Omega, \ ^{Note \ 2}$ | V <sub>DD</sub> = 2.7 to 5.5 V | 0           |      | 250  | ns   |
| delay time                                                              |               | C∟ = 100 pF                          |                                | 0           |      | 1000 | ns   |

Notes 1. In 2-wire serial I/O mode, read SB0 or SB1 instead.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

# 2-wire and 3-wire serial I/O modes (SCK ... external clock input): (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V)

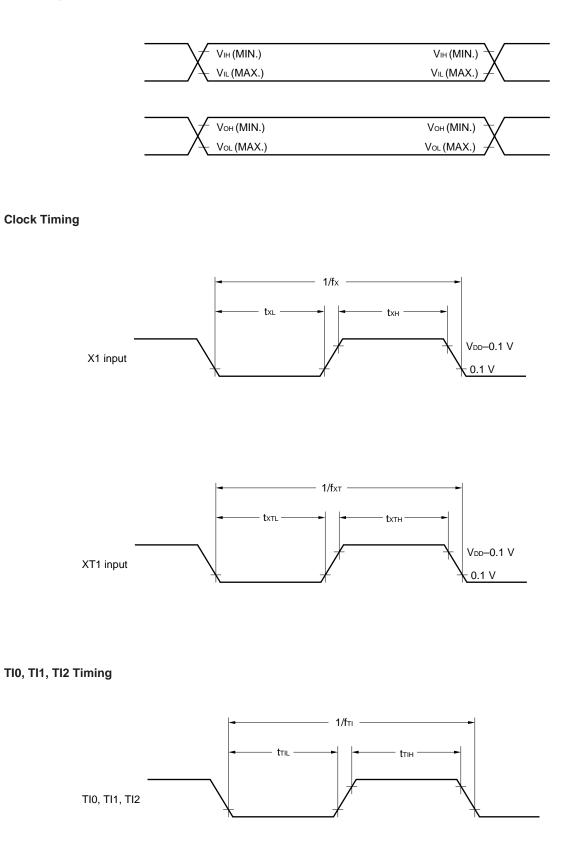
| Parameter                                                              | Symbol        | Conditi                        | ons                            | MIN. | TYP. | MAX. | Unit |
|------------------------------------------------------------------------|---------------|--------------------------------|--------------------------------|------|------|------|------|
| SCK cycle time                                                         | <b>t</b> ксү2 | V <sub>DD</sub> = 2.7 to 5.5 V | 800                            |      |      | ns   |      |
|                                                                        |               |                                | 3200                           |      |      | ns   |      |
| SCK high-/low-level width                                              | tkl2, tkH2    | VDD = 2.7 to 5.5 V             | V <sub>DD</sub> = 2.7 to 5.5 V |      |      |      | ns   |
|                                                                        |               |                                |                                | 1600 |      |      | ns   |
| SI <sup>Note 1</sup> setup time (to $\overline{\text{SCK}} \uparrow$ ) | tsik2         | V <sub>DD</sub> = 2.7 to 5.5 V |                                | 100  |      |      | ns   |
|                                                                        |               |                                |                                | 150  |      |      | ns   |
| SI <sup>Note 1</sup> hold time (from SCK ↑)                            | tksi2         | VDD = 2.7 to 5.5 V             |                                | 400  |      |      | ns   |
|                                                                        |               |                                |                                | 600  |      |      | ns   |
| $\overline{SCK} \downarrow \to SO^{Note 1} \text{ output}$             | tkso2         | $R_L = 1 \ k\Omega$ , Note 2   | V <sub>DD</sub> = 2.7 to 5.5 V | 0    |      | 300  | ns   |
| delay time                                                             |               | C∟ = 100 pF                    |                                | 0    |      | 1000 | ns   |

Notes 1. In 2-wire serial I/O mode, read SB0 or SB1 instead.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

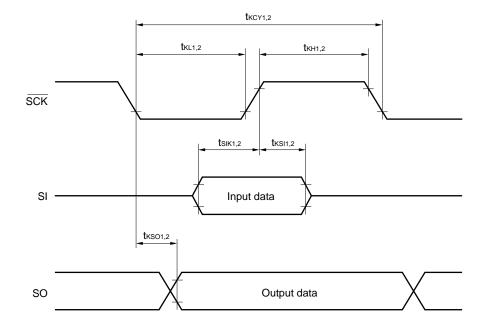
| Parameter                                                        | Symbol       | Condit                                         | ions                           | MIN.        | TYP. | MAX. | Unit |
|------------------------------------------------------------------|--------------|------------------------------------------------|--------------------------------|-------------|------|------|------|
| SCK cycle time                                                   | tксүз        | V <sub>DD</sub> = 2.7 to 5.5 V                 |                                | 1300        |      |      | ns   |
|                                                                  |              |                                                |                                | 3800        |      |      | ns   |
| SCK high-/low-level width                                        | tкьз, tкнз   | V <sub>DD</sub> = 2.7 to 5.5 V                 |                                | tксүз/2-50  |      |      | ns   |
|                                                                  |              |                                                |                                | tксүз/2–150 |      |      | ns   |
| SB0, 1 setup time                                                | tsıкз        | V <sub>DD</sub> = 2.7 to 5.5 V                 |                                | 150         |      |      | ns   |
| (to SCK ↑)                                                       |              |                                                |                                | 500         |      |      | ns   |
| SB0, 1 hold time (from $\overline{\text{SCK}} \uparrow$ )        | tksi3        |                                                |                                | tксүз/2     |      |      | ns   |
| $\overline{SCK} \downarrow \rightarrow SB0, 1 \text{ output}$    | tкsoз        | $R_{\text{L}} = 1 \ k\Omega, \ ^{\text{Note}}$ | V <sub>DD</sub> = 2.7 to 5.5 V | 0           |      | 250  | ns   |
| delay time                                                       |              | C∟ = 100 pF                                    |                                | 0           |      | 1000 | ns   |
| $\overline{SCK} \uparrow \rightarrow SB0, 1 \downarrow$          | tкsв         |                                                |                                | tксүз       |      |      | ns   |
| SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$ | tsвк         |                                                |                                | tксүз       |      |      | ns   |
| SB0, 1 low-level width                                           | <b>t</b> SBL |                                                |                                | tксүз       |      |      | ns   |
| SB0, 1 high-level width                                          | tsвн         |                                                |                                | tксүз       |      |      | ns   |

# SBI mode (SCK ... internal clock output (master)): (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V)

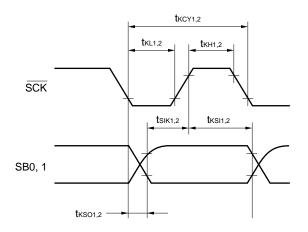

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

# SBI mode ( $\overline{SCK}$ ... external clock input (slave)): (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 1.8 to 5.5 V)

| Parameter                                                                             | Symbol        | Condi                            | tions                          | MIN.          | TYP. | MAX. | Unit |
|---------------------------------------------------------------------------------------|---------------|----------------------------------|--------------------------------|---------------|------|------|------|
| SCK cycle time                                                                        | <b>t</b> ксү4 | V <sub>DD</sub> = 2.7 to 5.5 V   |                                | 800           |      |      | ns   |
|                                                                                       |               |                                  |                                | 3200          |      |      | ns   |
| SCK high-/low-level width                                                             | tkl4, tkh4    | V <sub>DD</sub> = 2.7 to 5.5 V   |                                | 400           |      |      | ns   |
|                                                                                       |               |                                  |                                | 1600          |      |      | ns   |
| SB0, 1 setup time                                                                     | tsik4         | V <sub>DD</sub> = 2.7 to 5.5 V   |                                | 100           |      |      | ns   |
| (to SCK ↑)                                                                            |               |                                  |                                | 150           |      |      | ns   |
| SB0, 1 hold time (from SCK ↑)                                                         | tksi4         |                                  |                                | tксү4/2       |      |      | ns   |
| $\overline{\text{SCK}} \downarrow \rightarrow \text{SB0, 1 output}$                   | tkso4         | $R_{L} = 1 \ k\Omega, \ ^{Note}$ | V <sub>DD</sub> = 2.7 to 5.5 V | 0             |      | 300  | ns   |
| delay time                                                                            |               | C∟ = 100 pF                      |                                | 0             |      | 1000 | ns   |
| $\overline{\operatorname{SCK}} \uparrow \rightarrow \operatorname{SB0}, 1 \downarrow$ | tкsв          |                                  |                                | <b>t</b> ксү4 |      |      | ns   |
| $SB0, 1 \downarrow \rightarrow \overline{SCK} \downarrow$                             | tsвк          |                                  |                                | tkcy4         |      |      | ns   |
| SB0, 1 low-level width                                                                | tsbl          |                                  |                                | tkcy4         |      |      | ns   |
| SB0, 1 high-level width                                                               | tsвн          |                                  |                                | tксү4         |      |      | ns   |


Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

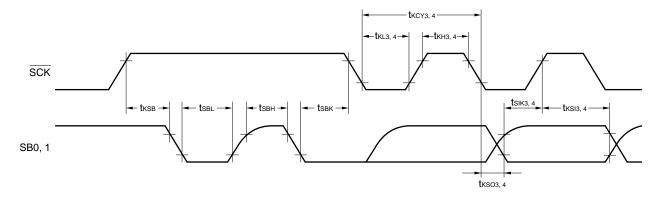
## AC Timing Test Points (except X1 and XT1 inputs)



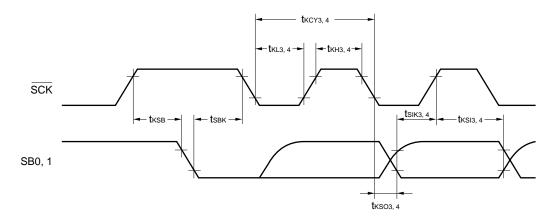

#### **Serial Transfer Timing**

# 3-wire Serial I/O Mode

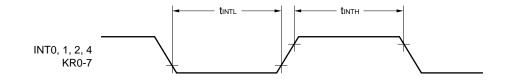



2-wire Serial I/O Mode

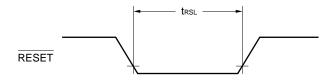



Data Sheet U11917EJ2V0DS00

# Serial Transfer Timing


# Bus Release Signal Transfer




**Command Signal Transfer** 



# Interrupt Input Timing

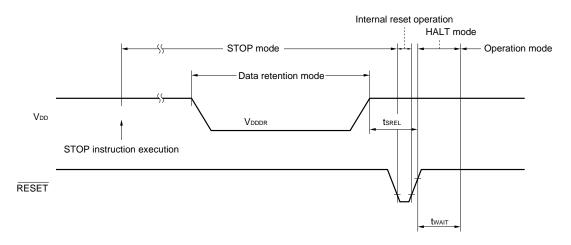


## **RESET** Input Timing

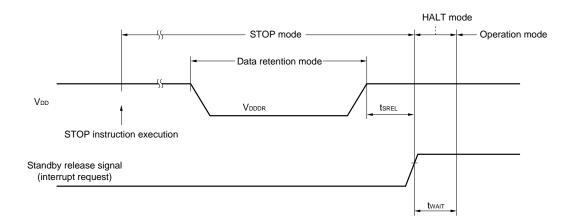


\*

Data retention characteristics of data memory in STOP mode and at low supply voltage (T<sub>A</sub> = -40 to +85°C)


| Parameter                   | Symbol | Conditions                    | MIN. | TYP.   | MAX. | Unit |
|-----------------------------|--------|-------------------------------|------|--------|------|------|
| Data retention power        | Vdddr  |                               | 1.8  |        | 5.5  | V    |
| supply voltage              |        |                               |      |        |      |      |
| Release signal setup time   | tSREL  |                               | 0    |        |      | μs   |
| Oscillation stabilization   | twait  | Released by RESET             |      | 215/fx |      | ms   |
| wait time <sup>Note 1</sup> |        | Released by interrupt request |      | Note 2 |      | ms   |

| Notes 1. | The oscillation | stabilization   | wait time  | is the time | e during | which the | CPU | stops | operating | to prevent | unstable |
|----------|-----------------|-----------------|------------|-------------|----------|-----------|-----|-------|-----------|------------|----------|
|          | operation when  | n oscillation i | s started. |             |          |           |     |       |           |            |          |


2. Set by the basic interval timer mode register (BTM). (Refer to the table below.)

| втмз | BTM2   | BTM1   | BTM0   | Wait                                  | Time                                  |
|------|--------|--------|--------|---------------------------------------|---------------------------------------|
| DINS | DTIVIZ | DIIVII | BTIVIO | fx = 4.19 MHz                         | fx = 6.0 MHz                          |
| -    | 0      | 0      | 0      | 2 <sup>20</sup> /fx (approx. 250 ms)  | 2 <sup>20</sup> /fx (approx. 175 ms)  |
| -    | 0      | 1      | 1      | 217/fx (approx. 31.3 ms)              | 2 <sup>17</sup> /fx (approx. 21.8 ms) |
| -    | 1      | 0      | 1      | 2 <sup>15</sup> /fx (approx. 7.81 ms) | 2 <sup>15</sup> /fx (approx. 5.46 ms) |
| -    | 1      | 1      | 1      | 2 <sup>13</sup> /fx (approx. 1.95 ms) | 2 <sup>13</sup> /fx (approx. 1.37 ms) |

#### Data Retention Timing (when STOP mode released by RESET)



#### Data Retention Timing (standby release signal: when STOP mode released by interrupt signal)

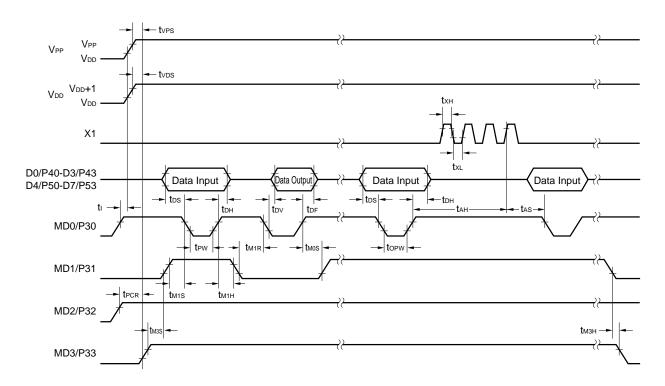


| Parameter                 | Symbol | Conditions             | MIN.      | TYP. | MAX.   | Unit |
|---------------------------|--------|------------------------|-----------|------|--------|------|
| High-level input voltage  | VIH1   | Pins other than X1, X2 | 0.7Vdd    |      | Vdd    | V    |
|                           | VIH2   | X1, X2                 | Vdd - 0.5 |      | Vdd    | V    |
| Low-level input voltage   | VIL1   | Pins other than X1, X2 | 0         |      | 0.3Vdd | V    |
|                           | VIL2   | X1, X2                 | 0         |      | 0.4    | V    |
| Input leakage current     | lu     | VIN = VIL OF VIH       |           |      | 10     | μA   |
| High-level output voltage | Vон    | Іон = -1 mA            | Vdd - 1.0 |      |        | V    |
| Low-level output voltage  | Vol    | lo∟ = 1.6 mA           |           |      | 0.4    | V    |
| VDD supply current        | Idd    |                        |           |      | 30     | mA   |
| VPP supply current        | Ірр    | MD0 = VIL, MD1 = VIH   |           |      | 30     | mA   |

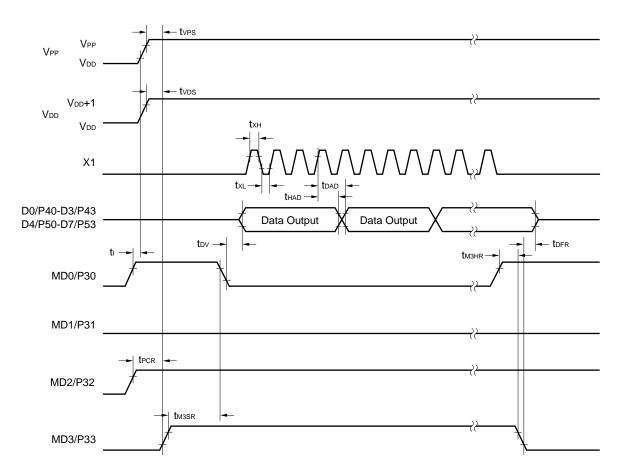
## DC Programming Characteristics (T<sub>A</sub> = 25 $\pm$ 5°C, V<sub>DD</sub> = 6.0 $\pm$ 0.25 V, V<sub>PP</sub> = 12.5 $\pm$ 0.3 V, V<sub>SS</sub> = 0 V)

# Cautions 1. Ensure that VPP does not exceed +13.5 V including overshoot.

2. VDD must be applied before VPP, and cut after VPP.

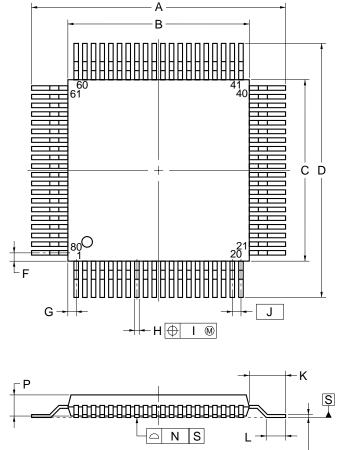

#### AC Programming Characteristics (T<sub>A</sub> = 25 $\pm$ 5°C, V<sub>DD</sub> = 6.0 $\pm$ 0.25 V, V<sub>PP</sub> = 12.5 $\pm$ 0.3 V, V<sub>SS</sub> = 0 V)

| Parameter                                                    | Symbol           | Note 1 | Conditions          | MIN.  | TYP. | MAX. | Unit |
|--------------------------------------------------------------|------------------|--------|---------------------|-------|------|------|------|
| Address setup time <sup>Note 2</sup> (to MD0 $\downarrow$ )  | tas              | tas    |                     | 2     |      |      | μs   |
| MD1 setup time (to MD0↓)                                     | t <sub>M1S</sub> | toes   |                     | 2     |      |      | μs   |
| Data setup time (to MD0↓)                                    | tos              | tos    |                     | 2     |      |      | μs   |
| Address hold time <sup>Note 2</sup> (from MD0 <sup>↑</sup> ) | tан              | tан    |                     | 2     |      |      | μs   |
| Data hold time (from MD0↑)                                   | tон              | tон    |                     | 2     |      |      | μs   |
| MD0 $\uparrow$ $\rightarrow$ Data output float delay time    | <b>t</b> DF      | tdF    |                     | 0     |      | 130  | ns   |
| V <sub>PP</sub> setup time (to MD3↑)                         | tvps             | tvps   |                     | 2     |      |      | μs   |
| V <sub>DD</sub> setup time (to MD3↑)                         | tvos             | tvcs   |                     | 2     |      |      | μs   |
| Initial program pulse width                                  | tPW              | tPW    |                     | 0.95  | 1.0  | 1.05 | ms   |
| Additional program pulse width                               | topw             | topw   |                     | 0.95  |      | 21.0 | ms   |
| MD0 setup time (to MD1↑)                                     | tмos             | tces   |                     | 2     |      |      | μs   |
| MD0↓→Data output delay time                                  | tov              | tov    | MD0 = MD1 = VIL     |       |      | 1    | μs   |
| MD1 hold time (from MD0↑)                                    | tм1н             | toeн   | tм1н + tм1к ≥ 50 μs | 2     |      |      | μs   |
| MD1 recovery time (from MD0 $\downarrow$ )                   | t <sub>M1R</sub> | tor    |                     | 2     |      |      | μs   |
| Program counter reset time                                   | <b>t</b> PCR     | —      |                     | 10    |      |      | μs   |
| X1 input high-/low-level widths                              | txн, tx∟         | -      |                     | 0.125 |      |      | μs   |
| X1 input frequency                                           | fx               | —      |                     |       |      | 4.19 | MHz  |
| Initial mode setting time                                    | tı               | —      |                     | 2     |      |      | μs   |
| MD3 setup time (to MD1↑)                                     | tмзs             | —      |                     | 2     |      |      | μs   |
| MD3 hold time (from MD1 $\downarrow$ )                       | tмзн             | —      |                     | 2     |      |      | μs   |
| MD3 setup time (to MD0↓)                                     | <b>t</b> M3SR    | _      | Program memory read | 2     |      |      | μs   |
| Data output delay time from addressNote 2                    | <b>t</b> DAD     | tacc   | Program memory read |       |      | 2    | μs   |
| Data output hold time from addressNote 2                     | <b>t</b> HAD     | tон    | Program memory read | 0     |      | 130  | μs   |
| MD3 hold time (from MD0↑)                                    | tмзнк            | _      | Program memory read | 2     |      |      | μs   |
| MD3 $\downarrow \rightarrow$ Data output float delay time    | <b>t</b> DFR     | _      | Program memory read |       |      | 2    | μs   |

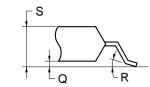

**Notes 1.** Symbol of corresponding  $\mu$ PD27C256A

2. The internal address signal is incremented by 1 on the 4th rise of the X1 input, and is not connected to a pin.

## **Program Memory Write Timing**




# **Program Memory Read Timing**

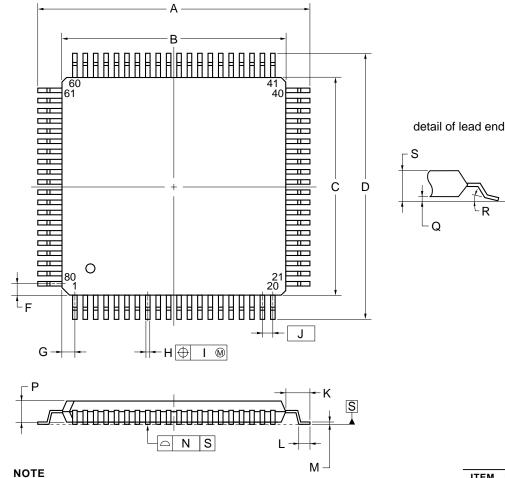



# **10. PACKAGE DRAWINGS**

# \*80-PIN PLASTIC QFP (14x14)



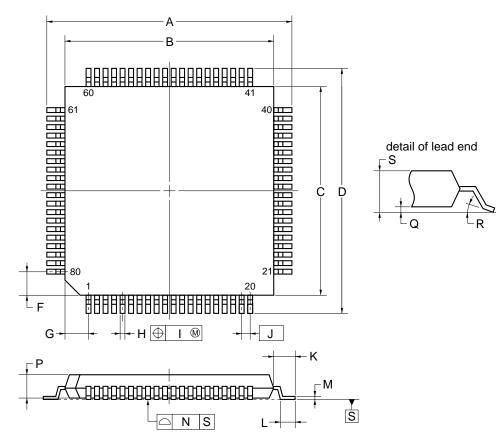
detail of lead end




Μ NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS                     |
|------|---------------------------------|
| А    | 17.2±0.4                        |
| В    | 14.0±0.2                        |
| С    | 14.0±0.2                        |
| D    | 17.2±0.4                        |
| F    | 0.825                           |
| G    | 0.825                           |
| Н    | 0.30±0.10                       |
| I    | 0.13                            |
| J    | 0.65 (T.P.)                     |
| К    | 1.6±0.2                         |
| L    | 0.8±0.2                         |
| М    | $0.15\substack{+0.10 \\ -0.05}$ |
| N    | 0.10                            |
| Р    | 2.7±0.1                         |
| Q    | 0.1±0.1                         |
| R    | 5°±5°                           |
| S    | 3.0 MAX.                        |
|      | S80GC-65-3B9-6                  |

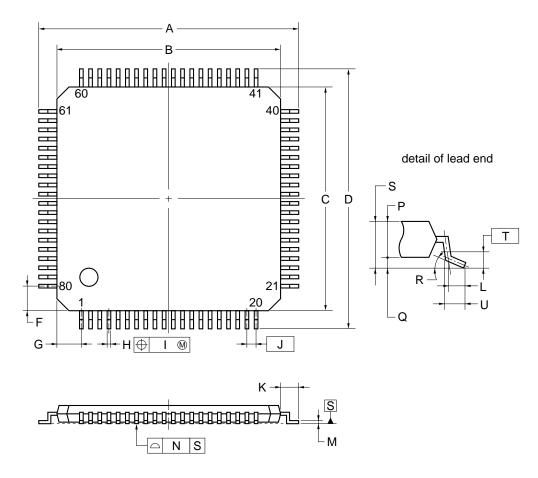

# \* 80-PIN PLASTIC QFP (14x14)



Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS                          |
|------|--------------------------------------|
| А    | 17.20±0.20                           |
| В    | 14.00±0.20                           |
| С    | 14.00±0.20                           |
| D    | 17.20±0.20                           |
| F    | 0.825                                |
| G    | 0.825                                |
| Н    | 0.32±0.06                            |
| I    | 0.13                                 |
| J    | 0.65 (T.P.)                          |
| К    | 1.60±0.20                            |
| L    | 0.80±0.20                            |
| М    | $0.17\substack{+0.03 \\ -0.07}$      |
| N    | 0.10                                 |
| Р    | 1.40±0.10                            |
| Q    | 0.125±0.075                          |
| R    | $3^{\circ + 7^{\circ}}_{-3^{\circ}}$ |
| S    | 1.70 MAX.                            |
|      | P80GC-65-8BT-1                       |

# \* 80 PIN PLASTIC TQFP (FINE PITCH) (12x12)




#### NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS               |
|------|---------------------------|
| А    | 14.00±0.20                |
| В    | 12.00±0.20                |
| С    | $12.00 \pm 0.20$          |
| D    | 14.00±0.20                |
| F    | 1.25                      |
| G    | 1.25                      |
| Н    | $0.22^{+0.05}_{-0.04}$    |
| I    | 0.10                      |
| J    | 0.50 (T.P.)               |
| К    | 1.00±0.20                 |
| L    | 0.50±0.20                 |
| М    | $0.145^{+0.055}_{-0.045}$ |
| Ν    | 0.10                      |
| Р    | 1.05±0.07                 |
| Q    | 0.10±0.05                 |
| R    | 5°±5°                     |
| S    | 1.27 MAX.                 |
|      | P80GK-50-BE9-6            |

# \* 80-PIN PLASTIC TQFP (FINE PITCH) (12x12)



#### NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS                          |  |
|------|--------------------------------------|--|
| А    | 14.0±0.2                             |  |
| В    | 12.0±0.2                             |  |
| С    | 12.0±0.2                             |  |
| D    | 14.0±0.2                             |  |
| F    | 1.25                                 |  |
| G    | 1.25                                 |  |
| Н    | $0.22 \pm 0.05$                      |  |
| I    | 0.08                                 |  |
| J    | 0.5 (T.P.)                           |  |
| К    | 1.0±0.2                              |  |
| L    | 0.5                                  |  |
| М    | 0.145±0.05                           |  |
| Ν    | 0.08                                 |  |
| Р    | 1.0                                  |  |
| Q    | 0.1±0.05                             |  |
| R    | $3^{\circ + 4^{\circ}}_{-3^{\circ}}$ |  |
| S    | 1.1±0.1                              |  |
| Т    | 0.25                                 |  |
| U    | 0.6±0.15                             |  |
|      | P80GK-50-9EU-1                       |  |

# 11. RECOMMENDED SOLDERING CONDITIONS

Solder the  $\mu$ PD75P3018A under the following recommended conditions.

For the details on the recommended soldering conditions, refer to Information Document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For the soldering methods and conditions other than those recommended, consult NEC.

## Table 11-1. Soldering Conditions of Surface Mount Type (1/2)

#### (1) $\mu$ PD75P3018AGC-3B9: 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)

| Soldering Method | Soldering Conditions                                                                                                                                                       | Symbol    |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Infrared reflow  | Package peak temperature: 235°C, Reflow time: 30 seconds or below (210°C or higher), Number of reflow processes: 3 max.                                                    | IR35-00-3 |
| VPS              | Package peak temperature: 215°C, Reflow time: 40 seconds or below (200°C or higher), Number of reflow processes: 3 max.                                                    | VP15-00-3 |
| Wave soldering   | Solder temperature: 260°C or below, Flow time: 10 seconds or below,<br>Number of flow processes: 1<br>Preheating temperature: 120°C or below (package surface temperature) | WS60-00-1 |
| Partial heating  | Pin temperature: 300°C or below, Time: 3 seconds or below (per side of device)                                                                                             | —         |

Caution Do not use two or more soldering methods in combination (except the partial heating method).

#### $\star$ (2) $\mu$ PD75P3018AGC-8BT: 80-pin plastic QFP (14 $\times$ 14 mm, resin thickness 1.4 mm)

| Soldering Method | Soldering Conditions                                                                                                                                                       | Symbol    |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| Infrared reflow  | Package peak temperature: 235°C, Reflow time: 30 seconds or below (210°C or higher), Number of reflow processes: 2 max.                                                    | IR35-00-2 |  |  |
| VPS              | Package peak temperature: 215°C, Reflow time: 40 seconds or below (200°C or higher), Number of reflow processes: 2 max.                                                    |           |  |  |
| Wave soldering   | Solder temperature: 260°C or below, Flow time: 10 seconds or below,<br>Number of flow processes: 1<br>Preheating temperature: 120°C or below (package surface temperature) | WS60-00-1 |  |  |
| Partial heating  | Pin temperature: 300°C or below, Time: 3 seconds or below (per side of device)                                                                                             | —         |  |  |

Caution Do not use two or more soldering methods in combination (except the partial heating method).

#### Table 11-1. Soldering Conditions of Surface Mount Type (2/2)

#### $\star$ (3) $\mu$ PD75P3018AGK-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)

| Soldering Method | Soldering Conditions                                                                                                                                                                                                       | Symbol     |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| Infrared reflow  | Package peak temperature: 235°C, Reflow time: 30 seconds or below (210°C or higher), Number of reflow processes: 3 max., Exposure limit: 7 days <sup>Note</sup> (After that, prebaking is necessary at 125°C for 10 hours) | IR35-107-3 |  |  |
| VPS              | Package peak temperature: 215°C, Reflow time: 40 seconds or below (200°C or higher), Number of reflow processes: 3 max., Exposure limit: 7 days <sup>Note</sup> (After that, prebaking is necessary at 125°C for 10 hours) | VP15-107-3 |  |  |
| Partial heating  | Partial heating Pin temperature: 300°C or below, Time: 3 seconds or below (per side of device)                                                                                                                             |            |  |  |

Note The number of days for storage after the dry pack has been opened. The storage conditions are 25°C, 65% RH max.

Caution Do not use two or more soldering methods in combination (except the partial heating method).

## + (4) μPD75P3018AGK-9EU: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)

| Soldering Method                                                                                                                                                                                                               | nod Soldering Conditions                                                                                                                                                                                                                |            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| Infrared reflow                                                                                                                                                                                                                | rared reflow Package peak temperature: 235°C, Reflow time: 30 seconds or below (210°C or higher), Number of reflow processes: 2 max., Exposure limit: 7 days <sup>Note</sup> (After that, prebaking is necessary at 125°C for 10 hours) |            |  |  |
| VPS Package peak temperature: 215°C, Reflow time: 40 seconds or below (200°C or higher), Number of reflow processes: 2 max., Exposure limit: 7 days <sup>Note</sup> (After that, prebaking is necessary at 125°C for 10 hours) |                                                                                                                                                                                                                                         | VP15-107-2 |  |  |
| Partial heating                                                                                                                                                                                                                | Partial heating Pin temperature: 300°C or below, Time: 3 seconds or below (per side of device)                                                                                                                                          |            |  |  |

Note The number of days for storage after the dry pack has been opened. The storage conditions are 25°C, 65% RH max.

Caution Do not use two or more soldering methods in combination (except the partial heating method).

# APPENDIX A. $\mu\text{PD75316B},753017\text{A}$ AND 75P3018A FUNCTION LIST

| P                                                      | arameter                                    | $\mu$ PD75316B                                                                                                                 | μPD753017A                                                                                                                                                                                                                                               | μPD75P3018A                                      |  |
|--------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Program memory                                         |                                             | Mask ROM<br>0000H-3F7FH<br>(16256 × 8 bits)                                                                                    | Mask ROM<br>0000H-5FFFH<br>(24576 × 8 bits)                                                                                                                                                                                                              | One-time PROM<br>0000H-7FFFH<br>(32768 × 8 bits) |  |
| Data memory                                            |                                             | 000H-3FFH (1024 × 4 bits)                                                                                                      |                                                                                                                                                                                                                                                          |                                                  |  |
| CPU                                                    |                                             | 75X Standard                                                                                                                   | 75XL CPU                                                                                                                                                                                                                                                 |                                                  |  |
| Instruction<br>execution time                          | When main system<br>clock is selected       | 0.95, 1.91, or 15.3 μs<br>(at 4.19 MHz operation)                                                                              | <ul> <li>0.95, 1.91, 3.81, or 15.3 μs (at 4.19 MHz operation)</li> <li>0.67, 1.33, 2.67, or 10.7 μs (at 6.0 MHz operation)</li> </ul>                                                                                                                    |                                                  |  |
|                                                        | When subsystem<br>clock is selected         | 122 $\mu$ s (at 32.768 kHz opera                                                                                               | ation)                                                                                                                                                                                                                                                   |                                                  |  |
| Pin connection                                         | 29 to 32                                    | P40 to P43                                                                                                                     |                                                                                                                                                                                                                                                          | P40/D0 to P43/D3                                 |  |
|                                                        | 34 to 37                                    | P50 to P53                                                                                                                     |                                                                                                                                                                                                                                                          | P50/D4 to P53/D7                                 |  |
|                                                        | 44                                          | P12/INT2                                                                                                                       | P12/INT2/TI1/TI2                                                                                                                                                                                                                                         |                                                  |  |
|                                                        | 47                                          | P21                                                                                                                            | P21/PTO1                                                                                                                                                                                                                                                 |                                                  |  |
|                                                        | 48                                          | P22/PCL                                                                                                                        | P22/PCL/PTO2                                                                                                                                                                                                                                             |                                                  |  |
|                                                        | 50 to 53                                    | P30 to P33                                                                                                                     |                                                                                                                                                                                                                                                          | P30/MD0 to P33/MD3                               |  |
|                                                        | 57                                          | IC                                                                                                                             |                                                                                                                                                                                                                                                          | Vpp                                              |  |
| Stack                                                  | SBS register                                | None                                                                                                                           | SBS.3 = 1; Mk I mode selection<br>SBS.3 = 0; Mk II mode selection                                                                                                                                                                                        |                                                  |  |
|                                                        | Stack area                                  | 000H-0FFH                                                                                                                      | n00H-nFFH (n = 0-3)                                                                                                                                                                                                                                      |                                                  |  |
|                                                        | Subroutine call instruction stack operation | 2-byte stack                                                                                                                   | Mk I mode: 2-byte stack<br>Mk II mode: 3-byte stack                                                                                                                                                                                                      |                                                  |  |
| Instruction                                            | BRA !addr1<br>CALLA !addr1                  | Unavailable Mk I mode: unavailable Mk II mode: available                                                                       |                                                                                                                                                                                                                                                          |                                                  |  |
| MOVT XA, @BCDE<br>MOVT XA, @BCXA<br>BR BCDE<br>BR BCXA |                                             |                                                                                                                                | Available                                                                                                                                                                                                                                                |                                                  |  |
|                                                        | CALL !addr                                  | 3 machine cycles                                                                                                               | Mk I mode: 3 machine cycles                                                                                                                                                                                                                              | , Mk II mode: 4 machine cycles                   |  |
|                                                        | CALLF !faddr                                | 2 machine cycles                                                                                                               | Mk I mode: 2 machine cycles                                                                                                                                                                                                                              | , Mk II mode: 3 machine cycles                   |  |
| Mask option                                            |                                             | Yes                                                                                                                            |                                                                                                                                                                                                                                                          | None                                             |  |
| Timer                                                  |                                             | 3 channels:<br>• Basic interval timer<br>: 1 channel<br>• 8-bit timer/event counter<br>: 1 channel<br>• Watch timer: 1 channel | <ul> <li>5 channels:</li> <li>Basic interval timer/watchdog timer: 1 channel</li> <li>8-bit timer/event counter: 3 channels</li> <li>(can be used as 16-bit timer/event counter, carrier gen timer with gate)</li> <li>Watch timer: 1 channel</li> </ul> |                                                  |  |

| F                                               | Parameter                               | μPD75316B                                                                                                                                  | μPD753017A                                                                                                                                                                                                  | μPD75P3018A       |  |
|-------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Clock output (PCL)                              |                                         | $\Phi$ , 524, 262, 65.5 kHz<br>(Main system clock:<br>at 4.19 MHz operation)                                                               | <ul> <li>Φ, 524, 262, 65.5 kHz<br/>(Main system clock: at 4.19 MHz operation)</li> <li>Φ, 750, 375, 93.8 kHz<br/>(Main system clock: at 6.0 MHz operation)</li> </ul>                                       |                   |  |
| BUZ output (BUZ)                                |                                         | 2 kHz<br>(Main system clock:<br>at 4.19 MHz operation)                                                                                     | <ul> <li>2, 4, 32 kHz<br/>(Main system clock: at 4.19 MHz operation or<br/>subsystem clock: at 32.768 kHz operation)</li> <li>2.93, 5.86, 46.9 kHz<br/>(Main system clock: at 6.0 MHz operation)</li> </ul> |                   |  |
| Serial interface                                |                                         | 3 modes are available<br>• 3-wire serial I/O mode MSB/LSB can be selected for transfer first bit<br>• 2-wire serial I/O mode<br>• SBI mode |                                                                                                                                                                                                             | ransfer first bit |  |
| SOS register Feedback resistor cut flag (SOS.0) |                                         | None                                                                                                                                       | Provided                                                                                                                                                                                                    |                   |  |
|                                                 | Sub-oscillator current cut flag (SOS.1) | None                                                                                                                                       | Provided                                                                                                                                                                                                    |                   |  |
| Register bank s                                 | election register (RBS)                 | None                                                                                                                                       | Yes                                                                                                                                                                                                         |                   |  |
| Standby release                                 | e by INT0                               | Unavailable                                                                                                                                | Available                                                                                                                                                                                                   |                   |  |
| Interrupt priority                              | v selection register (IPS)              | None                                                                                                                                       | Yes                                                                                                                                                                                                         |                   |  |
| Vectored interrupt                              |                                         | External: 3, Internal: 3                                                                                                                   | External: 3, Internal: 5                                                                                                                                                                                    |                   |  |
| Supply voltage                                  |                                         | V <sub>DD</sub> = 2.0 to 6.0 V                                                                                                             | to 6.0 V V <sub>DD</sub> = 1.8 to 5.5 V                                                                                                                                                                     |                   |  |
| Operating ambient temperature                   |                                         | $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$                                                                                              |                                                                                                                                                                                                             |                   |  |
| Package                                         |                                         | <ul> <li>80-pin plastic TQFP (fine pitch) (12 × 12 mm)</li> <li>80-pin plastic QFP (14 × 14 mm)</li> </ul>                                 |                                                                                                                                                                                                             |                   |  |

# APPENDIX B. DEVELOPMENT TOOLS

The following development tools have been provided for system development using the  $\mu$ PD75P3018A. In the 75XL Series, the relocatable assembler common to series is used in combination with the device file of each type.

| * | RA75X relocatable assembler | Host machine   |                            |               | Part No. (name) |
|---|-----------------------------|----------------|----------------------------|---------------|-----------------|
|   |                             |                | OS                         | Supply medium |                 |
|   |                             | PC-9800 Series | MS-DOS™<br>( Ver.3.30 to ) | 3.5" 2HD      | μ\$5A13RA75X    |
|   |                             |                | Ver.6.2 <sup>Note</sup>    |               |                 |
|   |                             | IBM PC/AT™     | Refer to "OS for           | 3.5" 2HC      | μS7B13RA75X     |
|   |                             | or compatible  | IBM PCs"                   |               |                 |

| * | Device file | Host machine   |                                                                                                  |               | Part No. (name) |
|---|-------------|----------------|--------------------------------------------------------------------------------------------------|---------------|-----------------|
|   |             |                | OS                                                                                               | Supply medium |                 |
|   |             | PC-9800 Series | $\left( \begin{array}{c} \text{Ver.3.30 to} \\ \text{Ver.6.2}^{\text{Note}} \end{array} \right)$ | 3.5" 2HD      | μS5A13DF753017  |
|   |             | IBM PC/AT      | Refer to "OS for                                                                                 | 3.5" 2HC      | μS7B13DF753017  |
|   |             | or compatible  | IBM PCs"                                                                                         |               |                 |

Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

**Remark** Operation of the assembler and device file is guaranteed only when using the host machine and OS described above.

╈

\*

#### **PROM Write Tools**

| Hardware | PG-1500            | This is a PROM programmer that can program single-chip microcontroller with PROM in stand alone mode or under control of host machine when connected with supplied accessory board and optional programmer adapter.<br>It can also program typical PROMs in capacities ranging from 256 K to 4 M bits. |                                                                                                  |               |                 |  |
|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------|-----------------|--|
|          | PA-75P316BGC       | This is a PROM programmer adapter for the $\mu$ PD75P3018AGC-3B9.<br>It can be used when connected to a PG-1500.                                                                                                                                                                                       |                                                                                                  |               |                 |  |
|          | PA-75P316BGK       | This is a PROM programmer adapter for the $\mu$ PD75P3018AGK-BE9. It can be used when connected to a PG-1500.                                                                                                                                                                                          |                                                                                                  |               |                 |  |
|          | PA-75P3018AGC-8BT  | This is a PROM programmer adapter for the $\mu$ PD75P3018AGC-8BT.<br>It can be used when connected to a PG-1500.                                                                                                                                                                                       |                                                                                                  |               |                 |  |
|          | PA-75P3018AGK-9EU  | This is a PROM programmer adapter for the $\mu$ PD75P3018AGK-9EU. It can be used when connected to a PG-1500.                                                                                                                                                                                          |                                                                                                  |               |                 |  |
| Software | PG-1500 controller | Connects PG-1500 to host machine with serial and parallel interface and controls PG-1500 on host machine.                                                                                                                                                                                              |                                                                                                  |               |                 |  |
|          |                    | Host machine                                                                                                                                                                                                                                                                                           |                                                                                                  |               | Part No. (name) |  |
|          |                    |                                                                                                                                                                                                                                                                                                        | OS                                                                                               | Supply medium |                 |  |
|          |                    | PC-9800 Series                                                                                                                                                                                                                                                                                         | MS-DOS                                                                                           | 3.5" 2HD      | μS5A13PG1500    |  |
|          |                    |                                                                                                                                                                                                                                                                                                        | $\left( \begin{array}{c} \text{Ver.3.30 to} \\ \text{Ver.6.2}^{\text{Note}} \end{array} \right)$ |               |                 |  |
|          |                    | IBM PC/AT                                                                                                                                                                                                                                                                                              | Refer to "OS for                                                                                 | 3.5" 2HD      | μS7B13PG1500    |  |
|          |                    | or compatible                                                                                                                                                                                                                                                                                          | IBM PCs"                                                                                         |               |                 |  |

**Note** Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

**Remark** Operation of the PG-1500 controller is guaranteed only when using the host machine and OS described above.

# **Debugging Tools**

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the  $\mu$ PD75P3018A. Various system configurations using these in-circuit emulators are listed below.

| Hardware | lardware IE-75000-R <sup>Note 1</sup><br>IE-75001-R<br>IE-75300-R-EM<br>EP-753018GC-R |                  | The IE-75000-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products.<br>For development of the $\mu$ PD75P3018A, the IE-75000-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753018GC-R or EP-753018GK-R).<br>Highly efficient debugging can be performed when connected to host machine and PROM programmer.<br>The IE-75000-R includes a connected emulation board (IE-75000-R-EM). |                                                                                                  |                          |                        |
|----------|---------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------|------------------------|
|          |                                                                                       |                  | The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products.<br>The IE-75001-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753018GC-R or EP-753018GK-R).<br>Highly efficient debugging can be performed when connected to host machine and PROM programmer.                                                                                                                  |                                                                                                  |                          |                        |
|          |                                                                                       |                  | This is an emulation board for evaluating application systems using the $\mu$ PD75P3018A. It is used in combination with the IE-75000-R or IE-75001-R.                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |                          |                        |
|          |                                                                                       |                  | This is an emulation probe for the $\mu$ PD75P3018AGC.<br>When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                          |                        |
|          |                                                                                       | EV-9200GC-80     | It includes a 80-pin co<br>system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | onversion socket (EV-92                                                                          | 00GC-80) to facilitate c | onnections with target |
|          | EP-753018GK-R                                                                         |                  | This is an emulation probe for the $\mu$ PD75P3018AGK.<br>When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                          |                        |
|          |                                                                                       | TGK-080SDWNote 2 | It includes a 80-pin conversion adapter (TGK-080SDW) to facilitate connections with target system.                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |                          |                        |
| Software | IE control program                                                                    |                  | This program can control the IE-75000-R or IE-75001-R on a host machine when connected to the IE-75000-R or IE-75001-R via an RS-232-C or Centronics interface.                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |                          |                        |
|          |                                                                                       |                  | Host machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |                          | Part No. (name)        |
|          |                                                                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OS                                                                                               | Supply medium            | -                      |
|          |                                                                                       |                  | PC-9800 Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS-DOS                                                                                           | 3.5" 2HD                 | μS5A13IE75X            |
|          |                                                                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\left(\begin{array}{c} \text{Ver.3.30 to} \\ \text{Ver.6.2}^{\text{Note 3}} \end{array}\right)$ | 5" 2HD                   | μS5A10IE75X            |
|          |                                                                                       |                  | IBM PC/AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Refer to "OS for                                                                                 | 3.5" 2HC                 | μS7B13IE75X            |
|          |                                                                                       |                  | or compatible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IBM PCs"                                                                                         | 5" 2HC                   | μS7B10IE75X            |

Notes 1. This is a maintenance product.

2. This is a product of TOKYO ELETECH CORPORATION.

For further information, contact: Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL +81-3-3820-7112)

Osaka Electronics 2nd Department (TEL +81-6-6244-6672)

3. Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

**Remark** Operation of the IE control program is guaranteed only when using the host machine and OS described above.

+

# OS for IBM PCs

The following operating systems for the IBM PC are supported.

| OS       | Version             |
|----------|---------------------|
| PC DOS™  | Ver.5.02 to Ver.6.3 |
|          | J6.1/V to J6.3/V    |
| MS-DOS   | Ver.5.0 to Ver.6.22 |
|          | 5.0/V to 6.2/V      |
| IBM DOS™ | J5.02/V             |

Caution Ver. 5.0 or later includes a task swapping function, but this software is not able to use that function.

# **★** APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

## **Device Related Documents**

| Document Name                           | Document No. |                 |  |
|-----------------------------------------|--------------|-----------------|--|
|                                         | Japanese     | English         |  |
| μPD753012A, 753016A, 753017A Data Sheet | U11662J      | U11662E         |  |
| µPD75P3018A Data Sheet                  | U11917J      | U11917E         |  |
|                                         |              | (This document) |  |
| μPD753017 User's Manual                 | U11282J      | U11282E         |  |
| µPD753017 Instruction Table             | IEM-5598     | —               |  |
| 75XL Series Selection Guide             | U10453J      | U10453E         |  |

## **Development Tool Related Documents**

| Document Name |                                          |                                 | Document No. |          |
|---------------|------------------------------------------|---------------------------------|--------------|----------|
|               |                                          |                                 | Japanese     | English  |
| Hardware      | IE-75000-R/IE-75001-R User's Manual      |                                 | EEU-846      | EEU-1416 |
|               | IE-75300-R-EM User's Manual              |                                 | U11354J      | U11354E  |
|               | EP-753017GC/GK-R User's Manual           |                                 | EEU-967      | EEU-1495 |
|               | PG-1500 User's Manual                    |                                 | U11940E      | U11940E  |
| Software      | RA75X Assembler Package<br>User's Manual | Operation                       | U12622J      | U12622E  |
|               |                                          | Language                        | U12385J      | U12385E  |
|               | PG-1500 Controller User's Manual         | PC-9800 Series<br>(MS-DOS) base | EEU-704      | EEU-1291 |
|               |                                          | IBM PC Series<br>(PC DOS) base  | EEU-5008     | U10540E  |

#### **Other Related Documents**

| Document Name                                                                      | Document No. |         |  |
|------------------------------------------------------------------------------------|--------------|---------|--|
| Document name                                                                      | Japanese     | English |  |
| SEMICONDUCTOR SELECTION GUIDE Products & Package (CD-ROM)                          | X13769X      |         |  |
| Semiconductor Device Mounting Technology Manual                                    | C10535J      | C10535E |  |
| Quality Grades on NEC Semiconductor Devices                                        | C11531J      | C11531E |  |
| NEC Semiconductor Device Reliability/Quality Control System                        | C10983J      | C10983E |  |
| Guide to Prevent Damage for Semiconductor Devices Electrostatic<br>Discharge (ESD) | C11892J      | C11892E |  |
| Guide to Microcontroller-Related Products by Third Parties                         | U11416J      | _       |  |

# Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

μ**PD75P3018A** 

[MEMO]

# - NOTES FOR CMOS DEVICES -

# **①** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

#### Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

#### (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

#### Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

## **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

#### Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

# **NEC Electronics Inc. (U.S.)**

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

#### **NEC Electronics (Germany) GmbH**

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

#### NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133

Fax: 01908-670-290

#### NEC Electronics Italiana s.r.l. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

#### NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

#### NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

#### NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

# NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

# NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

# MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is current as of May, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
  agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
  risks of damage to property or injury (including death) to persons arising from defects in NEC
  semiconductor products, customers must incorporate sufficient safety measures in their design, such as
  redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
   "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
   developed based on a customer-designated "quality assurance program" for a specific application. The
   recommended applications of a semiconductor product depend on its quality grade, as indicated below.
   Customers must check the quality grade of each semiconductor product before using it in a particular
   application.
  - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
  - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
  - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).