

Fast Settling, JFET Input Operational Amplifier

FEATURES

■ 100% Tested Settling Time		340ns Typ
to 1mV at Sum Node, 10V	540ns Max	
Tested with Fixed Feedback	Capacitor	
Slew Rate		60V/µs Min
Gain Bandwidth Product		14MHz
Power Bandwidth (20Vp-p)		1.2 MHz
Unity Gain Stable; Phase M	argin	60°
Input Offset Voltage		600μV Max
Input Bias Current	25°C	75pA Max
	70°C	600pA Max
Input Offset Current	25°C	40pA Max
	70°C	150pA Max

DESCRIPTION

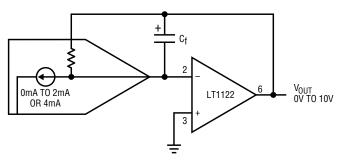
The LT1122 JFET input operational amplifier combines high speed and precision performance.

A unique poly-gate JFET process minimizes gate series resistance and gate-to-drain capacitance, facilitating wide bandwidth performance, without degrading JFET transistor matching.

It slews at $80V/\mu s$ and settles in 340ns. The LT1122 is internally compensated to be unity gain stable, yet it has a bandwidth of 14MHz at a supply current of only 7mA. Its speed makes the LT1122 an ideal choice for fast settling 12-bit data conversion and acquisition systems.

The LT1122 offset voltage of $120\mu V$, and voltage gain of 500,000 also support the 12-bit accurate applications.

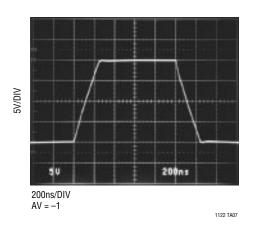
The input bias current of 10pA and offset current of 4pA combined with its speed allow the LT1122 to be used in such applications as high speed sample and hold amplifiers, peak detectors, and integrators.


APPLICATIONS

Low Distortion

- Fast 12-Bit D/A Output Amplifiers
- High Speed Buffers
- Fast Sample and Hold Amplifiers
- High Speed Integrators
- Voltage to Frequency Converters
- Active Filters
- Log Amplifiers
- Peak Detectors

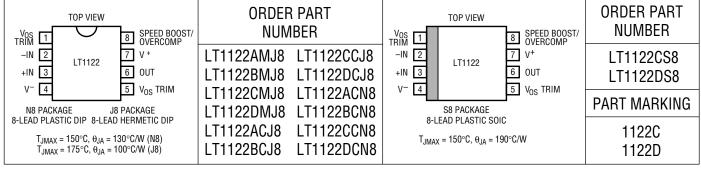
TYPICAL APPLICATION


12-Bit Voltage Output D/A Converter

12-BIT CURRENT OUTPUT D/A CONVERTER C_f = 5pF TO 17pF (DEPENDING ON D/A CONVERTER USED)

LT1122•TA01

Large-Signal Response



ABSOLUTE MAXIMUM RATINGS

Supply Voltage	± 20V
Differential Input Voltage	± 40V
Input Voltage	± 20V
Output Short Circuit Duration	Indefinite
Lead Temperature (Soldering, 10 sec.)	300°C

Operating Temperature Range	
LT1122AM/BM/CM/DM	. – 55°C to 125°C
LT1122AC/BC/CC/DC/CS/DS	– 40°C to 85°C
Storage Temperature Range	
All Devices	- 65°C to 150°C

PACKAGE/ORDER INFORMATION

Consult factory for Industrial grade parts.

ELECTRICAL CHARACTERISTICS $V_S = \pm 15V$, $T_A = 25^{\circ}C$, $V_{CM} = 0V$ unless otherwise noted. (Note 1)

	PARAMETER			1122AM 1122AC	,	LT L1 L1			
SYMBOL		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage			120	600		130	900	μV
I _{OS}	Input Offset Current			4	40		5	50	pA
I _B	Input Bias Current			10	75		12	100	pA
	Input Resistance Differential Common Mode	V _{CM} = -10V to +8V V _{CM} = +8V to +11V		10 ¹² 10 ¹² 10 ¹¹			10 ¹² 10 ¹² 10 ¹¹		Ω Ω Ω
	Input Capacitance			4			4		pF
S _R	Slew Rate	A _V = -1	60	80		50	75		V/µs
	Settling Time (Note 2)	+ 10V to 0V, - 10V to 0V 100% Tested: A and C Grades to 1mV at Sum Node B and D Grades to 1mV at Sum Node All Grades to 0.5mV at Sum Node		340 350 450	540		350 360 470	590	ns ns ns
GBW	Gain Bandwidth Product Power Bandwidth	V _{OUT} = 20Vp-p		14 1.2			13 1.1		MHz MHz
A _{VOL}	Large Signal Voltage Gain	$V_{OUT} = \pm 10V$, $R_L = 2k\Omega$ $V_{OUT} = \pm 10V$, $R_L = 600\Omega$	180 130	500 250		150 110	450 220		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10V$	83	99		80	98		dB
	Input Voltage Range	(Note 3)	± 10.5	±11		± 10.5	±11		V
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 10V \text{ to } \pm 18V$	86	103		82	101		dB
	Input Noise Voltage	0.1Hz to 10Hz		3.0			3.3		μV _{P-P}
	Input Noise Voltage Density	$f_0 = 100$ Hz $f_0 = 10$ kHz		25 14			27 15		nV/√Hz nV/√Hz
	Input Noise Current Density	$f_0 = 100$ Hz, $f_0 = 10$ kHz		2			2		fA/√Hz

ELECTRICAL CHARACTERISTICS $V_S = \pm \ 15V, \ T_A = 25^{\circ}C, \ V_{CM} = 0V \ unless \ otherwise \ noted.$

SYMBOL	PARAMETER	CONDITIONS	LT1122AM/BM LT1122AC/BC Min typ Max	LT1122CM/DM LT1122CC/DC LT1122CS/DS MIN TYP MAX	UNITS
V _{OUT}	Output Voltage Swing	$R_{L} = 2k\Omega$ $R_{L} = 600\Omega$	±12 ±12.5 ±11.5 ±12	±12 ±12.5 ±11.5 ±12	V
Is	Supply Current		7.5 10	7.8 11	mA
	Minimum Supply voltage	(Note 4)	±5	±5	V
	Offset Adjustment Range	R _{POT} ≥ 10k, Wiper to V ⁺	±4 ±10	±4 ±10	mV

$V_S=\pm$ 15V, V_{CM} = 0V, $0^{\circ}C \leq T_A \leq 70^{\circ}C,$ unless otherwise noted. (Note 1)

SYMBOL	PARAMETER	CONDITIONS		LT1 MIN	LT1122AC/BC Min typ max			LT1122CC/DC LT1122CS/DS MIN TYP MAX		
V_{0S}	Input Offset Voltage		•		350	1400		400	2000	μV
	Average Temperature Coefficient of Input Offset Voltage		•		5	18		6	25	μV/°C
I _{OS}	Input Offset Current		•		12	150		15	200	pA
I _B	Input Bias Current		•		80	600		90	800	pA
A _{VOL}	Large Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	•	120	380		100	340		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10V$	•	82	98		78	96		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 10V \text{ to } \pm 17V$	•	84	101		80	99		dB
	Input Voltage Range		•	± 10	±10.8		± 10	± 10.8		V
V _{OUT}	Output Voltage Swing	$R_L = 2k\Omega$	•	± 11.5	± 12.4		± 11.5	± 12.4		V
S _R	Slew Rate	A _V = -1	•	50	70		40	65	·	V/µs

$V_S = \pm$ 15V, $V_{CM} = 0V$, - 55°C \leq $T_A \leq$ 125°C, unless otherwise noted. (Note 1)

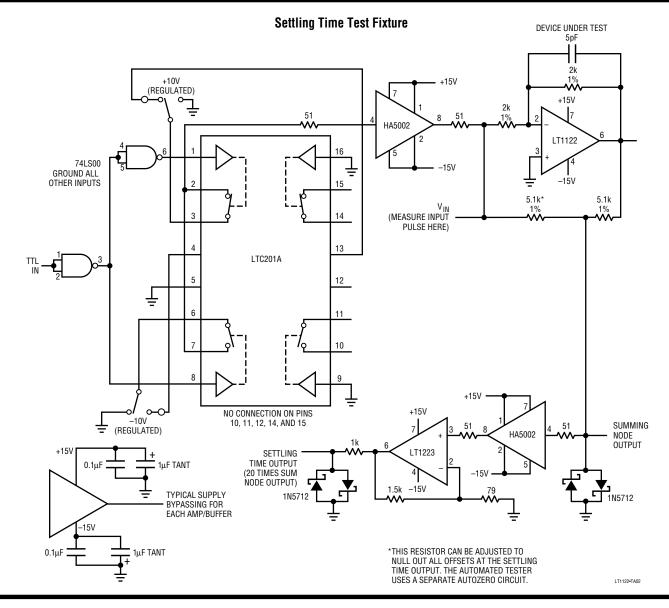
					122AM/	'BM	LT1				
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
$\overline{V_{0S}}$	Input Offset Voltage	Input Offset Voltage		•		650	2400		800	3400	μV
	Average Temperature Coefficient of Input Offset Voltage		•		6	18		7	25	μV/°C	
I _{OS}	Input Offset Current		•		0.5	6		0.6	9	nA	
I _B	Input Bias Current		•		6	25		7	35	nA	
A _{VOL}	Large Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	•	70	230		60	200		V/mV	
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10V$	•	80	97		76	94		dB	
PSRR	Power Supply Rejection Ratio	$V_S = \pm 10V \text{ to } \pm 17V$	•	83	100		78	98		dB	
	Input Voltage Range		•	±10	± 10.5		± 10	±10.5		V	
V_{OUT}	Output Voltage Swing	$R_L = 2k\Omega$	•	±11.3	± 12.1		± 11.3	±12.1		V	
S _R	Slew Rate	A _V = -1	•	45	60		35	55		V/μs	

The ● denotes the specifications which apply over the full operating temperature range.

Note 1: The LT1122 is measured in an automated tester in less than one second after application of power. Depending on the package used, power dissipation, heat sinking, and air flow conditions, the fully warmed up chip temperature can be 10°C to 50°C higher than the ambient temperature. **Note 2:** Settling time is 100% tested for A and C grades using the settling time test circuit shown. This test is not included in quality assurance sample testing.

Note 3: Input voltage range functionality is assured by testing offset voltage at the input voltage range limits to a maximum of 4mV (A, B grades), to 5.7mV (C, D grades).

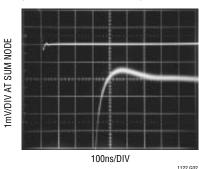
Note 4: Minimum supply voltage is tested by measuring offset voltage to 7mV maximum at \pm 5V supplies.


Note 5: The LT1122 is not tested and not quality-assurance-sampled at -40° C and at 85°C. These specifications are guaranteed by design, correlation and/or inference from -55° C, 0°C, 25°C, 70°C and/or 125°C tests.

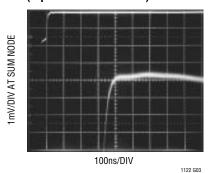
ELECTRICAL CHARACTERISTICS

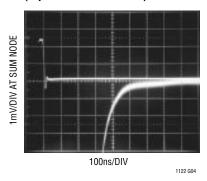
 $V_S=\pm$ 15V, V_{CM} = 0V, - 40°C \leq T_A \leq 85°C, unless otherwise noted. (Note 5)

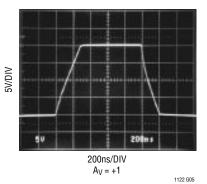
SYMBOL	PARAMETER	IETER CONDITIONS		LT1 MIN	.T1122AC/BC N Typ Max			1122CC/ 1122CS/ TYP	-	UNITS	
V _{OS}	Input Offset Voltage		•		450	1900		500	2700	μV	
	Average Temperature Coefficient of Input Offset Voltage		•		6	20		7	28	μV/°C	
I _{OS}	Input Offset Current		•		30	600		40	900	pA	
I _B	Input Bias Current		•		230	2000		260	2700	pA	
A _{VOL}	Large Signal Voltage Gain	$V_{OUT} = \pm 10V, R_L \ge 2k\Omega$	•	95	340		80	300		V/mV	
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10V$	•	80	98		76	96		dB	
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 10V \text{ to } \pm 17V$	•	83	100		78	98		dB	
	Input Voltage Range		•	±10	± 10.6		± 10	± 10.6		V	
V_{OUT}	Output Voltage Swing	$R_L = 2k\Omega$	•	± 11.3	± 12.2		± 11.3	± 12.2		V	
S _R	Slew Rate	A _V = -1	•	45	65		35	60		V/µs	

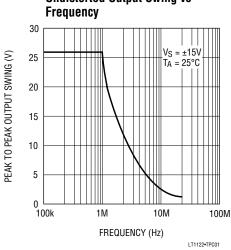


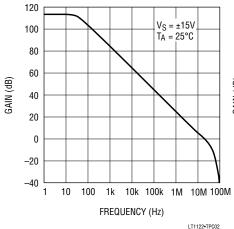
TYPICAL PERFORMANCE CHARACTERISTICS

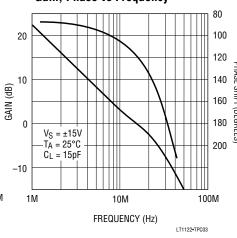

Settling Time (Input From -10V to 0V)

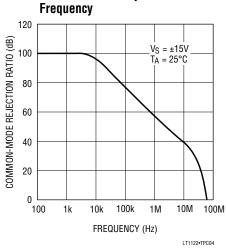

Settling Time (Input From +10V to 0V)

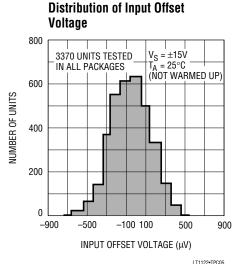

Settling Time (Input From OV to +10V)

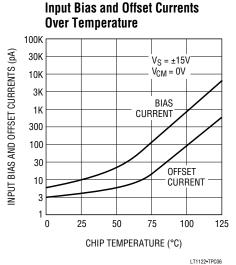

Settling Time (Input From OV to -10V)

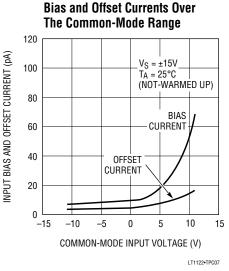

Large Signal Response

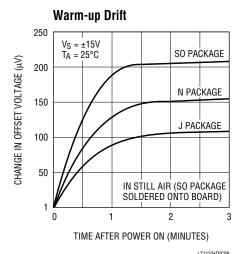

Undistorted Output Swing vs

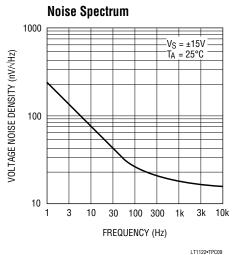

Voltage Gain vs Frequency

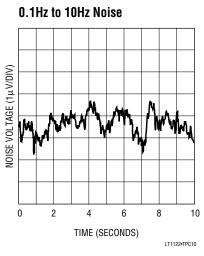

Gain, Phase vs Frequency

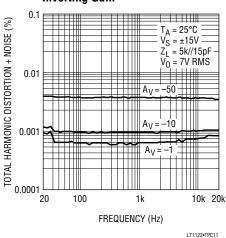


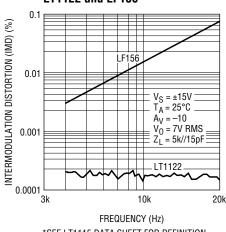

Common Mode Rejection vs




TYPICAL PERFORMANCE CHARACTERISTICS






Total Harmonic Distortion + Noise vs Frequency Inverting Gain

Intermodulation Distortion (CCIF Method) vs Frequency LT1122 and LF156*

*SEE LT1115 DATA SHEET FOR DEFINITION OF CCIF TESTING LT1122*TPC13

APPLICATIONS INFORMATION

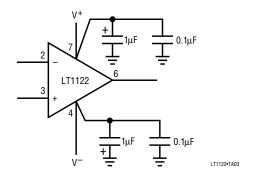
Settling Time Measurements

Settling time test circuits shown on some competitive devices' data sheets require:

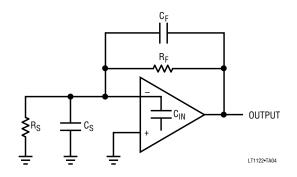
- 1. A "flat top" pulse generator. Unfortunately, flat top pulse generators are not commercially available.
- 2. A variable feedback capacitor around the device under test. This capacitor varies over a four to one range. Presumably, as each op amp is measured for settling time, the capacitor is fine tuned to optimize settling time for that particular device.
- 3. A small inductor load to optimize settling.

The LT1122's settling time is 100% tested in the test circuit shown. No "flat top" pulse generator is required. The test circuit can be readily constructed, using commercially available ICs. Of course, standard high frequency board construction techniques should be followed. All LT1122s are measured with a constant feedback capacitor. No fine tuning is required.

Speed Boost/Overcompensation Terminal

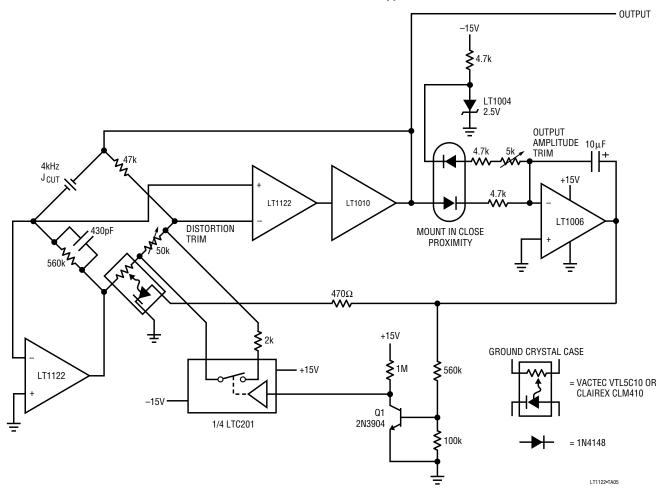

Pin 8 of the LT1122 can be used to change the input stage operating current of the device. Shorting pin 8 to the positive supply (Pin 7) increases slew rate and bandwidth by about 25%, but at the expense of a reduction in phase margin by approximately 18 degrees. Unity gain capacitive load handling decreases from typically 500pF to 100pF.

Conversely, connecting a 15k resistor from pin 8 to ground pulls 1mA out of pin 8 (with V^+ = 15V). This reduces slew rate and bandwidth by 25%. Phase margin and capacitive load handling improve; the latter typically increasing to 800pF.

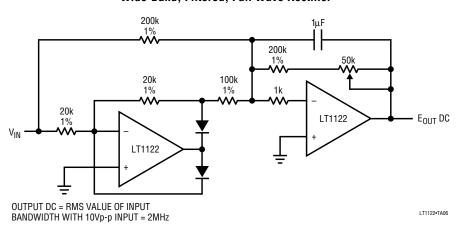

High Speed Operation

As with most high speed amplifiers, care should be taken with supply decoupling, lead dress and component placement.

The power supply connections to the LT1122 must maintain a low impedance to ground over a bandwidth of 20MHz. This is especially important when driving a significant resistive or capacitive load, since all current delivered to the load comes from the power supplies. Multiple high quality bypass capacitors are recommended for each power supply line in any critical application. A 0.1µF ceramic and a 1µF electrolytic capacitor, as shown, placed as close as possible to the amplifier (with short lead lengths to power supply common) will assure adequate high frequency bypassing, in most applications.



When the feedback around the op amp is resistive $(R_F), a$ pole will be created with R_F , the source resistance and capacitance $(R_S,\,C_S),$ and the amplifier input capacitance $(C_{IN}\approx 4pF).$ In low closed loop gain configurations and with R_S and R_F in the kilohm range, this pole can create excess phase shift and even oscillation. A small capacitor (C_F) in parallel with R_F eliminates this problem. With R_S $(C_S+C_{IN})=R_FC_F,$ the effect of the feedback pole is completely removed.



TYPICAL APPLICATIONS

Quartz Stabilized Oscillator With 9ppm Distortion

Wide-Band, Filtered, Full Wave Rectifier

PACKAGE DESCRIPTION

Please see the 1994 Linear Databook Volume III for package descriptions.

