

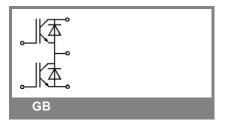
SEMITOP[®] 3

IGBT Module

SK60GB125

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce,sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute	e Maximum Ratings	T _s =	= 25 °C, unless otherwise s	pecified	
Symbol	Conditions		Values		
IGBT					
V _{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 125 °C	T _s = 25 °C	51	Α	
		T _s = 80 °C	35	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А	
V _{GES}			± 20	V	
t _{psc}	$\label{eq:V_CC} \begin{array}{l} \mbox{V}_{CC} = 300 \mbox{ V}; \mbox{ V}_{GE} \leq 20 \mbox{ V}; \\ \mbox{V}_{CES} < 600 \mbox{ V} \end{array}$	T _j = 125 °C	10	μs	
Inverse	Diode				
I _F	T _j = 150 °C	T _s = 25 °C	57	А	
		T _s = 80 °C	38	А	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	А	
Module					
I _{t(RMS)}				А	
T _{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT	_					
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,006	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			300	nA
V _{CE0}		T _j = 25 °C		1,4	1,9	V
		T _j = 125 °C		1,7	2,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		36		mΩ
		T _j = 125°C		43		mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			3,2	3,7	V
		T _j = 125°C _{chiplev.}		3,85		V
Cies				3,3		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,5		nF
C _{res}				0,22		nF
t _{d(on)}				80		ns
t,	R _{Gon} = 33 Ω	$V_{CC} = 600V$		65		ns
E _{on}	D = 22 O	I _C = 45A		8,36		mJ
t _{d(off)}	R _{Goff} = 33 Ω	$T_j = 125 \ ^{\circ}C$		539 22		ns ns
t _f ⊏		V _{GE} =±15V		3,32		mJ
E _{off}				3,3Z		-
R _{th(j-s)}	per IGBT				0,6	K/W

SEMITOP[®] 3

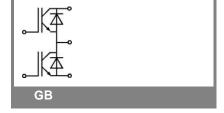
IGBT Module

SK60GB125

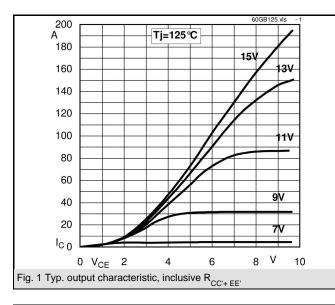
Preliminary Data

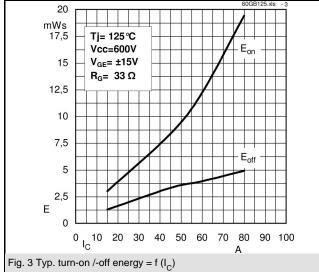
Features

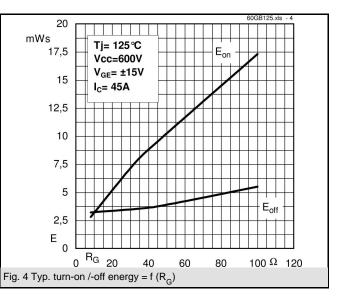
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce,sat} with positive coefficient

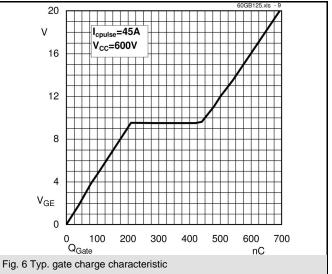

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

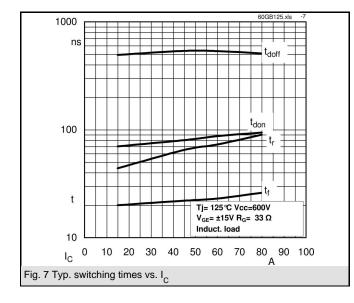

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I _{Fnom} = 50 A; V _{GE} = 0 V	$T_j = 25 \ ^\circ C_{chiplev.}$		2		V		
		T _j = 125 °C _{chiplev.}		1,8		V		
V _{F0}		T _j = 25 °C				V		
		T _j = 125 °C		1	1,2	V		
r _F		T _j = 25 °C				mΩ		
		T _j = 125 °C		16	22	mΩ		
I _{RRM}	I _F = 50 A	T _i = 125 °C		40		Α		
Q _{rr}	di/dt = -800 A/µs	,		8		μC		
E _{rr}	V _{CC} = 600V			2		mJ		
R _{th(j-s)D}	per diode				0,9	K/W		
M _s	to heat sink		2,25		2,5	Nm		
w				30		g		

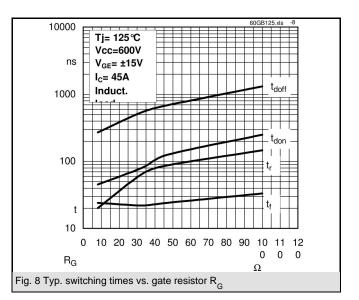

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

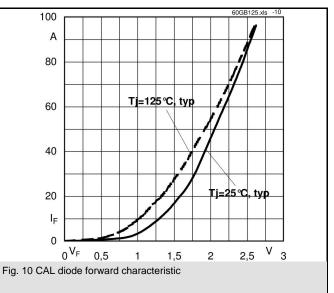

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

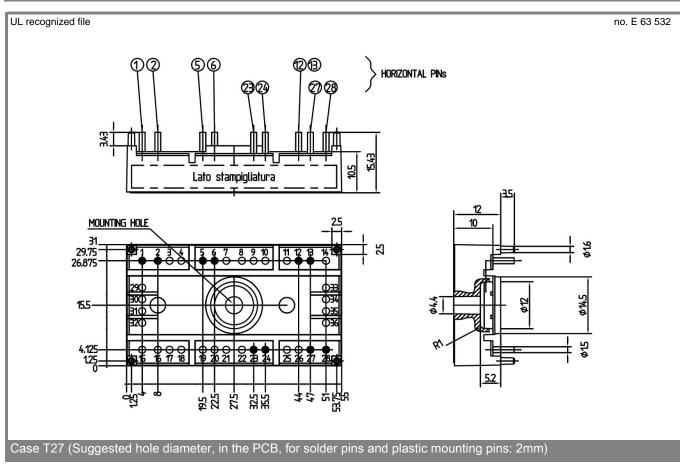


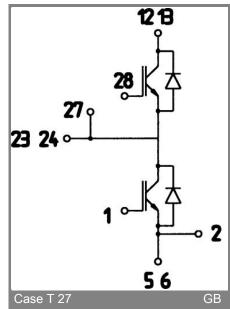
2










3

5