

IGBT4 Modules

SKM 150GB12T4G

Target Data

Features

- IGBT4 = 4. Generation (Trench) IGBT
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Remarks

• Case temperature limited to T_c = 125°C max, recomm. T_{op} = -40 ... +150°C, product rel. results valid for $T_j \le 150^\circ$

Absolute	Maximum Ratings	25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units			
IGBT							
V _{CES}	T _j = 25 °C		1200	V			
I _C	T _j = 175 °C	T _{case} = 25 °C	220	Α			
		T _{case} = 80 °C	170	Α			
I _{CRM}	$I_{CRM} = 3 \times I_{CNOM}$		450	Α			
V_{GES}			± 20	V			
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V;	T _j = 150 °C	10	μs			
	Vces < 1200 V						
Inverse Diode							
I _F	T _j = 175 °C	T _{case} = 25 °C	180	Α			
		T _{case} = 80 °C	135	Α			
I _{FRM}	$I_{FRM} = 3 \times I_{FNOM}$		450	Α			
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 175 °C	860	Α			
Module							
I _{t(RMS)}			500	Α			
T_{vj}			-40 + 175	°C			
T _{stg}			-40 +12 5	°C			
V_{isol}	AC, 1 min.		4000	V			

Characteristics $T_c =$		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C				mA
V _{CE0}		T _j = 25 °C		0,8	0,9	V
		T _j = 150 °C		0,7	0,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C				mΩ
		$T_j = 150$ °C				$m\Omega$
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V			1,85	2,05	V
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V
C _{ies}				9,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,58		nF
C _{res}				0,51		nF
Q_G	$V_{GE} = -8V / +15V$			850		nC
R_{Gint}	T _j = 25 °C			5		Ω
t _{d(on)}						ns
t _r	$R_{Gon} = \Omega$	V _{CC} = 600V		440		ns
E _{on}	P -0	I _C = 150A		14,8		mJ
$t_{ m d(off)} \ t_{ m f}$	$R_{Goff} = \Omega$	T _j = 150 °C V _{GE} = ±15V				ns ns
E _{off}		GE - 101		14,8		mJ
R _{th(j-c)}	per IGBT				0,2	K/W

IGBT4 Modules

SKM 150GB12T4G

Target Data

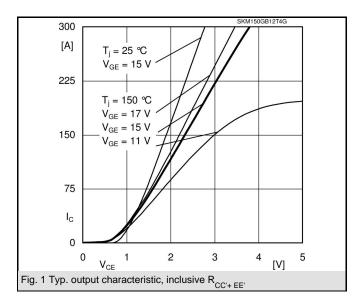
Features

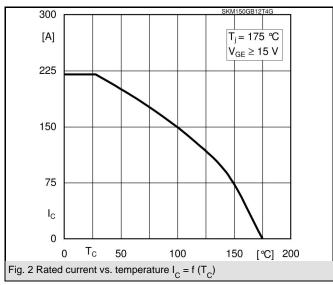
- IGBT4 = 4. Generation (Trench)
 IGBT
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_{CNOM}
- Soft switching 4. Generation CAL diode (CAL4)

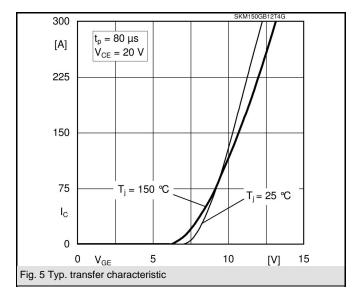
Typical Applications

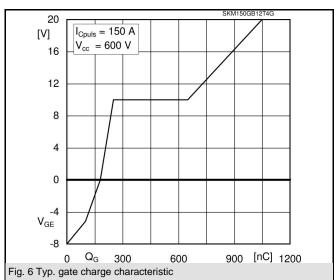
- · AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Remarks


Case temperature limited to T_c = 125°C max, recomm. T_{op} = -40 ... +150°C, product rel. results valid for T_i≤150°


Symbol	La mai				Characteristics							
	Conditions		min.	typ.	max.	Units						
Inverse Diode												
$V_F = V_{EC}$	$I_{Fnom} = 150 \text{ A}; V_{GE} = 0 \text{ V}$			2,2	2,5	V						
		$T_j = 150 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		2,1	2,45	V						
V_{F0}				1,3	1,5	V						
		T _j = 150 °C		0,9	1,1	V						
r _F		T _j = 25 °C		6	6,67	mΩ						
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$		8	9	mΩ						
I _{RRM} Q _{rr}	I _F = 150 A	T _j = 150 °C				Α μC						
E _{rr}	V _{GE} = -15V			11,3		mJ						
R _{th(j-c)}	per diode				0,32	K/W						
	ling Diode											
$V_F = V_{EC}$	$I_{Fnom} = A; V_{GE} = V$	$T_j = {^{\circ}C_{chiplev.}}$				V						
V_{F0}		$T_j = ^{\circ}C$ $T_j = ^{\circ}C$ $T_j = ^{\circ}C$				V						
r _F		T _j = °C				V						
I _{RRM}	I _F = A	T _j = °C				Α						
Q _{rr}						μC						
E _{rr}						mJ						
	per diode					K/W						
Module												
L _{CE}				15	20	nΗ						
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C			0,35	mΩ						
		T _{case} = 125 °C			0,5	$m\Omega$						
R _{th(c-s)}	per module			0,02	0,038	K/W						
M_s	to heat sink M6		3		5	Nm						
M_t	to terminals M6		2,5		5	Nm						
w					325	g						


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

