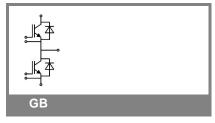


SEMITRANS[®] 3

SPT IGBT Modules

SKM 150GB128D

Features


- SPT = Soft punch-through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

 $T_c = 25 \text{ °C}$, unless otherwise specified **Absolute Maximum Ratings** Symbol Conditions Values Units IGBT T_i = 25 °C 1200 V V_{CES} T_c = 25 °C T_i = 150 °C 200 А I_{C} T_c = 80 °C 140 А 200 I_{CRM}=2xI_{Cnom} А I_{CRM} ± 20 V V_{GES} $V_{CC} = 600 \text{ V}; \text{ } V_{GE} \leq 20 \text{ V}; \quad \text{ } T_j = 125 \text{ }^\circ\text{C}$ 10 μs t_{psc} VCES < 1200 V Inverse Diode T_i = 150 °C T_{case} = 25 °C 150 А I_F T_{case} = 80 °C 100 А I_{FRM}=2xI_{Fnom} 200 А I_{FRM} t_p = 10 ms; sin. T_i = 150 °C 1100 А I_{FSM} Module 500 А I_{t(RMS)} T_{vj} - 40... + 150 °C - 40... + 125 °C T_{stg} V_{isol} AC, 1 min. 4000 V

Characteristics T _c =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 4 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	,		0,2	0,6	mA	
V _{CE0}		T _j = 25 °C		1	1,15	V	
		T _j = 125 °C		0,9	1,05	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		9	12	mΩ	
		T _j = 125°C		12	15	mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			1,9	2,35	V	
		T _j = 125°C _{chiplev.}		2,1	2,55	V	
C _{ies}				8,1		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,2		nF	
C _{res}				1,1		nF	
Q _G	V _{GE} = -8V - +20V			1200		nC	
R _{Gint}	T _j = 25 °C			2,5		Ω	
t _{d(on)}				80		ns	
t,	$R_{Gon} = 8 \Omega$	$V_{\rm CC} = 600V$		40		ns	
E _{on}	D = 0.0	I _C = 100A		10		mJ	
t _{d(off)}	R_{Goff} = 8 Ω	T _j = 125 °C V _{GE} = ±15V		460 65		ns ns	
t _f E _{off}		GE 100		9		mJ	
	per IGBT	<u> </u>		0	0,15	K/W	
R _{th(j-c)}	Period				0,15	r\/ v v	

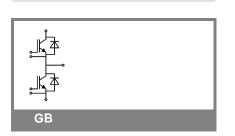
SEMITRANS[®] 3

SPT IGBT Modules

SKM 150GB128D

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 100 A; V_{GE} = 0 V			2	2,5	V		
		T _j = 125 °C _{chiplev.}		1,8	2,3	V		
V _{F0}		T _j = 25 °C		1,1	1,45	V		
		T _j = 125 °C			1,25	V		
r _F		T _j = 25 °C		9	13	mΩ		
		T _j = 125 °C			11	mΩ		
I _{RRM}	I _F = 100 A	T _j = 125 °C		145		А		
Q _{rr}	di/dt = 3600 A/µs			16,5		μC		
Err	V_{GE} = -15 V; V_{CC} = 600 V			5,5		mJ		
R _{th(j-c)D}	per diode				0,3	K/W		
Module								
L _{CE}				15	20	nH		
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ		
		T _{case} = 125 °C		0,5		mΩ		
R _{th(c-s)}	per module				0,038	K/W		
M _s	to heat sink M6		3		5	Nm		
M _t	to terminals M6		2,5		5	Nm		
w					325	g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

Features

- SPT = Soft punch-through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

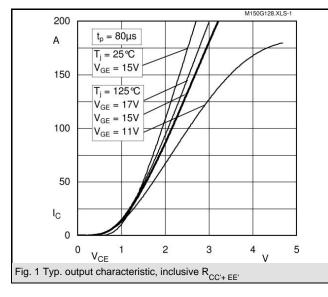
Typical Applications

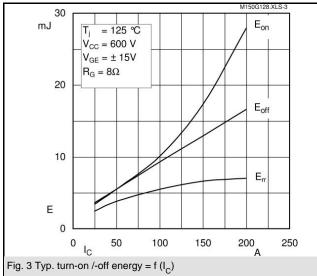
- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

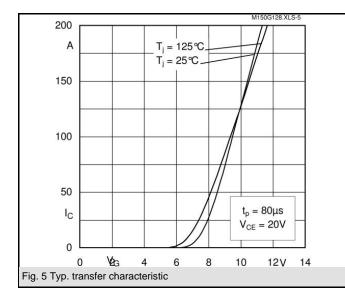
SKM 150GB128D

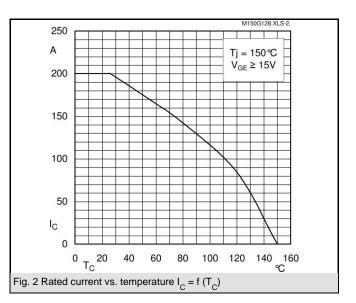
SPT IGBT Modules

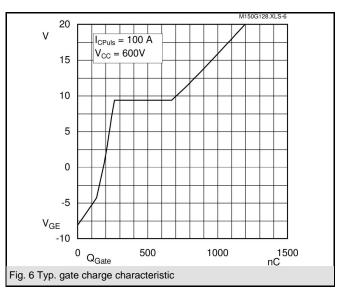
Z _{th}			
Symbol	Conditions	Values	Units
Z_{th(j-c)l} R _i R _i R _i			
R _i	i = 1	116	mk/W
R _i	i = 2	28	mk/W
R _i	i = 3	5,4	mk/W
R _i	i = 4	0,6	mk/W
tau _i	i = 1	0,0576	s
tau _i	i = 2	0,0073	S
tau	i = 3	0,023	S
tau _i	i = 4	0,02	s
Ζ.,			•
Z R _i th(j-c)D	i = 1	190	mk/W
R _i	i = 2	85	mk/W
R _i R _i	i = 3	21,5	mk/W
R _i	i = 4	3,5	mk/W
tau _i	i = 1	0,0331	s
tau _i	i = 2	0,0113	S
tau _i	i = 3	0,0012	s
tau _i	i = 4	0,001	s

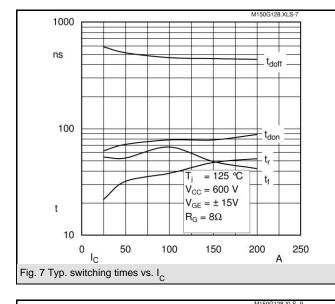

Features

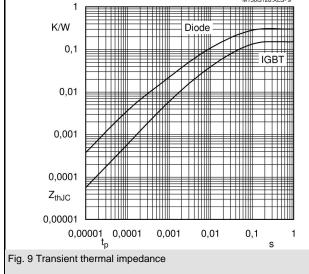

- SPT = Soft punch-through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

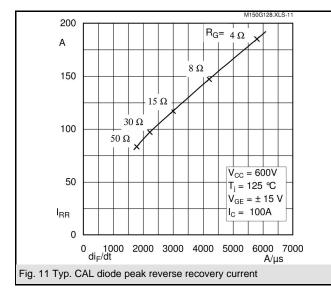

Typical Applications

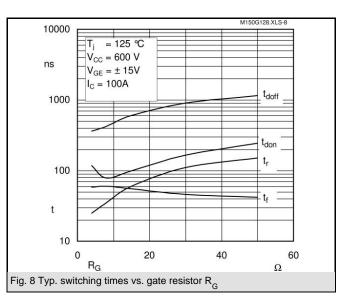

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

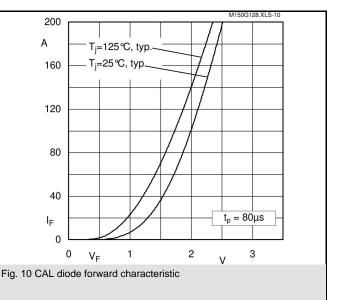


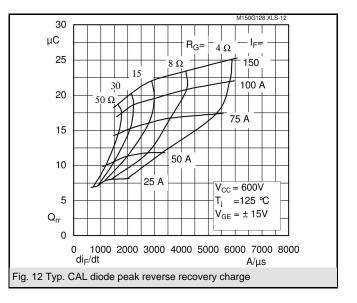


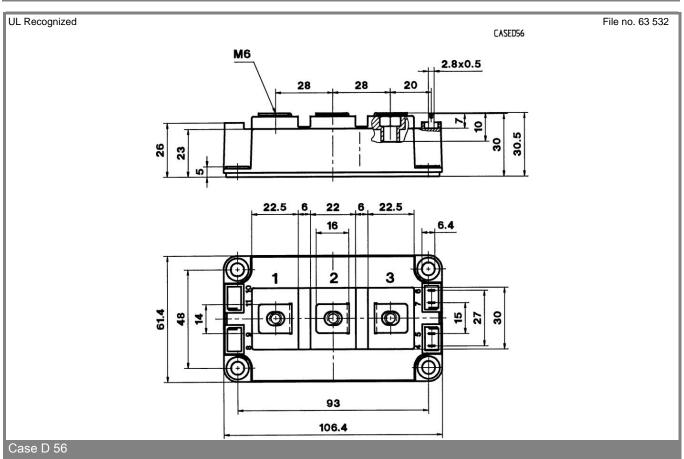


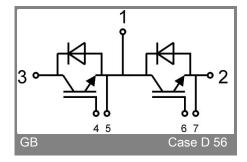












11-09-2006 SEN

© by SEMIKRON