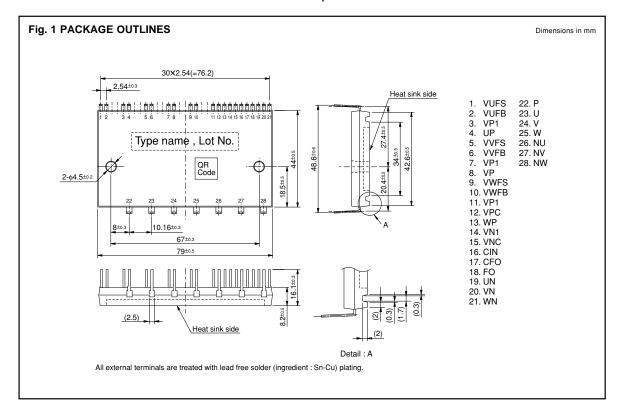
TRANSFER-MOLD TYPE INSULATED TYPE

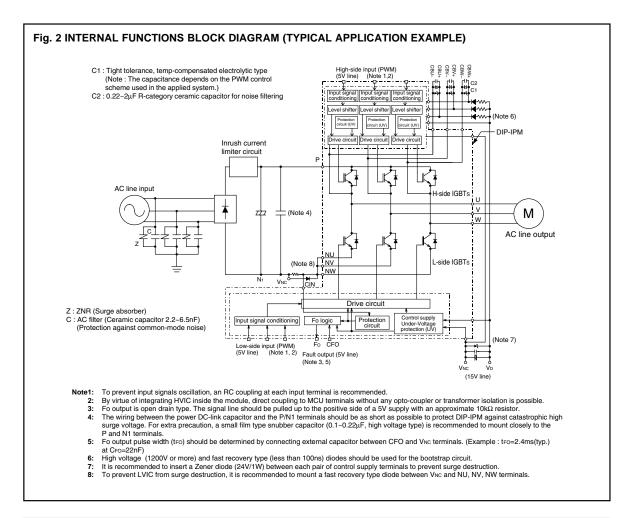
PS22052

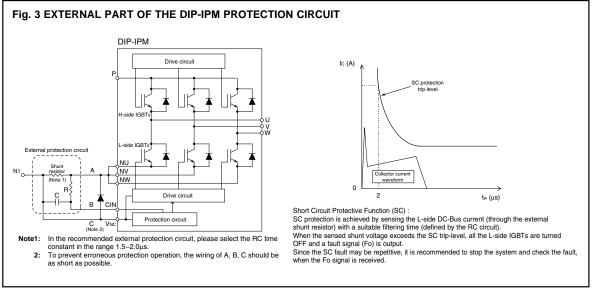
INTEGRATED POWER FUNCTIONS


1200V/5A low-loss 4th generation IGBT inverter bridge for 3 phase DC-to-AC power conversion

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For upper-leg IGBTs :Drive circuit, High voltage high-speed level shifting, Control supply under-voltage (UV) protection.
- For lower-leg IGBTs: Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to an SC fault (Lower-side IGBT) or a UV fault (Lower-side supply).
- Input interface: 5V line CMOS/TTL compatible (High active logic).


APPLICATION


AC400V 0.2kW~0.4kW inverter drive for small power motor control.

TRANSFER-MOLD TYPE INSULATED TYPE

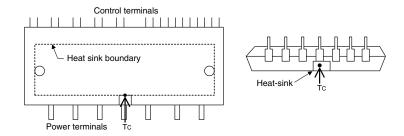
TRANSFER-MOLD TYPE INSULATED TYPE

$\textbf{MAXIMUM RATINGS} \ (T_{j} = 25^{\circ}\text{C}, \ unless \ otherwise \ noted)$

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW	900	V
VCC(surge)	Supply voltage (surge)	Applied between P-NU, NV, NW	1000	V
VCES	Collector-emitter voltage		1200	V
±IC	Each IGBT collector current	Tc = 25°C	5	Α
±ICP	Each IGBT collector current (peak)	Tc = 25°C, less than 1ms	10	Α
Pc	Collector dissipation	Tc = 25°C, per 1 chip	38.3	W
Ti	Junction temperature	(Note 1)	-20~+125	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@ Tc $\leq 100^{\circ}$ C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to $T_{j(ave)} \leq 125^{\circ}$ C (@ Tc $\leq 100^{\circ}$ C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VPC, VN1-VNC	20	V
VDB	Control supply voltage	Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	20	V
VIN	Input voltage	Applied between UP, VP, WP-VPC, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$VD = 13.5 \sim 16.5 V$, Inverter part $T_j = 125 ° C$, non-repetitive, less than 2 μs	800	V
Tc	Module case operation temperature	(Note 2)	− 20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, AC 1 minute, connection pins to heat-sink plate	2500	Vrms

Note 2: Tc MEASUREMENT POINT

TRANSFER-MOLD TYPE **INSULATED TYPE**

THERMAL RESISTANCE

Symbol Parameter	Davisania	Condition	Limits			Unit
	Condition		Тур.	Max.		
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	_	_	2.61	°C/W
Rth(j-c)F	resistance	Inverter FWDi part (per 1/6 module)	_	_	3.18	°C/W
Rth(c-f)	Contact thermal resistance (Note 3)	Case to fin, (per 1 module) thermal grease applied	_	_	0.047	°C/W

Note 3: Grease with good thermal conductivity and long-term endurance should be applied evenly with about +100μm~+200μm on the contacting surface of DIP-IPM and heat-sink.

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) **INVERTER PART**

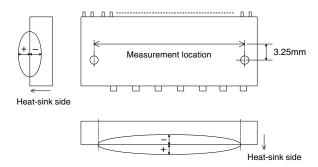
Cumbal	Parameter	Condition			Limits			
Symbol	Parameter			Min.	Тур.	Max.	Unit	
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	Tj = 25°C	_	2.7	3.4		
V CE(Sai)	voltage	VIN = 5V, IC = 5A	Tj = 125°C	_	2.5	3.2	V	
VEC	FWDi forward voltage	-IC = 5A, VIN = 0V		_	2.4	2.9	V	
ton				0.8	1.5	2.2	μs	
trr		VCC = 600V, VD = VDB = 15V			0.2	_	μs	
tc(on)	Switching times	IC = 5A, Tj = 125°C, VII	Ic = 5A, Tj = 125°C, Vin = $0 \leftrightarrow 5V$			0.7	μs	
toff		Inductive load (upper-lo	Inductive load (upper-lower arm)		2.8	3.8	μs	
tc(off)				_	0.4	0.7	μs	
ICES	Collector-emitter cut-off	VCE = VCES	Tj = 25°C	_	_	1	mA	
ICLS	current	VOE = VOES	Tj = 125°C	_	_	10	111/4	

CONTROL (PROTECTION) PART

Symbol	Parameter	Condition		Limits			Unit							
Syllibol	Farameter			Min.	Тур.	Max.	O I II							
		VD = VDB = 15V Total of		of VP1-VPC, VN1-VNC	_	_	3.70	mA						
ID	Circuit current	VIN = 5V	VUFB-	VUFS, VVFB-VVFS, VWFB-VWFS	_	_	1.30	mA						
טו	Circuit current	VD = VDB = 15V	Total o	f VP1-VPC, VN1-VNC	_	_	3.50	mA						
		VIN = 0V	Vufb-\	VUFS, VVFB-VVFS, VWFB-VWFS	_	_	1.30	mA						
VFOH	Fault output voltage	Vsc = 0V, Fo circuit pull-up to 5V with 10kΩ		4.9	_	_	V							
VFOL	auit output voitage	VSC = 1V, IFO = 1mA		_	_	1.10	V							
VSC(ref)	Short circuit trip level	$T_j = 25^{\circ}C, V_D = 15V$ (Note 4)		0.43	0.48	0.53	V							
lin	Input current	VIN = 5V		0.7	1.5	2.0	mA							
UVDBt				Trip level	10.0	_	12.0	V						
UVDBr	Supply circuit under-voltage	Ti ≤ 125°C		Reset level	10.5	_	12.5	V						
UVDt	protection	1j ≤ 125 C		Trip level	10.3	_	12.5	V						
UVDr									F	Reset level	10.8	_	13.0	V
tFO	Fault output pulse width	CFO = 22nF (Note 5)		1.6	2.4	_	ms							
Vth(on)	ON threshold voltage	Applied between LID, VD, WD, VDC, LIN, VA, WA, VAC		2.0	3.0	4.2	V							
Vth(off)	OFF threshold voltage	Applied between UP, VP, WP-VPC, UN, VN, WN-VNC			8.0	1.4	2.0	V						

Note 4: Short circuit protection is functioning only at the low-arms. Please select the value of the external shunt resistor such that the SC trip-

level is less than 1.7 times device current rating.


5: Fault signal is output when the low-arms short circuit or control supply under-voltage protective functions operate. The fault output pulsewidth tro depends on the capacitance value of CFo according to the following approximate equation: CFo = 9.3 × 10⁻⁶ × tFo [F].

TRANSFER-MOLD TYPE INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

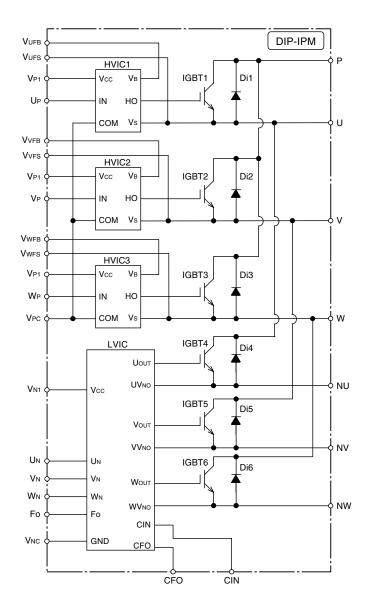
Dozometez	Condition		Limits			Linit
Parameter			Min.	Тур.	Max.	Unit
Mounting torque	Mounting screw : M4 Recommended 1.18 N·m		0.98	_	1.47	N·m
Weight		_	77	_	g	
Heat-sink flatness	(Note 6)		-50	_	100	μm

Note 6: Measurement point of heat-sink flatness

RECOMMENDED OPERATION CONDITIONS

Cumbal	Daramatar	Parameter Condition			Limits		
Symbol	Parameter			Min.	Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW		350	600	800	V
VD	Control supply voltage	Applied between VP1-VPC, VN1-VNC		13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between Vufb-Vufs, Vvfb-Vv	/FS, VWFB-VWFS	13.5	15.0	16.5	V
ΔV D, ΔV DB	Control supply variation			-1	_	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tc ≤ 100°C		3.3	_	l	μs
fPWM	PWM input frequency	Tc ≤ 100°C, Tj ≤ 125°C			_	15	kHz
		VCC = 600V, VD = 15V, fC = 15kHz					
lo	Output r.m.s. current	P.F = 0.8, sinusoidal PWM		_	_	1.8	Arms
		$T_j \le 125^{\circ}C$, $T_C \le 100^{\circ}C$ (Note 7)					
PWIN(on)			(Note 8)	1.5	_	I	
		350 ≤ Vcc ≤ 800V,					
		$13.5 \le VD \le 16.5V$,	Ic ≤ 5A	2.6	_	_	
	Minimum input pulse width	13.5 ≤ VDB ≤ 16.5V,					μs
PWIN(off)		–20°C ≤ Tc ≤ 100°C,					
		N line wiring inductance less than	5 < lc ≤ 8.5A	2.8	_	_	
		10nH (Note 9)					
VNC	VNC variation	Between VNC-NU, NV, NW (including	surge)	-5.0		5.0	V

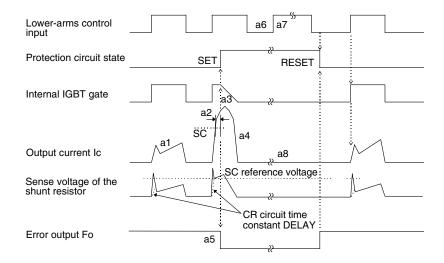
Note 7: The output r.m.s. current value depends on the actual application conditions.


8: DIP-IPM might not make response to the input on signal with pulse width less than PWIN (on).

9: DIP-IPM might not make response or work properly if the input off signal pulse width is less than PWIN (off).

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 4 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 5 TIMING CHARTS OF THE DIP-IPM PROTECTIVE FUNCTIONS

[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo output with a fixed pulse width determined by the external capacitor CFo.
- a6. Input = "L" : IGBT OFF
- a7. Input = "H" :
- a8. IGBT OFF state in spite of input "H".

[B] Under-Voltage Protection (Lower-arm, UVD)

- b1. Control supply voltage rising: After the voltage level reaches UVDr, the circuits start to operate when next input is applied.
- b2. Normal operation: IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo keeps output during the UV period, however, Fo pulse is not less than the fixed width for very short UV interval.
- b6. Under voltage reset (UVDr).
- b7. Normal operation: IGBT ON and carrying current.

TRANSFER-MOLD TYPE **INSULATED TYPE**

[C] Under-Voltage Protection (Upper-side, UVDB)

- c1. Control supply voltage rises: After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation: IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input signal level, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr).
- c6. Normal operation: IGBT ON and carrying current.

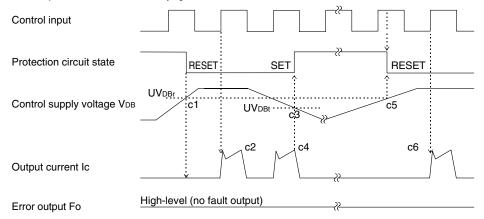
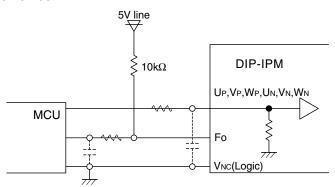
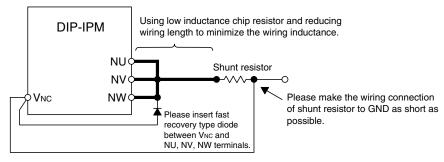
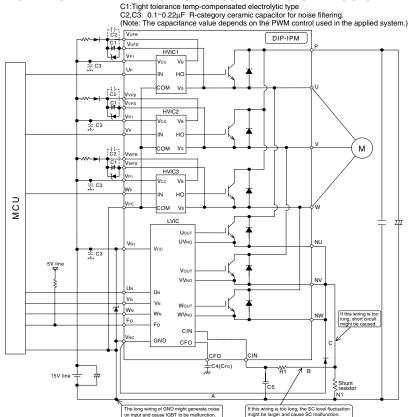




Fig. 6 MCU I/O INTERFACE CIRCUIT

Note: RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in the application and the wiring impedance of the application's printed circuit board. The DIP-IPM input signal section integrates a $2.5k\Omega(min)$ pull-down resistor. Therefore, when using a external filtering resistor, pay attention to the turn-on threshold voltage requirement.

Fig. 7 WIRING CONNECTION WITH 1 SHUNT RESISTOR

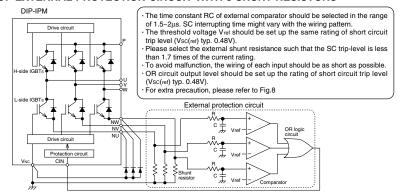


For 3 shunt resistors connection, please refer to Fig.9.

TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 8 AN EXAMPLE OF TYPICAL DIP-IPM APPLICATION CIRCUT WITH 1 SHUNT RESISTOR

- Note 1: To avoid malfunction, the wiring of each input should be as short as possible. (less than 2-3cm)
 By virtue of integrating HVIC inside the module, direct coupling to MCU terminals without any opto-coupler or transformer isolation is possible.
 Fo output is open drain type. The signal line should be pulled up to the positive side of a 5V supply with an approximate 10kΩ resistor.


 - Fo output is open drain type. The signal line should be pulled up to the positive side of a 5V supply with an approximate 10k2 resistor.
 Fo output pulse width (tro) should be determined by connecting external capacitor C4 between CFO and VNc terminals. (Example: tFO=2.4ms(typ.) at CFO=22nF)
 Input signal is High-Active type. There is a 2.5kΩ (Min.) resistor inside IC to pull down each input signal line to GND. When employing RC coupling circuits at each input, set up RC couple such that input signal agree with turn-off/turn-on threshold voltage.
 To prevent errors of the protection function, the wiring of A, B, C should be as short as possible.
 The time constant R5C1 of the protection circuit should be selected in the range of 1.5~2µs. SC interrupting time might vary with the wire posters.

 - wiring pattern.
 - 8: All capacitors should be mounted as close to the terminals of the DIP-IPM as possible.
 - 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P&N1 terminals should be as short as possible. Generally a 0.1~0.22μF snubber between the P&N1 terminals is recommended.

 - 10: It is recommended to insert a Zener diode (24V1W) between each pair of control supply terminals to prevent surge destruction.

 11: To prevent LVIC from surge destruction, it is recommended to mount a fast recovery type diode between VNC and NU, NV, NW terminals.

Fig. 9 EXAMPLE OF EXTERNAL PROTECTION CIRCUIT WITH 3 SHUNT RESISTORS

