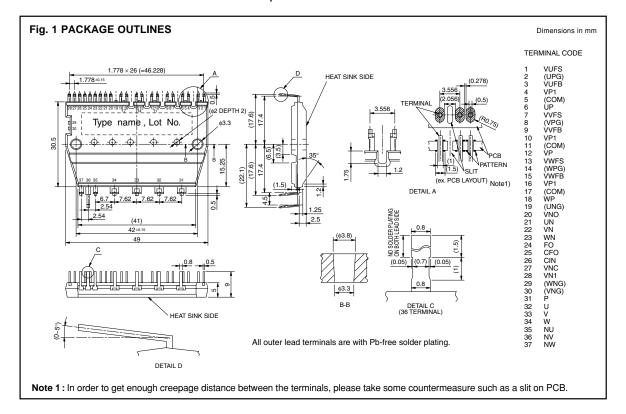
TRANSFER-MOLD TYPE INSULATED TYPE

PS21563-SP

INTEGRATED POWER FUNCTIONS


 $600V/10A\,low-loss\,5^{th}$ generation IGBT inverter bridge for three phase DC-to-AC power conversion. Open emitter type.

INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For upper-leg IGBTs: Drive circuit, High voltage isolated high-speed level shifting, Control supply under-voltage (UV) protection.
- For lower-leg IGBTs: Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to an SC fault (Lower-leg IGBT) or a UV fault (Lower-side supply).
- Input interface: 3,5V line CMOS/TTL compatible. (High Active)
- UL Approved : Yellow Card No. E80276

APPLICATION

AC100V~200V inverter drive for small power motor control.

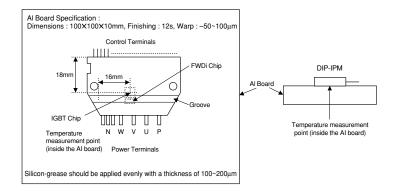
TRANSFER-MOLD TYPE INSULATED TYPE

$\textbf{MAXIMUM RATINGS} \ (T_{j} = 25^{\circ}C, \ unless \ otherwise \ noted)$

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-NU, NV, NW	500	V
VCES	Collector-emitter voltage		600	V
±IC	Each IGBT collector current	Tf = 25°C	10	Α
±ICP	Each IGBT collector current (peak)	Tf = 25°C, less than 1ms	20	Α
Pc	Collector dissipation	Tf = 25°C, per 1 chip	20	W
Tj	Junction temperature	(Note 1)	− 20~+125	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@ Tf $\leq 100^{\circ}$ C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to $T_{j(ave)} \leq 125^{\circ}$ C (@ Tf $\leq 100^{\circ}$ C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
VDB	Control supply voltage	Applied between Vufb-Vufs, Vvfb-Vvfs, Vwfb-Vwfs	20	V
Vin	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$VD = 13.5$ ~16.5V, Inverter part $T_j = 125$ °C, non-repetitive, less than 2 μs	400	٧
Tf	Module case operation temperature	(Note 2)	− 20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, All connected pins to heat-sink plate	2500	Vrms

Note 2: Tr measurement point

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

0	Barrata	O a sellitar		Limits		
Symbol Parameter		Condition		Тур.	Max.	Unit
Rth(j-f)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	_	_	5.0	°C/W
Rth(j-f)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)	_	_	6.5	°C/W

Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM and heat-sink.

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) **INVERTER PART**

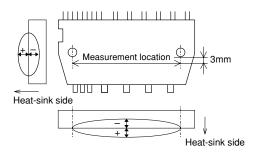
0	D	0 - 100 -			Limits		
Symbol	Parameter		Condition		Тур.	Max.	Unit
Collector-emitter saturation		VD = VDB = 15V	IC = 10A, Tj = 25°C	_	1.60	2.10	.,
VCE(sat) voltage	VIN = 5V	Ic = 10A, Tj = 125°C	_	1.70	2.20	1 V	
VEC	FWD forward voltage	Tj = 25°C, -Ic = 10A, VIN = 0V		_	1.50	2.00	V
ton				0.60	1.20	1.80	μs
trr		VCC = 300V, VD = VDB	VCC = 300V, VD = VDB = 15V IC = 10A, $T_j = 125^{\circ}C$, VIN = 0 \leftrightarrow 5V		0.30	_	μs
tc(on)	Switching times	Ic = 10A, Tj = 125°C, \			0.40	0.60	μs
toff	1	Inductive load (upper-l	ower arm)	_	1.40	2.10	μs
tc(off)				_	0.50	0.80	μs
ICES	Collector-emitter cut-off	\/o= \/o=o	Tj = 25°C	_	_	1	mA
1020	current	VCE = VCES	Tj = 125°C	_	_	10] IIIA

CONTROL (PROTECTION) PART

Symbol	Parameter		Condition			Limits														
Symbol Farameter		Condition		Min.	Тур.	Max.	Unit													
L- 0		VD = VDB = 15V	Total o	of VP1-VNC, VN1-VNC	_	_	5.00													
	Circuit current	VIN = 5V	VUFB-	VUFS, VVFB-VVFS, VWFB-VW	FS —	3 — — 0.		m 1												
lD	Circuit current	VD = VDB = 15V	Total o	f VP1-VNC, VN1-VNC	_	_	7.00	mA												
ı		VIN = 0V	Vufb-\	VUFS, VVFB-VVFS, VWFB-VW	-s —	_	0.55													
VFOH	Fault autput valtage	Vsc = 0V, Fo circuit pull-up to 5V with $10k\Omega$		4.9	_	_	V													
VFOL	- Fault output voltage	VSC = 1V, IFO = 1mA		_	_	0.95	V													
VSC(ref)	Short circuit trip level	$T_f = -20 \sim 100 \circ C, V_D = 15V$ (Note 4)		0.45	_	0.52	V													
lin	Input current	VIN = 5V	VIN = 5V		1.0	1.5	2.0	mA												
UVDBt				Trip level	10.0	_	12.0	V												
UVDBr	Control supply under-voltage	Ti≤125°C	Reset level	10.5	_	12.5	V													
UVDt	protection	1] ≤ 123 C		Trip level	10.3	_	12.5	V												
UVDr																Reset level	10.8	_	13.0	V
tFO	Fault output pulse width	CFO = 22nF (Note 5)		1.0	1.8	_	ms													
Vth(on)	ON threshold voltage	Applied between Ltp. Vp. Wp. Valo. Lta. Val. Wat Valo.		2.1	2.3	2.6	V													
Vth(off)	OFF threshold voltage	Applied between C	Applied between UP, VP, WP-Vnc, Un, Vn, Wn-Vnc			1.4	2.1	V												

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 2.0 times of the current rating.

5: Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure. The fault output pulse width tFO depends on the capacitance value of CFO according to the following approximate equation: CFO = 12.2 × 10⁻⁶ × tFO [F].



TRANSFER-MOLD TYPE INSULATED TYPE

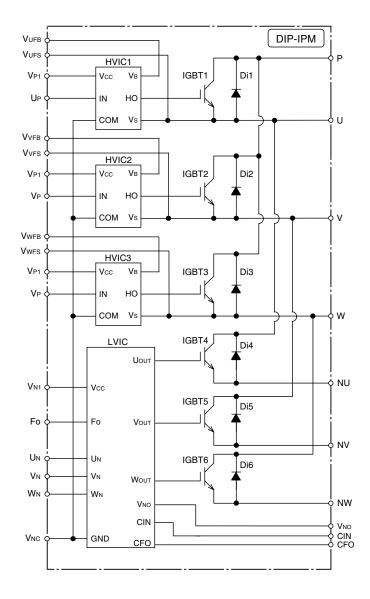
MECHANICAL CHARACTERISTICS AND RATINGS

Davasastav	Condition		Limits			Unit
Parameter			Min.	Тур.	Max.	Unit
Mounting torque	Mounting screw : M3 Recommended : 0.78 N·m		0.59	-	0.98	N·m
Weight				20	_	g
Heat-sink flatness	(Note 6)		- 50	1	100	μm

Note 6: Measurement point of heat-sink flatness

RECOMMENDED OPERATION CONDITIONS

0	D	Condition		Recommended value		value	11.2
Symbol	Parameter			Min.	Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW		0	300	400	V
VD	Control supply voltage	Applied between VP1-VNC, VN1-VN	С	13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between VUFB-VUFS, VVFB-	-Vvfs, Vwfb-Vwfs	13.0	15.0	18.5	V
ΔV D, ΔV DB	Control supply variation			-1	_	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tf ≤ 100°C		1.5	_	_	μs
fPWM	PWM input frequency	Tf ≤ 100°C, Tj ≤ 125°C			_	20	kHz
		VCC = 300V, VD = VDB = 15V,	fpwm = 5kHz		_	6.5	
lo	Allowable r.m.s. current	P.F = 0.8, sinusoidal output					Arms
		$T_f \le 100^{\circ}C, T_j \le 125^{\circ}C$ (Note 7)	fPWM = 15kHz		_	4.0	
PWIN(on)			(Note 8)	0.3	_	_	
		200 ≤ Vcc ≤ 350V,	Below rated current	0.5			1
	Aller alder ortates as to a d	$13.5 \le VD \le 16.5V$,	below rated current	0.5	_	-	
PWIN(off)	Allowable minimum input pulse width	13.0 ≤ VDB ≤ 18.5V,	Between rated current and	٥.			μs
F WIIN(OII)	puise width	–20°C ≤ Tf ≤ 100°C,	1.7 times of rated current	0.5	_	_	1
		N-line wiring inductance less than 10nH (Note 9)	Between 1.7 times and 2.0 times of rated current	0.7	_	_	
VNC	VNC variation	between VNC-NU, NV, NW (including	between VNC-NU, NV, NW (including surge)		_	5.0	V

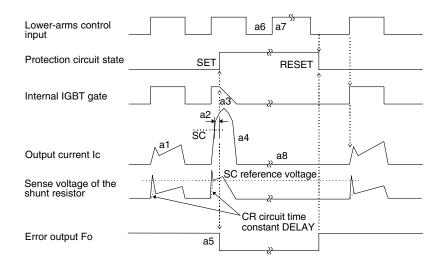

Note 7: The allowable r.m.s. current value depends on the actual application conditions.

8: The input pulse width less than PWIN(on) might make no response.

9: IPM might not work properly or make response for the input signal with OFF pulse width less than PWIN(off). Please refer to Fig.5.

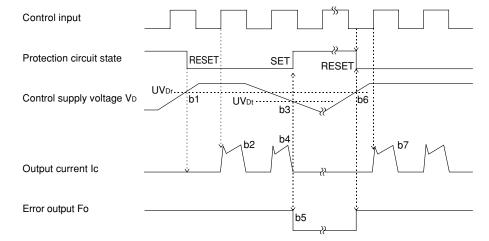
TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 2 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 3 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS


[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo timer operation starts: The pulse width of the Fo signal is set by the external capacitor CFo.
- a6. Input "L" : IGBT OFF.
- a7. Input "H": IGBT ON.
- a8. IGBT OFF in spite of input "H".

[B] Under-Voltage Protection (Lower-arm, UVD)

- b1. Control supply voltage rises: After the voltage level reaches UVDr, the circuits start to operate when next input is applied.
- b2. Normal operation: IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo operation starts.
- b6. Under voltage reset (UVDr)
- b7. Normal operation: IGBT ON and carrying current.

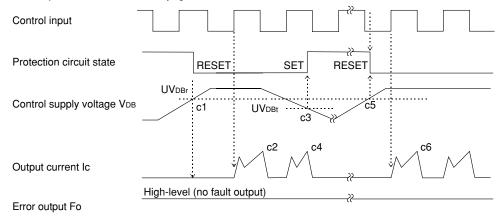
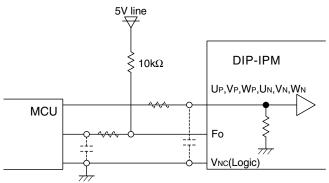
MITSUBISHI

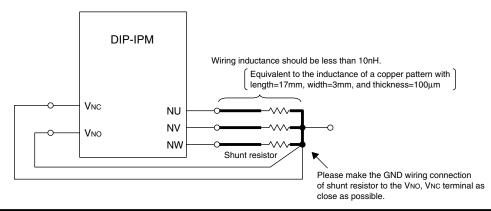
TRANSFER-MOLD TYPE **INSULATED TYPE**

[C] Under-Voltage Protection (Upper-arm, UVDB)

- c1. Control supply voltage rises: After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation: IGBT ON and carrying current.

- c3. Under voltage trip (UVDB).
 c4. IGBT OFF in spite of control input condition, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr).
- c6. Normal operation: IGBT ON and carrying current.

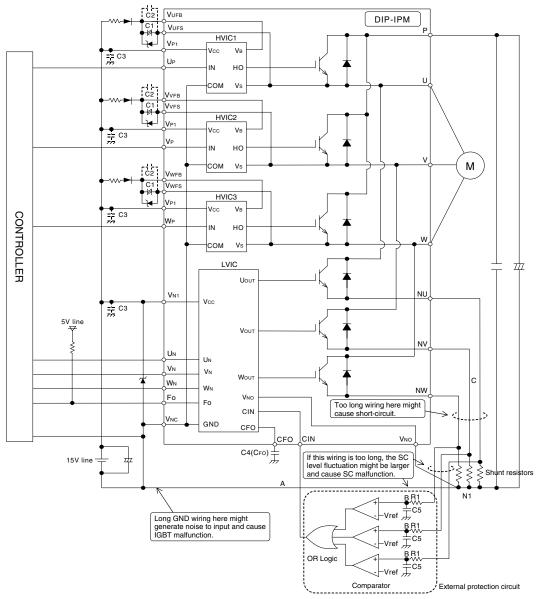




Fig. 4 RECOMMENDED CPU I/O INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a 2.5kΩ (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.

Fig. 5 WIRING CONNECTION OF SHUNT RESISTOR



Jul. 2005

TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 6 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

C1:Tight tolerance temp-compensated electrolytic type C2,C3: 0.22~2µF R-category ceramic capacitor for noise filtering

Note 1: To prevent the input signals oscillation, the wiring of each input should be as short as possible. (Less than 2cm)

- 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler or transformer isolation is possible.
- 3: Fo output is open drain type. This signal line should be pulled up to the positive side of the 5V power supply with approximately $10k\Omega$ resistor.
- 4: Fo output pulse width is determined by the external capacitor between CFO and VNc terminals (CFO). (Example: CFO = 22 nF \rightarrow tFO = 1.8 ms (typ.)) 5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5k Ω (min) pull-down resistor. Therefore, when
- using external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.
- 6: To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
- 7: Please set the C5R1 time constant in the range 1.5~2μs.
- 8: Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
- 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 pins should be as short as possible. Approximately a 0.1~0.22μF snubber capacitor between the P-N1 pins is recommended.
- 10: To prévent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) between each control supply terminals.
- 11: The reference voltage Vief of comparator should be set up the same rating of short circuit trip level (Vsc(ref): min.0.45V to max.0.52V).
- 12: OR logic output level should be set up the same rating of short circuit trip level (Vsc(ref): min.0.45V to max.0.52V).

Jul. 2005