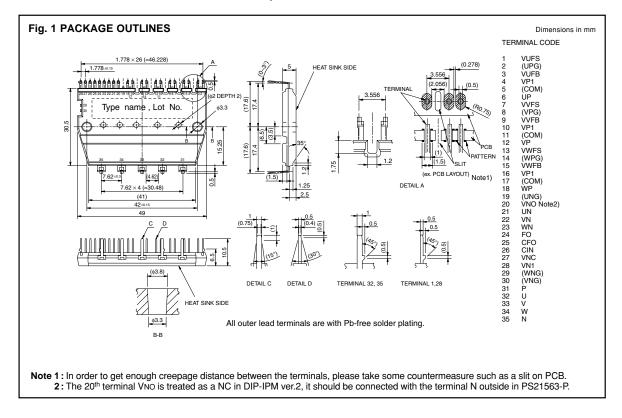
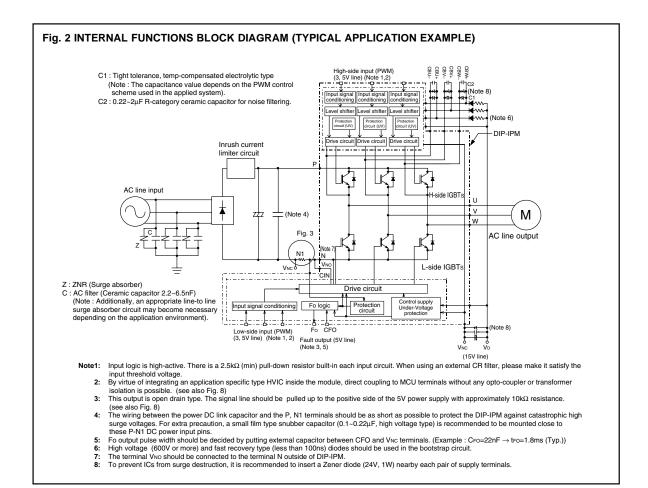
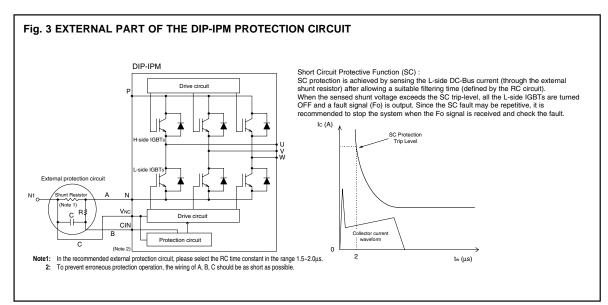

MITSUBISHI SEMICONDUCTOR < Dual-In-Line Package Intelligent Power Module>


PS21563-P

TRANSFER-MOLD TYPE INSULATED TYPE

APPLICATION


AC100V~200V inverter drive for small power motor control.



Sep. 2005

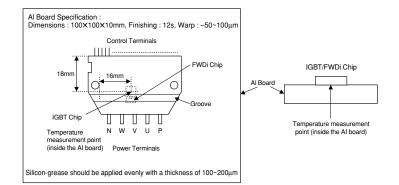
TRANSFER-MOLD TYPE INSULATED TYPE

TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-N	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-N	500	V
VCES	Collector-emitter voltage		600	V
±IC	Each IGBT collector current	Tf = 25°C	10	Α
±ICP	Each IGBT collector current (peak)	Tf = 25°C, less than 1ms	20	Α
Pc	Collector dissipation	Tf = 25°C, per 1 chip	20	W
Tj	Junction temperature	(Note 1)	-20~+125	°C

Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ Tf ≤ 100°C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) ≤ 125°C (@ Tf ≤ 100°C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
Vd	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
Vdb	Control supply voltage	Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	20	V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between FO-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$V_D = 13.5 \sim 16.5 V$, Inverter part T _j = 125°C, non-repetitive, less than 2 µs	400	v
Tf	Module case operation temperature	(Note 2)	-20~+100	°C
Tstg	Storage temperature		-40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, All connected pins to heat-sink plate	2500	Vrms

Note 2 : Tf measurement point

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Question	Deventer	Que ditie e		Limits		
Symbol	Parameter	rameter Condition	Min.	Тур.	Max.	Unit
Rth(j-f)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	—	—	5.0	°C/W
Rth(j-f)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)	—	—	6.5	°C/W

Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM and heat-sink.

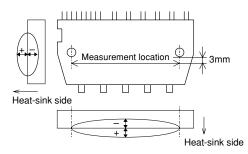
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) **INVERTER PART**

Symbol Parameter		Opendition		Limits			Linit
Symbol	Parameter	C	Condition		Тур.	Max.	Unit
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	IC = 10A, Tj = 25°C	_	1.60	2.10	V
VCE(sal)	voltage	VIN = 5V	Ic = 10A, Tj = 125°C	-	1.70	2.20	V
VEC	FWD forward voltage	$T_j = 25^{\circ}C, -IC = 10A, VII$	$T_j = 25^{\circ}C, -IC = 10A, VIN = 0V$		1.50	2.00	V
ton				0.60	1.20	1.80	μs
trr		VCC = 300V, VD = VDB = 15V		-	0.30	-	μs
tc(on)	Switching times	IC = 10A, Tj = 125°C, VI	$IC = 10A, T_j = 125^{\circ}C, VIN = 0 \leftrightarrow 5V$ Inductive load (upper-lower arm)		0.40	0.60	μs
toff		Inductive load (upper-low			1.40	2.10	μs
tc(off)					0.50	0.80	μs
ICES	Collector-emitter cut-off	VCE = VCES	$T_j = 25^{\circ}C$	—	—	1	mA
1020	current	VGE = VGES	Tj = 125°C	_	_	10	IIIA

CONTROL (PROTECTION) PART

Cumbal	Parameter	Condition		Limits			Unit
Symbol	Parameter			Min.	Тур.	Max.	Unit
		VD = VDB = 15V	Total of VP1-VNC, VN1-VNC	—	—	5.00	
D	Circuit current	VIN = 5V	VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	—	—	0.40	m۸
U		VD = VDB = 15V	Total of VP1-VNC, VN1-VNC	—	—	7.00	mA
		VIN = 0V	VUFB-VUFS, VVFB-VVFS, VWFB-VWFS	—	—	0.55	
VFOH	Fault output voltage	VSC = 0V, Fo circu	/sc = 0V, Fo circuit pull-up to 5V with $10k\Omega$		_	—	V
VFOL	Fault output voltage	VSC = 1V, IFO = 1n	VSC = 1V, IFO = 1mA		—	0.95	V
VSC(ref)	Short circuit trip level	Tf = −20~100°C, V	$T_f = -20 \sim 100^{\circ}C, V_D = 15V$ (Note 4)		_	0.52	V
lin	Input current	VIN = 5V		1.0	1.5	2.0	mA
UVDBt			Trip level	10.0	—	12.0	V
UVDBr	Control supply under-voltage	Ti≤ 125°C	Reset level	10.5	—	12.5	V
UVDt	protection	1] = 125 0	Trip level	10.3	—	12.5	V
UVDr			Reset level	10.8	—	13.0	V
tFO	Fault output pulse width	CFO = 22nF	(Note 5)	1.0	1.8	—	ms
Vth(on)	ON threshold voltage	Applied between L	Applied between UP, VP, WP-VNC, UN, VN, WN-VNC		2.3	2.6	V
Vth(off)	OFF threshold voltage		F, VF, VVF-VINC, ON, VN, VVN-VNC	0.8	1.4	2.1	V

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 2.0 times of the current rating.
5: Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure. The fault output pulse width tFO depends on the capacitance value of CFO according to the following approximate equation : CFO = 12.2 × 10⁻⁶ × tFO [F].



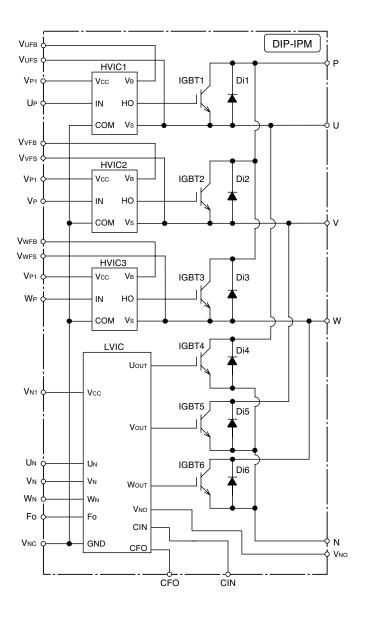
TRANSFER-MOLD TYPE INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

Devenueter	Condition		Limits			Unit
Parameter	Condition Min. Typ. Max.				Unit	
Mounting torque	Mounting screw : M3 Recommended : 0.78 N·m		0.59	—	0.98	N∙m
Weight			_	20	_	g
Heat-sink flatness		(Note 6)	-50	_	100	μm

Note 6: Measurement point of heat-sink flatness

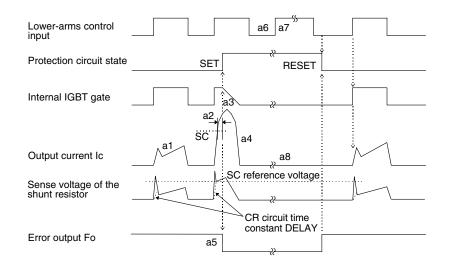
RECOMMENDED OPERATION CONDITIONS


Oursels al	Parameter Condition		Reco	mmended	value	Linit	
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-N		0	300	400	V
Vd	Control supply voltage	Applied between VP1-VNC, VN1-VN	С	13.5	15.0	16.5	V
Vdb	Control supply voltage	Applied between VUFB-VUFS, VVFB	-Vvfs, Vwfb-Vwfs	13.0	15.0	18.5	V
ΔV d, ΔV db	Control supply variation			-1	—	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tf ≤ 100°C		1.5	—	—	μs
fpwm	PWM input frequency	Tf ≤ 100°C, Tj ≤ 125°C			—	20	kHz
	IO Allowable r.m.s. current P.F = 0.8	VCC = 300V, VD = VDB = 15V,	fPWM = 5kHz	_	—	6.5	
lo		P.F = 0.8, sinusoidal output Tf \leq 100°C, Tj \leq 125°C (Note 7)	fPWM = 15kHz	_	_	4.0	Arms
PWIN(on)			(Note 8)	0.3	—	—	
		$200 \le VCC \le 350V$, $13.5 \le VD \le 16.5V$,	Below rated current	0.5	_	_	
PWIN(off)	Allowable minimum input pulse width	$13.0 \le VDB \le 18.5V$, -20°C $\le Tf \le 100°C$.	Between rated current and 1.7 times of rated current	0.5	_	_	μs
		N-line wiring inductance less than 10nH (Note 9)	Between 1.7 times and 2.0 times of rated current	0.7	_	_	
VNC	VNC variation	Between VNC-N (including surge)		-5.0	_	5.0	V

Note 7: The allowable r.m.s. current value depends on the actual application conditions.
8: The input pulse width less than PWIN(on) might make no response.
9: IPM might not work properly or make response for the input signal with OFF pulse width less than PWIN(off). Please refer to Fig.7.

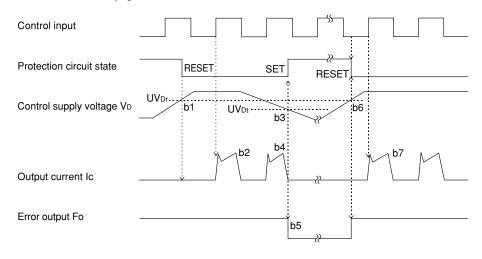
TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 4 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE INSULATED TYPE

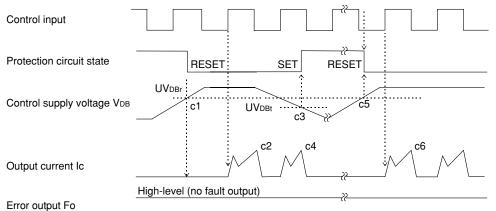
Fig. 5 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS

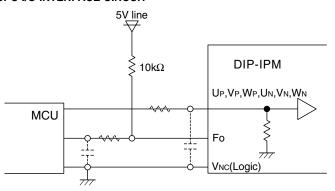

[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation : IGBT ON and carrying current.
- a2. Short circuit current detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo timer operation starts : The pulse width of the Fo signal is set by the external capacitor CFo.
- a6. Input "L" : IGBT OFF.
- a7. Input "H" : IGBT ON.
- a8. IGBT OFF in spite of input "H".

[B] Under-Voltage Protection (Lower-arm, UVD)

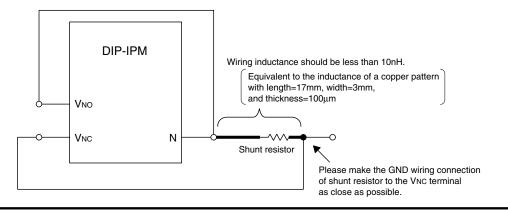
- b1. Control supply voltage rises : After the voltage level reaches UVDr, the circuits start to operate when next input is applied.
- b2. Normal operation : IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo operation starts.
- b6. Under voltage reset (UVDr).
- b7. Normal operation : IGBT ON and carrying current.




TRANSFER-MOLD TYPE INSULATED TYPE

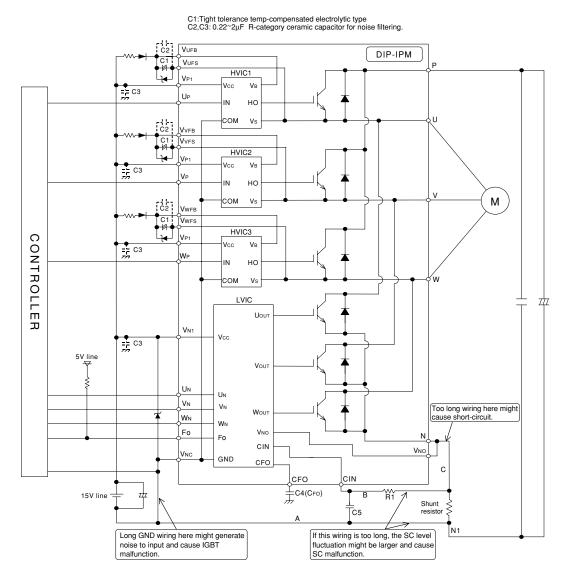
[C] Under-Voltage Protection (Upper-arm, UVDB)

- c1. Control supply voltage rises : After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation : IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input condition, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr).
- c6. Normal operation : IGBT ON and carrying current.


Fig. 6 RECOMMENDED CPU I/O INTERFACE CIRCUIT

Note : The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a 2.5k Ω (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.


Fig. 7 WIRING CONNECTION OF SHUNT RESISTOR

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 8 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

Note 1: To prevent the input signals oscillation, the wiring of each input should be as short as possible. (Less than 2cm) 2: By virtue of integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler

- or transformer isolation is possible. 3: Fo output is open drain type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 10kΩ
- resistor 4: Fo output pulse width is determined by the external capacitor between CFO and VNc terminals (CFO). (Example : CFO = 22 nF \rightarrow tFO = 1.8 ms (typ.))
- 5: The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5kΩ (min) pull-down resistor. Therefore, when 3. The logic of input signals light active. The DiF-IPM input signal section integrates a 2.5x2 (init) put of using external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement.
 6: To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
 7: Please set the C5R1 time constant in the range 1.5~2µs.
 8: Each capacitor should be located as nearby the pins of the DIP-IPM as possible.

- 9: To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 pins should be as short as possible. Approximately a 0.1~0.22µF snubber capacitor between the P-N1 pins is recommended.
- 10: The terminal VNO should be connected with the terminal N outside.
- 11: To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) nearby each pair of supply terminals.

