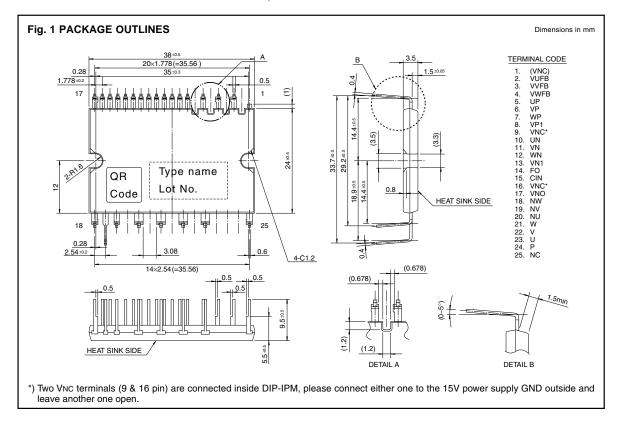

MITSUBISHI SEMICONDUCTOR <Dual-In-Line Package Intelligent Power Module>

PS21964-S


TRANSFER-MOLD TYPE INSULATED TYPE

• Input interface : 3V, 5V line (High Active).

APPLICATION

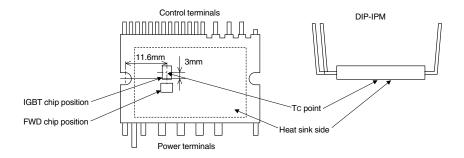
AC100V~200V inverter drive for small power motor control.

TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-NU, NV, NW	500	V
VCES	Collector-emitter voltage		600	V
±IC	Each IGBT collector current	Tc = 25°C	15	A
±ICP	Each IGBT collector current (peak)	Tc = 25°C, less than 1ms	30	Α
Pc	Collector dissipation	Tc = 25°C, per 1 chip	33.3	W
Tj	Junction temperature	(Note 1)	-20~+125	°C

Note 1: The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ Tc ≤ 100°C). However, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) ≤ 125°C (@ Tc ≤ 100°C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
Vd	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
Vdb	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-W	20	V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	v
Vfo	Fault output supply voltage	Applied between FO-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$V_D = 13.5 \sim 16.5 V$, Inverter part T _j = 125°C, non-repetitive, less than 2µs	400	v
Тс	Module case operation temperature	(Note 2)	-20~+100	°C
Tstg	Storage temperature		-40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, All connected pins to heat-sink plate	1500	Vrms

Note 2: Tc measurement point

TRANSFER-MOLD TYPE INSULATED TYPE

THERMAL RESISTANCE

Cumbal	Deremeter	Condition		Limits		
Symbol	Parameter			Тур.	Max.	Unit
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	—	—	3.0	°C/W
Rth(j-c)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)	_	_	3.9	°C/W

Note 3 : Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM

and heat-sink. The contacting thermal resistance between DIP-IPM case and heat sink (Rth(c-f)) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) (per 1/6 module) is about 0.3°C/W when the grease thickness is 20µm and the thermal conductivity is 1.0W/m·k.

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) **INVERTER PART**

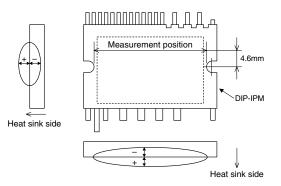
Cumbal	Parameter	Condition		Limits			Unit
Symbol	Parameter		onduion	Min.	Тур.	Max.	Unit
VCE(sat)	Collector-emitter saturation VD = VDB = 15V IC = 15A, Tj = 25°C		-	1.70	2.20		
VCE(sal)	voltage	VIN = 5V	IC = 15A, Tj = 125°C	-	1.80	2.30	V
VEC	FWD forward voltage	Tj = 25°C, –IC = 15A, VIN = 0V		-	1.70	2.20	V
ton			0.70	1.30	1.90	μs	
trr		VCC = 300V, VD = VDB =	VCC = 300V, VD = VDB = 15V			—	μs
tc(on)	Switching times	IC = 15A, Tj = 125°C, VIN	$IC = 15A, T_j = 125^{\circ}C, VIN = 0 \leftrightarrow 5V$			0.75	μs
toff		Inductive load (upper-low	Inductive load (upper-lower arm)		1.60	2.20	μs
tc(off)				—	0.50	0.80	μs
ICES	Collector-emitter cut-off		Tj = 25°C	—	_	1	mA
current		VCE = VCES	Tj = 125°C	—	—	10	

CONTROL (PROTECTION) PART

Symbol	mbol Parameter Condition			ndition	Limits			Unit
Symbol	Falailletei			nation	Min.	Тур.	Max.	Onit
		VD = VDB = 15V Total of VP1-VNC, VN1-VNC		_	—	2.80		
ID	Circuit current	VIN = 5V	VUFB-	U, VVFB-V, VWFB-W	_	—	0.55	mA
ID ID	Circuit current	VD = VDB = 15V	Total	of VP1-VNC, VN1-VNC		_	2.80	
		VIN = 0V	VUFB-	U, Vvfb-V, Vwfb-W	—	—	0.55	
VFOH	Fault output voltage	Vsc = 0V, Fo terminal pull-up to 5V by $10k\Omega$			4.9	—	—	V
VFOL	i adit odiput voltage	VSC = 1V, IFO = 1m	VSC = 1V, IFO = 1mA			_	0.95	V
VSC(ref)	Short circuit trip level	$T_j = 25^{\circ}C, V_D = 15V$ (Note 4)			0.43	0.48	0.53	V
lin	Input current	VIN = 5V	VIN = 5V		0.70	1.00	1.50	mA
UVDBt				Trip level	10.0	—	12.0	V
UVDBr	Control supply under-voltage	Ti≤ 125°C		Reset level	10.5	—	12.5	V
UVDt	protection	1]≤125 €	Trip level	10.3	—	12.5	V	
UVDr				Reset level	10.8	—	13.0	V
tFO	Fault output pulse width			(Note 5)	20	—	—	μs
Vth(on)	ON threshold voltage		, , , , , , , , , , , , , , , , ,			2.1	2.6	V
Vth(off)	OFF threshold voltage	Applied between UP, VP, WP, UN, VN, WN-VNC			0.8	1.3	_	V
Vth(hys)	ON/OFF threshold hysteresis voltage				0.35	0.65	_	V

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating.

5: Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure.


TRANSFER-MOLD TYPE INSULATED TYPE

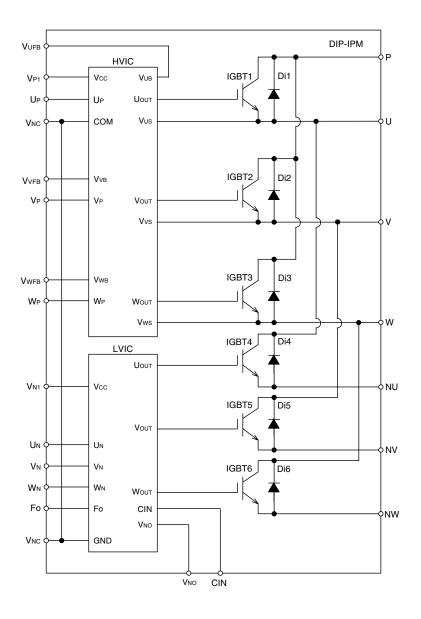
MECHANICAL CHARACTERISTICS AND RATINGS

Deveryoter	Condition		Limits			1.1
Parameter	Con	aition	Min.	Тур.	Max.	Unit
Mounting torque	Mounting screw : M3 (Note 6) Recommended : 0.69 N·m		0.59	_	0.78	N∙m
Weight				10	—	g
Heat-sink flatness	(Note 7)			_	100	μm

Note 6: Plain washers (ISO 7089~7094) are recommended.

Note 7: Flatness measurement position

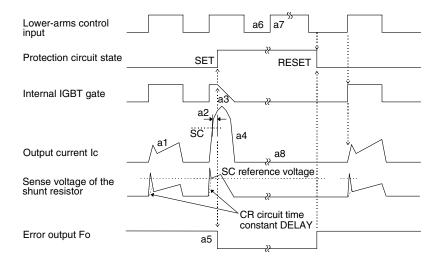
RECOMMENDED OPERATION CONDITIONS


	hel Devenator Condition		Recommended value			Linit	
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-NU, NV, NW		0	300	400	V
Vd	Control supply voltage	Applied between VP1-VNC, VN1-VNC		13.5	15.0	16.5	V
Vdb	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-V	N	13.0	15.0	18.5	V
$\Delta \text{VD}, \Delta \text{VDB}$	Control supply variation			-1	—	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tc ≤ 100°C	For each input signal, Tc ≤ 100°C			_	μs
		VCC = 300V, VD = VDB = 15V,	fPWM = 5kHz	—	_	7.5	
lo	Allowable r.m.s. current	$ \begin{array}{c c} P.F = 0.8, \mbox{ sinusoidal output,} \\ T_{j} \leq 125^{\circ}C, \mbox{ Tc} \leq 100^{\circ}C & (Note 8) \\ \end{array} \right \end{tabular} \label{eq:product} \begin{array}{c} F_{PWM} = 15 \mbox{ Hz} \\ \end{array} $		_	_	4.5	Arms
PWIN(on)	Allowable minimum input	•		0.5	—	—	
PWIN(off)	pulse width		0.5	_	—	μs	
VNC	VNC variation	Between VNC-NU, NV, NW (including sur	ge)	-5.0	—	5.0	V

Note 8: The allowable r.m.s. current value depends on the actual application conditions. 9: IPM might not make response if the input signal pulse width is less than the recommended minimum value.

TRANSFER-MOLD TYPE INSULATED TYPE

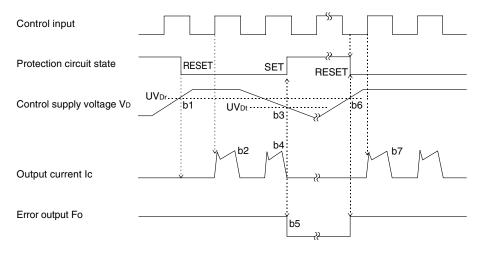
Fig. 2 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 3 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS

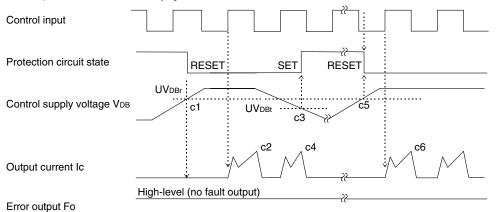
[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

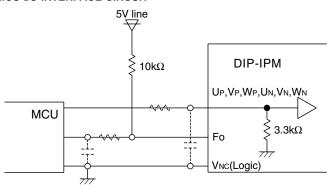

- a1. Normal operation : IGBT ON and carrying current.
- a2. Short circuit detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. FO output (tFO(min) = 20µs).
- a6. Input "L" : IGBT OFF.
- a7. Input "H" : IGBT ON.
- a8. IGBT OFF in spite of input "H".

[B] Under-Voltage Protection (Lower-arm, UVD)

b1. Control supply voltage rises : After the voltage level reaches UVDr, the circuits start to operate when next input is applied. b2. Normal operation : IGBT ON and carrying current.

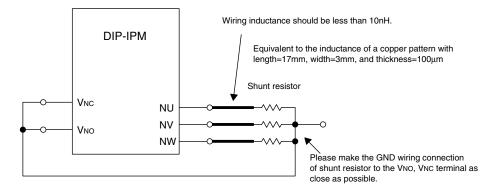
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo output (tFo \geq 20µs and Fo output continuously during UV period). b6. Under voltage reset (UVDr).
- b7. Normal operation : IGBT ON and carrying current.




TRANSFER-MOLD TYPE INSULATED TYPE

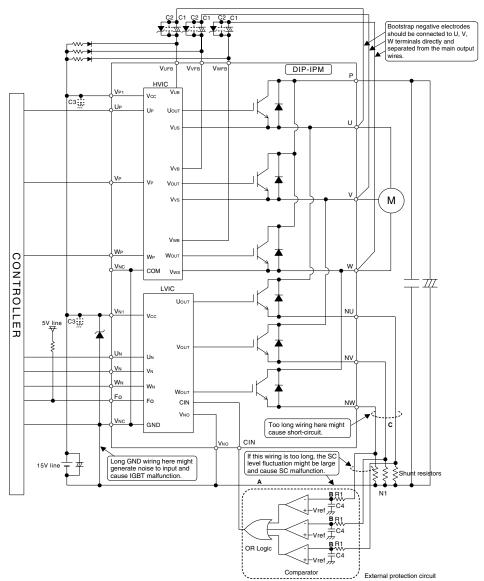
[C] Under-Voltage Protection (Upper-arm, UVDB)

- c1. Control supply voltage rises : After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation : IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input signal level, but there is no FO signal output.
- c5. Under voltage reset (UVDBr).
- c6. Normal operation : IGBT ON and carrying current.


Fig. 4 RECOMMENDED MCU I/O INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a 3.3kΩ (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.


Fig. 5 WIRING CONNECTION OF SHUNT RESISTOR

TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 6 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE

C1:Tight tolerance temp-compensated electrolytic type C2,C3: 0.22~2µF R-category ceramic capacitor for noise filtering

Note 1 : To prevent malfunction, the wiring of each input should be as short as possible (2~3cm).

- : By virtue of integrating HVIC inside, direct coupling to MCU without opto-coupler or transformer isolation is possible. 2
- 3
- : Fo output is open drain type. It should be pulled up to a 5V supply with an approximately $10k\Omega$ resistor. : The logic of input signal is high-active. The DIP-IPM input signal section integrates a $3.3k\Omega$ (min) pull-down resistor. If using external filtering resistor, ensure the voltage drop of ON signal not below the threshold value. 4
- : To prevent malfunction of protection, the wiring of A, B, C should be as short as possible. 5
- 6 : Please set the filter R1•C4 time constant such that the IGBT can be interrupted within 2µs.
- 7 : Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
- 8 : To prevent surge destruction, the wiring between the smoothing capacitor and the P-N1 pins should be as short as possible. Approximately a 0.1~0.22µF snubber capacitor between the P-N1 pins is recommended.
- 9 : Make external wiring connection between VNO and VNC terminals as shown in Fig.5.
- 10 : Two VNc terminals (9 & 16 pin) are connected inside DIP-IPM, please connect either one to the 15V power supply GND outside and leave another one open.
- 11 : To prevent ICs from surge destruction, it is recommended to insert a Zener diode (24V, 1W) between each control supply terminals. 12: The reference voltage Vref of comparator should be set up the same rating of short circuit trip level (Vsc(ref): min.0.43V to max.0.53V).
- 13: OR logic output level should be set up the same rating of short circuit trip level (Vsc(ref): min.0.43V to max.0.53V).

