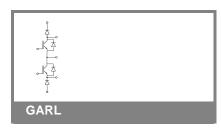


IGBT Module

SK50GARL065


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence
- Low threshold voltage

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifie						
Symbol	Conditions			Values	Units	
IGBT						
V_{CES}	T _j = 25 °C T _i = 125 °C			600	V	
I _C	T _j = 125 °C	T _s = 25 °C		54	Α	
		T _s = 80 °C		40	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			120	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		10	μs	
Inverse	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		25	Α	
		T _s = 80 °C		17	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		100	Α	
Freewhe	eeling Diode				-	
I _F	T _j = 150 °C	T_s = 25 °C		64	Α	
		$T_s = 80 ^{\circ}C$		48	Α	
I _{FRM}					Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		400	Α	
Module						
$I_{t(RMS)}$					Α	
T_{vj}		•	•	-40 + 150	°C	
T _{stg}				-40 +125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics T _s = 25 °C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units
IGBT	·					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.7 \text{ mA}$		3	4	5	V
I _{CES}	V _{GE} = 600 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0022	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			120	nA
V_{CE0}		T _j = 25 °C		1,2	1,3	٧
		T _j = 125 °C		1,1	1,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C			12	mΩ
		T _j = 125°C			22	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,7	2	V
		T _j = 125°C _{chiplev} .		2,2	2,2	V
C _{ies}				3,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF
C _{res}				0,18		nF
Q_G	V _{GE} =0 20 V			375		nC
t _{d(on)}				47		ns
t _r	$R_{Gon} = 15 \Omega$	$V_{CC} = 300V$		60	80	ns
E _{on}		I _{Cnom} = 40A		1,07	1,4	mJ
t _{d(off)}	R_{Goff} = 16 Ω	T _j = 125 °C		220	280	ns
t _f		V _{GE} = ±15V		20	26	ns
E _{off}				0,76	1	mJ
R _{th(j-s)}	per IGBT				0,85	K/W

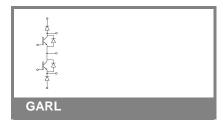
IGBT Module

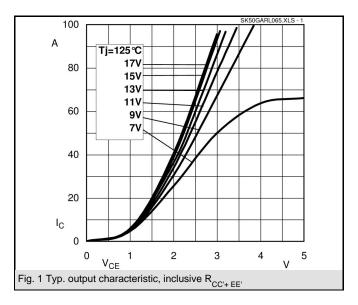
SK50GARL065

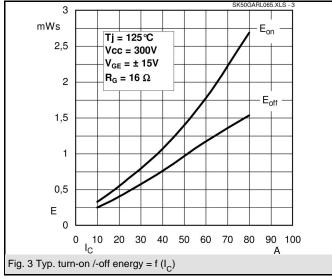
Preliminary Data

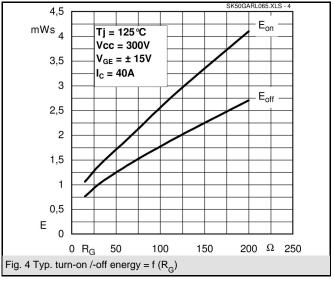
Features

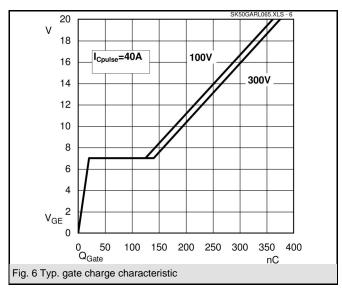
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence
- · Low threshold voltage


Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 15 \text{ A}; V_{GE} = 0 \text{ V}$			1,4	1,7	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,4	1,7	V		
V_{F0}		T _j = 125 °C		0,9	1	V		
r _F		T _j = 125 °C		33	47	mΩ		
I _{RRM} Q _{rr}	I _{Fnom} = 30 A di/dt = 500 A/μs	T _j = 125 °C				Α μC		
E _{rr}	V _{CC} =300V					mJ		
R _{th(j-s)D}	per diode				2,3	K/W		
	Freewheeling diode							
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V			1,45	1,7	V		
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,4	1,75	V		
V_{F0}		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 125 °C		11	16	V		
I _{RRM} Q _{rr}	I _{Fnom} = 50 A di/dt = -1000 A/μs	T _j = 125 °C		40 3,6		Α μC		
E _{rr}	V _R =300V			0,55		mJ		
R _{th(j-s)D}	per diode				1,1	K/W		
M_s	to heat sink		1,8		2	Nm		
w				19	•	g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

