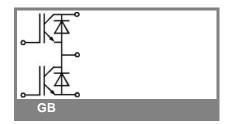
SK 60 GB 123

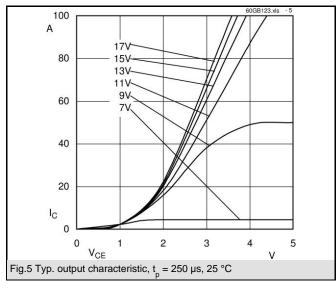
IGBT Module

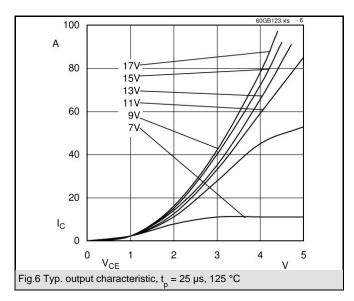
SK 60 GB 123

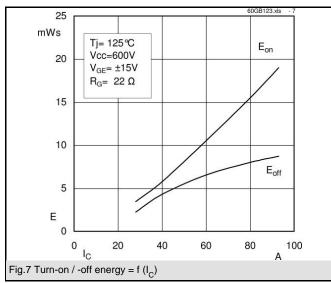
Preliminary Data

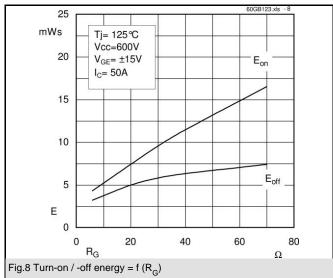
Features

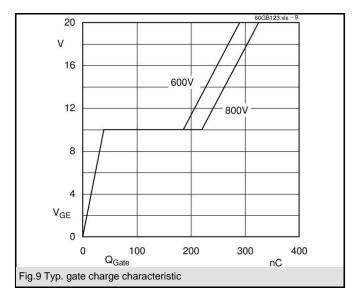

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence

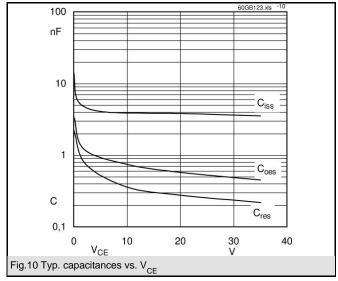

Typical Applications

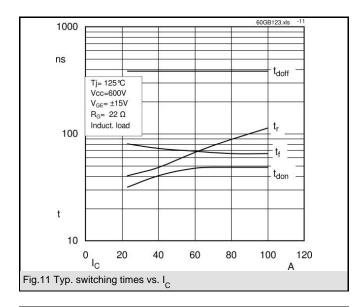

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

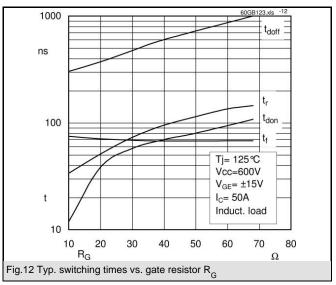

Absolute	Maximum Ratings	r _s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values						
IGBT								
V_{CES}		1200	V					
V_{GES}		± 20	V					
I _C	$T_s = 25 (80) ^{\circ}C;$	58 (40)	Α					
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	116 (80)	Α					
T_{j}		- 40 + 150	°C					
Inverse/Freewheeling CAL diode								
I _F	$T_s = 25 (80) ^{\circ}C;$	57 (38)	Α					
I _{FM} = - I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	114 (38)	Α					
T_j		- 40 + 150	°C					
T _{stg}		- 40 + 125	°C					
T _{sol}	Terminals, 10 s	260	°C					
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V					

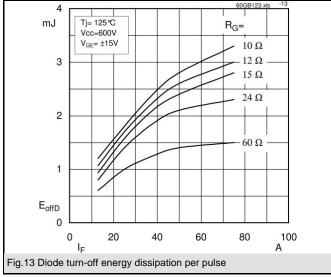

Characteristics		T _s = 25 °C	T _s = 25 °C, unless otherwise specified			
	Conditions	min.	typ.	max.	Units	
IGBT	•				•	
$V_{\text{CE(sat)}}$ $V_{\text{GE(th)}}$ C_{ies} $R_{\text{th(j-s)}}$	$\begin{split} &I_{C} = 40 \text{ A, } T_{j} = 25 \text{ (125) } ^{\circ}\text{C} \\ &V_{CE} = V_{GE}; I_{C} = 0,002 \text{ A} \\ &V_{CE} = 25 \text{ V; } V_{GE} = 0 \text{ V; 1 MHz} \\ &\text{per IGBT} \\ &\text{per module} \end{split}$	4,5	2,5 (3) 5,5 3,5	6,5 0,6	V V nF K/W	
$t_{d(on)}$ t_r $t_{d(off)}$ t_f $E_{on} + E_{off}$	under following conditions: $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{C} = 40 \text{ A}, T_{J} = 125 \text{ °C}$ $R_{Gon} = R_{Goff} = 22 \Omega$ Inductive load		40 50 380 75 10		ns ns ns ns mJ	
	reewheeling CAL diode					
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$			2 (1,8) (1) (16)	(1,2) (22) 0,9	V V mΩ K/W	
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 50 \text{ A}; V_R = 600 \text{ V}$ $dI_F/dt = -800 \text{ A/}\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 \text{ °C}$		40 8 2		Α μC mJ	
Mechanic	cal data	•			•	
M1 w	mounting torque		29	2,5	Nm g	
Case	SEMITOP® 3		T 27			

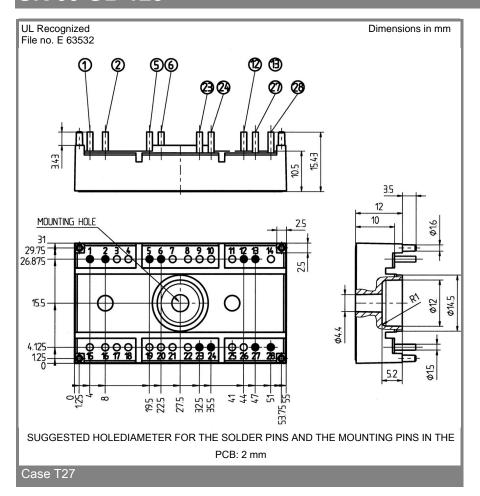


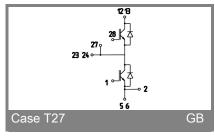









SK 60 GB 123



SK 60 GB 123

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.