BiMOS II 8-BIT LATCHED SOURCE DRIVERS

Dwg. No. A-10,987

ABSOLUTE MAXIMUM RATINGS

at +25°C Free-Air Temperature

Output Voltage, V _{OUT} 60 V Logic Supply Voltage Range,
V _{DD} 4.5 V to 15 V
Load Supply Voltage Range,
V _{BB}
Input Voltage Range,
$V_{IN} \dots V_{DD} + 0.3 V$ to $V_{DD} + 0.3 V$
Continuous Output Current,
I _{OUT} 40 mA
Package Power Dissipation, P _D
(UCN5815A) 2.5 W*
(UCN5815EP) 2.27 W*
Operating Temperature Range,
T _A 20°C to +85°C
Storage Temperature Range,
T _S 55°C to +150°C
* Derate linearly to 0 W at +150°C

* Derate linearly to 0 W at +150°C.

Caution: CMOS devices have input static protection but are susceptible to damage when exposed to extremely high static electrical charges.

Designed primarily for use with high-voltage vacuum-fluorescent displays, the UCN5815A and UCN5815EP BiMOS II integrated circuits consist of eight NPN Darlington source drivers with output pull-down resistors, a CMOS latch for each driver, and common STROBE, BLANKING, and ENABLE functions.

BiMOS II devices have considerably better data-input rates than the original BiMOS circuits. With a 5 V logic supply, they will typically operate above 5 MHz. With a 12 V supply, significantly higher speeds are obtained. The CMOS inputs cause minimum loading and are compatible with standard CMOS and NMOS logic commonly found in microprocessor designs. TTL circuits may require the use of appropriate pull-up resistors.

The bipolar outputs may be used as segment, dot (matrix), bar, or digit drivers in vacuum-fluorescent displays. All eight outputs can be activated simultaneously at ambient temperatures in excess of 75°C. To simplify printed wiring board layout, output connections are opposite the inputs. A minimum component display subsystem, requiring few or no discrete components, can be assembled using the UCN5815A/EP with the UCN5810AF/EPF/LWF, UCN5812AF/EPF, or UCN5818AF/EPF serial-to-parallel latched drivers.

Suffix 'A' devices are furnished in a standard 22-pin plastic DIP; suffix 'EP' indicates a 28-lead PLCC.

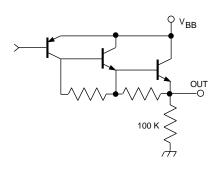
FEATURES

- 4.4 MHz Minimum Date-Input Rate
- High-Voltage Source Outputs
- CMOS, NMOS, TTL Compatible Inputs
- Low-Power CMOS Latches
- Internal Pull-Down Resistors
- Wide Supply-Voltage Range

Always order by complete part number:

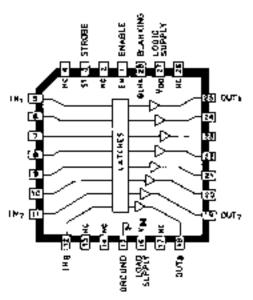
Part Number	Package
UCN5815A	22-Pin DIP
UCN5815EP	28-Lead PLCC

ELECTRICAL CHARACTERISTICS at T_A = +25°C, V_{BB} = 60 V, V_{DD} = 5 V and 12 V (unless otherwise noted).


			Limits		
Characteristic	Symbol	Test Conditions	Min.	Max.	Units
Output OFF Voltage	V _{OUT}		_	1.0	V
Output ON Voltage	V _{OUT}	I_{OUT} = -25 mA, V_{BB} = 60 V	57.5	_	V
Output Pull-Down Current	I _{OUT}	$V_{OUT} = V_{BB}$	400	850	μΑ
Output Leakage Current	I _{OUT}	T _A = 70°C	_	-15	μΑ
Input Voltage	V _{IN(1)}	V _{DD} = 5.0 V	3.5	5.3	V
		V _{DD} = 12 V	10.5	12.3	V
	V _{IN(0)}		-0.3	+0.8	V
Input Current	I _{IN(1)}	$V_{DD} = V_{IN} = 5.0 \text{ V}$	_	100	μΑ
		$V_{DD} = V_{IN} = 12 \text{ V}$		240	μΑ
Input Impedance	Z _{IN}	$V_{DD} = 5.0 \text{ V}$	50	_	kΩ
Supply Current	I _{BB}	All outputs ON, All outputs open	_	10.5	mA
		All outputs OFF, All outputs open	_	100	μΑ
	I _{DD}	V_{DD} = 5.0 V, All outputs OFF, All inputs = 0 V	_	100	μΑ
		$V_{DD} = 12 \text{ V}$, All outputs OFF, All inputs = 0 V	_	200	μΑ
		$V_{DD} = 5.0 \text{ V}$, One output ON, All inputs = 0 V	_	1.0	mA
		$V_{DD} = 12 \text{ V}$, One output ON, All inputs = 0 V	_	3.0	mA

NOTE: Positive (negative) current is defined as going into (coming out of) the specified device pin.

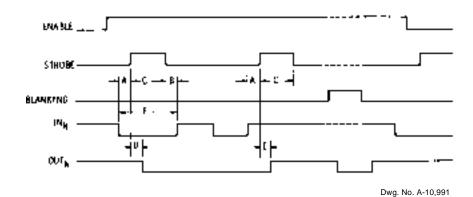
TYPICAL INPUT CIRCUIT


Dwg. No. EP-010-4A

TYPICAL OUTPUT DRIVER

Dwg. No. EP-021-3

UCN5815EP



Dwg. No. A-14,357

Information present at an input is transferred to its latch when the STROBE and ENABLE are high. The latches will continue to accept new data as long as both STROBE and ENABLE are held high. With either STROBE or ENABLE in the low state, no information can be loaded into the latches.

When the BLANKING input is high, all of the output buffers are disabled (OFF) without affecting the information stored in the latches. With the BLANKING input low, the outputs are controlled by the state of the latches.

The timing conditions shown above guarantee a 4.4 MHz minimum data input rate with a 5 V supply. Typically, input rates above 5 MHz are permitted. With a 12 V supply, rates in excess of 10 MHz are possible.

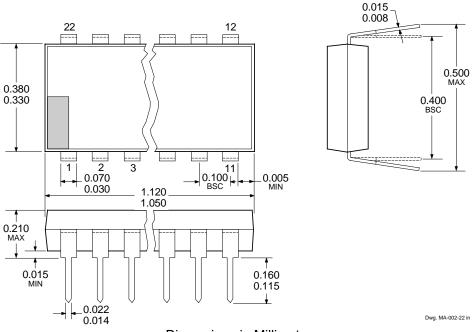
TIMING CONDITIONS

 $(V_{DD} = 5 \text{ V}, T_A = +25^{\circ}\text{C}, \text{Logic Levels are } V_{DD} \text{ and Ground})$

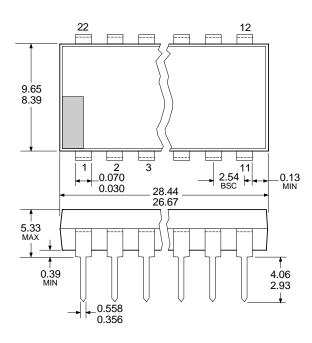
A.	Minimum Data Active Time Before Strobe Enabled (Data Set-Up Time)
B.	Minimum Data Active Time After Strobe Disabled (Data Hold Time)
C.	Minimum Strobe Pulse Width
D.	Typical Time Between Strobe Activation and Output ON to OFF Transition
E.	Typical Time Between Strobe Activation and Output OFF to ON Transition
F.	Minimum Data Pulse Width

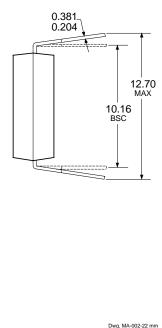
TRUTH TABLE

INPUTS				OUT _N	
IN _N	STROBE	ENABLE	BLANK	T-1	Т
0	1	1	0	Х	0
1	1	1	0	Х	1
Χ	Χ	X	1	X	0
Χ	0	X	0	1	1
Χ	0	X	0	0	0
Χ	X	0	0	1	1
Χ	Χ	0	0	0	0


X = irrelevant

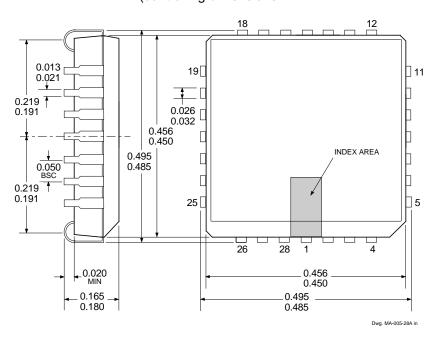
 $\underline{\mathsf{T}}$ -1 = previous output state


T = present output state

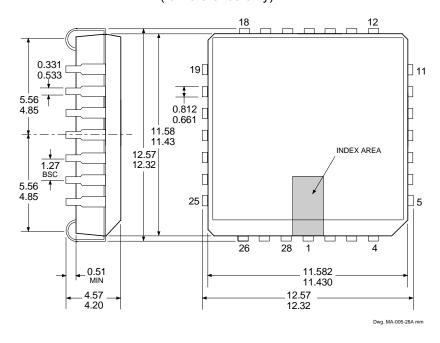

UCN5815A

Dimensions in Inches (cvontrolling dimensions)

Dimensions in Millimeters (for reference only)


NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

- 2. Lead spacing tolerance is non-cumulative.
- 3. Lead thickness is measured at seating plane or below.



UCN5815EP

Dimensions in Inches (controlling dimensions

Dimensions in Millimeters (for reference only)

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

2. Lead spacing tolerance is non-cumulative.

5815 BiMOS II 8-BIT LATCHED SOURCE DRIVERS

BiMOS II (Series 5800) & DABiC IV (Series 6800) INTELLIGENT POWER INTERFACE DRIVERS SELECTION GUIDE

Function	Output F	Ratings *	Part Number †			
SERIAL-INPUT LATCHED DRIVERS						
8-Bit (saturated drivers)	-120 mA	50 V‡	5895			
8-Bit	350 mA	50 V	5821			
8-Bit	350 mA	80 V	5822			
8-Bit	350 mA	50 V‡	5841			
8-Bit	350 mA	80 V‡	5842			
9-Bit	1.6 A	50 V	5829			
10-Bit (active pull-downs)	-25 mA	60 V	5810-F and 6809/10			
12-Bit (active pull-downs)	-25 mA	60 V	5811 and 6811			
20-Bit (active pull-downs)	-25 mA	60 V	5812-F and 6812			
32-Bit (active pull-downs)	-25 mA	60 V	5818-F and 6818			
32-Bit	100 mA	30 V	5833			
32-Bit (saturated drivers)	100 mA	40 V	5832			
PARAL	PARALLEL-INPUT LATCHED DRIVERS					
4-Bit	350 mA	50 V‡	5800			
8-Bit	-25 mA	60 V	5815			
8-Bit	350 mA	50 V‡	5801			
SPECIAL-PURPOSE FUNCTIONS						
Unipolar Stepper Motor Translator/Driver	1.25 A	50 V‡	5804			
Addressable 28-Line Decoder/Driver	450 mA	30 V	6817			

^{*} Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits. Negative current is defined as coming out of (sourcing) the output.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

[†] Complete part number includes additional characters to indicate operating temperature range and package style.

[‡] Internal transient-suppression diodes included for inductive-load protection.