Low Voltage / Low Power CMOS 16-bit Micro-controller

TMP91PW12F

1. **OUTLINE AND DEVICE CHARACTERISTICS**

TMP91PW12 is OTP type MCU which includes 128 Kbyte One-time PROM. Using the adapter-socket, you can write and verify the data for TMP91PW12. TMP91PW12 has the same pin-assignment with TMP91CW12 (Mask ROM type).

Writing the program to Built-in PROM, TMP91PW12 operates as the same way with TMP91CW12.

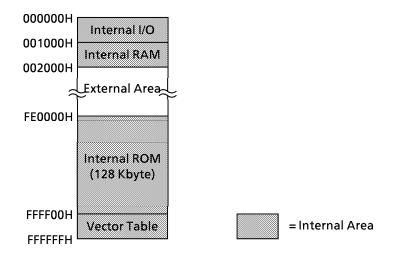


Figure 1.1 Memory map of TMP91CW12 / PW12

MCU	ROM	RAM	Package	Adapter Socket
TMP91PW12F	OTP 128 Kbyte	4 Kbyte	LQFP100-P-1414-0.50C	BM11149

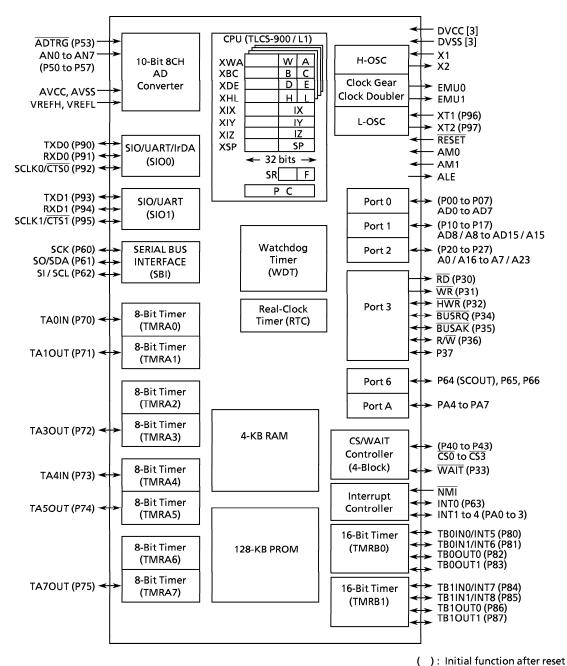
000707EBP2

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

 The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended on or warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.


 The products described in this document are subject to the foreign exchange and foreign trade laws.

 The products described in this document are subject to the foreign

Purchase of TOSHIBA I^2 C components conveys a license under the Philips I^2 C Patent Rights to use these components in an I2 C system, provided that the system conforms to the I2 C Standard Specification as defined by Philips.

> 91PW12-1 2001-08-23

, ,

Figure 1.1 TMP91PW12 Block Diagram

2. PIN ASSIGNMENT AND PIN FUNCTIONS

This section shows the TMP91PW12F pin assignment, and the names and an outline of the functions of the input/output pins.

2.1 Pin Assignment Diagram

Figure 2.1.1 is a pin assignment diagram for TMP91PW12F.

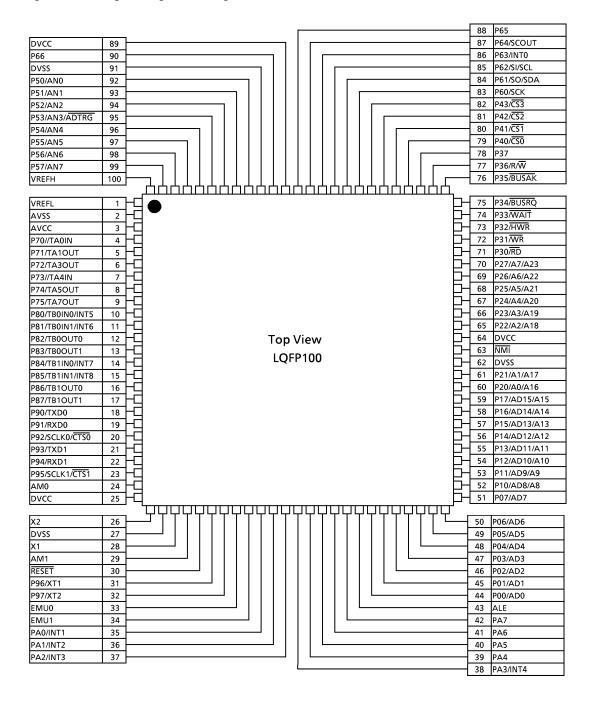


Figure 2.1.1 Pin Assignment Diagram (100-Pin LQFP)

2.2 Pin Names and Functions

The names of the input/output pins and their functions are described below. Table $2.2.1\,$ Pin Names and Functions.

Table 2.2.1 Pin Names and Functions (1/4)

Pin name	Number of pins	I/O	Functions
P00 to P07 AD0 to AD7	8	I/O Tri-state	Port 0: I/O port that allows I/O to be selected at the bit level Address and data (lower): Bits 0 to 7 for address and data bus
P10 to P17 AD8 to AD15 A8 to A15	8	I/O Tri-state Output	Port 1: I/O port that allows I/O to be selected at the bit level Address and data (upper): Bits 8 to 15 for address and data bus Address: Bits 8 to 15 for address bus
P20 to P27 A0 to A7 A16 to A23	8	I/O Output Output	Port 2: I/O port that allows to be selected at the bit level (with pull-down resistor) Address: Bits 0 to 7 for address bus Address: Bits 16 to 23 for address bus
P30 RD	1		Port 30: Output port Read: Strobe signal for reading external memory
P31 WR	1	Output Output	Port 31: Output port Write: Strobe signal for writing data on pins AD0 to 7
P32 HWR	1	I/O Output	Port 32: I/O port (with pull-up resistor) High write: Strobe signal for writing data on pins AD8 to 15
P33 WAIT	1	I/O Input	Port 33: I/O port (with pull-up resistor) Wait: Pin used to request CPU bus wait
P34 BUSRQ	1	I/O Input	Port 34: I/O port (with pull-up resistor) Bus request: Signal used to request bus release.
P35 BUSAK	1	I/O Output	Port 35: I/O port (with pull-up resistor) Bus acknowledge: Signal used to acknowledge bus release.
P36 R/W	1	I/O Output	Port 36: I/O port (with pull-up resistor) Read/write: 1 represents read or dummy cycle; 0 represents write cycle.
P37	1	I/O	Port 37: I/O port (with pull-up resistor)
P40 CS0	1	I/O Output	Port 40: I/O port (with pull-up resistor) Chip select 0: Outputs 0 when address is within specified address area.
P41 CS1	1	I/O Output	Port 41: I/O port (with pull-up resistor) Chip select 1: Outputs 0 if address is within specified address area.
P42 CS2	1	I/O Output	Port 42: I/O port (with pull-up resistor) Chip select 2: Outputs 0 if address is within specified address area.
P43 CS3	1	I/O Output	Port 43: I/O port (with pull-up resistor) Chip select 3: Outputs 0 if address is within specified address area.
P50 to P57 AN0 to AN7 ADTRG	8	Input Input Input	

Note: This device's built-in memory or built-in I/O cannot be accessed by an external DMA controller, using the \overline{BUSRQ} and \overline{BUSAK} signals.

Table 2.2.1 Pin Names and Functions (2/4)

Pin name	Number of pins	I/O	Functions
P60	1	I/O	Port 60: I/O Port
SCK		I/O	Serial Bus Interface Clock at SIO mode.
P61	1	I/O	Port 61: I/O Port
SO		Output	Serial Bus Interface Output data at SIO mode.
SDA		I/O	Serial Bus Interface Data at I ² C bus mode.
P62	1	I/O	Port 62: I/O Port
SI		Input	Serial Bus Interface Input data at SIO mode.
SCL		I/O	Serial Bus Interface Clock at I ² C bus mode.
P63 INT0	1	I/O Input	Port 63: I/O Port Interrupt request pin 0: Interrupt request pin with programmable level / rising edge / falling edge
P64	1	I/O	Port 64: I/O Port
SCOUT		Output	System Clock Output: Output f _{FPH} or fs clock
P65	1	I/O	Port 65: I/O Port
P66	1	I/O	Port 66: I/O Port
P70	1	I/O	Port 70: I/O Port
TA0IN		Input	Timer A0 input
P71	1	I/O	Port 71: I/O Port
TA1OUT		Output	Timer A1 output
P72	1	I/O	Port 72: I/O Port
TA3OUT		Output	Timer A3 output
P73	1	I/O	Port 73: I/O Port
TA4IN		Input	Timer A4 input
P74	1	I/O	Port 74: I/O Port
TA5OUT		Output	Timer A5 output
P75	1	I/O	Port 75: I/O Port
TA7OUT		Output	Timer A7 output
P80 TB0IN0	1	Input	Port 80: I/O Port Timer B0 input 0 Interrupt request pin 5: Interrupt request pin with programmable
INT5		Input	rising edge / falling edge
P81 TB0IN1 INT6	1	I/O Input Input	Port 81: I/O Port Timer B0 input 1 Interrupt request pin 6: Interrupt request pin with rising edge
P82	1	I/O	Port 82: I/O Port
TB0OUT0		Output	Timer B0 output 0
P83	1	I/O	Port 83: I/O Port
TB0OUT1		Output	Timer B0 output 1

Table 2.2.1 Pin Names and Functions (3/4)

Pin name	Number of pins	I/O	Functions
P84 TB1IN0 INT7	1		Port 84: I/O Port Timer B1 input 0 Interrupt request pin 7: Interrupt request pin with programmable rising edge / falling edge
P85 TB1IN1 INT8	1	-	Port 85: I/O Port Timer B1 input 1 Interrupt request pin 8: Interrupt request pin with rising edge
P86 TB1OUT0	1	I/O Output	Port 86: I/O Port Timer B1 output 0
P87 TB1OUT1	1	I/O Output	Port 87: I/O Port Timer B1 output 1
P90 TXD0	1	I/O Output	Port 90: I/O Port Serial send data 0
P91 RXD0	1	I/O Input	Port 91: I/O Port Serial receive data 0
P92 SCLK0 CTS0	1	I/O	Port 92: I/O Port Serial clock I/O 0 Serial data send enable 0 (Clear to Send)
P93 TXD1	1	I/O Output	Port 93: I/O Port Serial send data 1
P94 RXD1	1		Port 94: I/O Port (with pull-up resistor) Serial receive data 1
P95 SCLK1 CTS1	1	I/O I/O Input	Port 95: I/O Port (with pull-up resistor) Serial clock I/O 1 Serial data send enable 1 (Clear to Send)
P96 XT1	1	I/O Input	Port 96: I/O port (Open Drain Output) Low Frequency Oscillator connecting pin
P97 XT2	1	I/O Output	Port 97: I/O port (Open Drain Output) Low Frequency Oscillator connecting pin
PA0 to PA3 INT1 to INT4	4	I/O Input	Port A0 to A3: I/O Port Interrupt request pin 1 to 4: Interrupt request pin with programmable rising edge / falling edge
PA4 to PA7	4	I/O	Port A4 to A7: I/O Port
ALE	1	Output	Address Latch Enable Can be disabled for reducing noise.
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with programmable falling edge or both edges.
AM0/AM1	2	Input	Address mode: The Vcc pin should be connected.
EMU0/EMU1	2	Output	Test pin: Open pins.
RESET	1	Input	Reset: Initializes TMP91CW12. (With pull-up resistor)

Table 2.2.1 Pin Names and Functions (4/4)

Pin name	Number of pins	I/O	Functions		
VREFH	1	Input	Pin for reference voltage input to AD converter (H)		
VREFL	1	Input	Pin for reference voltage input to AD converter (L)		
X1/X2	2	I/O	High Frequency Oscillator connecting pin		
AVCC	1		Power supply pin for AD converter		
AVSS	1		GND pin for AD converter (0 V)		
DVCC	3		Power supply pin (All Vcc pins should be connected with the power supply pin.)		
DVSS	3		GND pin (0 V) (All Vss pins should be connected with GND (0 V).)		

Note: All pins that have built-in pull-up resistors (other than the \overline{RESET} pin) can be disconnected from the built-in pull-up resistor by software.

2.3 PROM Mode

Table 2.2.2 Name and function of PROM mode

Pin function	Pin No.	Input / Output	Function	Pin name (MCU mode)
A7 to A0	8	Input		P27 to P20
A15 to A8	8	Input	Memory address of program	P17 to P10
A16	1	Input		P33
D7 to D0	8	I/O	Memory data of pfogram	P07 to P00
CE	1	Input	Chip enable	P32
ŌĒ	1	Input	Output control	P30
PGM	1	Input	Program control	P31
VPP	1	Power supply Power	12.75 V / 5 V (Power supply of program)	AM1
vcc	4	supply	6.25 V / 5 V	DVCC, AVCC
VSS	4	Power supply	0 V	DVSS, AVSS
Pin function	Pin No.	Input / Output	Disposal of pir	1
P34	1	Input	Fix to low level (security pin)	
RESET	1	Input	Fix to low level (PROM mode)	
AM0	1	Input	Fix to low level (FROW filode)	
ALE	1	Output	Open	
X1	1	Input	Countral	
X2	1	Output	Crystal	
P42 to P40 P37 to P35 P75 to P70	12	Input	Fix to high level	
P43 P57 to P50 P66 to P60 P87 to P80 P97 to P90 PA7 to PA0 VREFH VREFL NMI EMU1, 0	51	I/O	Open	

3. OPERATION

This section describes in blocks the functions and basic operations of TMP91PW12.

The TMP91PW12 has PROM in place of the mask ROM which is included in the TMP91CW12. The other configuration and functions are the same as the TMP91CW12. Regarding the function of the TMP91PW12, which is not described herein, see the TMP91CW12.

The TMP91PW12 has two operational modes: MCU mode and PROM mode.

3.1 MCU mode

(1) Mode-setting and function

The MCU mode is set by driving High the AM1 and AM0 pin. In the MCU mode, the operation is same as TMP91CW12.

3.2 Memory Map

Figure 3.2.1, 3.2.2 are memory map of the TMP91PW12.

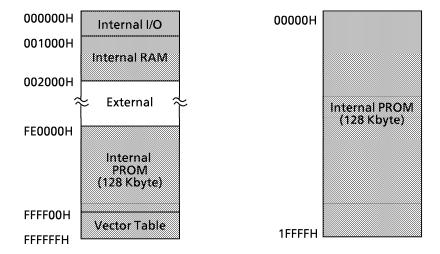


Figure 3.2.1 Memory map in MCU mode

Figure 3.2.2 Memory map in PROM mode

4. ELECTRICAL CHARACTERISTICS

4.1 Absolute Maximum

Parameter	Symbol	Unit	Rating
Power Supply Voltage	Vcc	V	– 0.5 to 6.5
Input Voltage	V _{IN}	V	– 0.5 to Vcc + 0.5
Output Current	I _{OL}	mA	2
Output Current	I _{OH}	mA	- 2
Output Current (total)	Σl _{OL}	mA	80
Output Current (total)	Σl _{OH}	mA	- 80
Power Dissipation (Ta = 85 °C)	P _D	mW	600
Soldering Temperature (10 s)	T _{SOLDER}	°C	260
Storage Temperature	T _{STG}	°C	– 65 to 150
Operating Temperature	T _{OPR}	°C	– 40 to 85

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

	Parameter	Symbol	Condition	Min	Typ. (Note)	Max	Unit
(AV	rer Supply Voltage cc = DVcc) ss = DVss = 0 V)	Vcc	fc = 2 to 16 MHz fs = 30 to 34 kHz fc = 4 to 25 MHz	2.7 4.5		5.5	٧
t ag e	P00 to P17 (AD0 to 15)	VIL	Vcc < 4.5V Vcc ≥ 4.5V			0.6 0.8	
Input Low Vol	P20 to PA7 (except P63) RESET, NMI, P63 (INT0) AM0, 1 X1	V _{IL1} V _{IL2} V _{IL3} V _{IL4}	Vcc = 2.7 to 5.5V	-0.3		0.3Vcc 0.25Vcc 0.3 0.2Vcc	
ag e	P00 to P17 (AD0 to 15)	V _{IH}	Vcc < 4.5V Vcc ≥ 4.5V	2.0 2.2			V
nput High Volt	P20 to PA7 (except P63) RESET, NMI, P63 (INT0) AM0, 1 X1	V _{IH1} V _{IH2} V _{IH3} V _{IH4}	Vcc = 2.7 to 5.5V	0.7Vcc 0.75Vcc Vcc – 0.3 0.8Vcc		Vcc + 0.3	
Out	Output Low Voltage		I _{OL} = 1.6 mA (Vcc = 2.7 to 5.5V)	0.0100		0.45	
Out	Output High Voltage		$I_{OH} = -400 \ \mu A$ $(Vcc = 3.0V \pm 10\%)$ $I_{OH} = -400 \ \mu A$ $(Vcc = 5.0V \pm 10\%)$	2.4 4.2			V

Note: Typical values are for Ta = 25 $^{\circ}$ C and V_{CC} = 3.0 V unless otherwise noted.

4.2 DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ. (Note1)	Max	Unit
Input Leakage Current I _{LI}		0.0≦ V _{IN} ≦ Vcc		0.02	± 5	
Output Leakage Current	I _{LO}	0.2≦ V _{IN} ≦ Vcc − 0.2		0.05	± 10	μA
Power Down Voltage (at STOP, RAM Back up)	V _{STOP}	$V_{IL2} = 0.2 \text{ Vcc},$ $V_{IH2} = 0.8 \text{ Vcc}$	2.0		6.0	V
DECET Dull IIIn Decistor	В.	Vcc = 3 V ± 10 %	100		400	140
RESET Pull Up Resister	R _{RST}	Vcc = 5 V ± 10 %	50		230	kΩ
Pin Capacitance	C _{IO}	fc = 1 MHz			10	pF
Schmitt Width RESET, NMI, INTO	V _{TH}		0.4	1.0		V
Programmable		Vcc = 3 V ± 10 %	100		400	Lo
Pull Up Resister	P _{KH}	Vcc = 5 V ± 10 %	50		230	$k\Omega$
NORMAL (Note2)				8.8	14.0	
IDLE2]	Vcc = 3 V ± 10 % fc = 16 MHz		3.0	4.5	mA
IDLE1	1	IC = 10 WINZ		0.9	1.8	1
NORMAL (Note2)	1	Vcc = 5 V ± 10 %		23.5	35.0	
IDLE2	1	fc = 25 MHz		9.5	15.0	mA
IDLE1	1.	(Typ. : Vcc = 5.0 V)		4.4	9.0	1
SLOW (Note2)	lcc			30.0	60.0	
IDLE2	1	Vcc = 3 V ± 10 %		11.0	25.0	μ A
IDLE1	1	fs = 32.768 kHz		8.0	15.0	1
STOP				0.2	10 20 50	μΑ

Note 1: Typical values are for Ta = 25 °C and V_{CC} = 3.0 V unless otherwise noted.

Note 2: I_{CC} measurement condition (NORMAL, SLOW):

All functions are operational; output pins are open and input pins are fixed.

4.3 AC Characteristics

(1) $Vcc = 3.0 V \pm 10 \%$

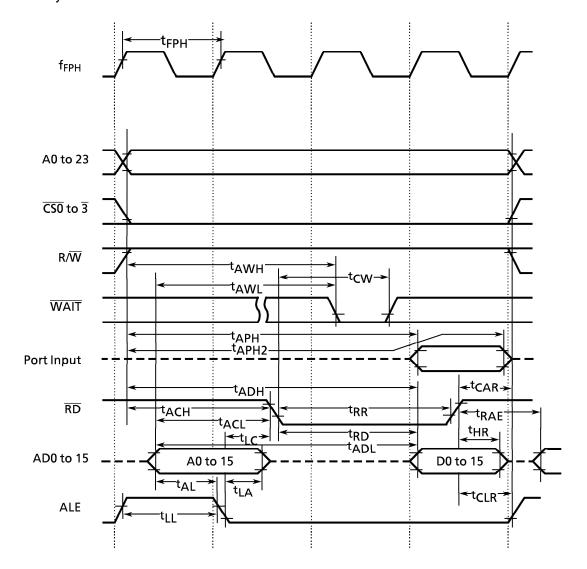
N.a	Symbol	Danamatan	Vari	able	16 N	Unit	
NO.	Symbol	Parameter	Min	Max	Min	Max	Unit
1	t _{FPH}	f_{FPH} Period (= x)	62.5	31250	62.5		ns
2	t_{AL}	A0 to 15 Valid \rightarrow ALE Fall	0.5x - 26		5		ns
3	t_{LA}	ALE Fall \rightarrow A0 to 15 Hold	0.5x - 26		5		ns
4	t _{LL}	ALE High Width	x – 52		10		ns
5	t _{LC}	ALE Fall $\rightarrow \overline{RD}/\overline{WR}$ Fall	0.5x - 28		3		ns
6	t _{CLR}	\overline{RD} Rise \rightarrow ALE Rise	0.5x - 26		5		
7	t _{CLW}	WR Rise → ALE Rise	x – 26		36		ns
8	t _{ACL}	A0 to 15 Valid $\rightarrow \overline{RD}/\overline{WR}$ Fall	x – 41		21		ns
9	t _{ACH}	A0 to 23 Valid $\rightarrow \overline{RD}/\overline{WR}$ Fall	1.5x – 50		43		ns
10	t _{CAR}	RD Rise→A0 to 23 Hold	0.5x - 31		0		
11	t _{CAW}	WR Rise→A0 to 23 Hold	x – 31		31		ns
12	t _{ADL}	A0 to 15 Valid \rightarrow D0 to 15 Input		3.0x – 87		100	ns
13	t _{ADH}	A0 to 23 Valid \rightarrow D0 to 15 Input		3.5x – 98		120	ns
14	t _{RD}	\overline{RD} Fall \rightarrow D0 to 15 Input		2.0x - 75		50	ns
15	t _{RR}	RD Low Width	2.0x - 40		85		ns
16	t _{HR}	\overline{RD} Rise \rightarrow D0 to 15 Hold	0		0		ns
17	t _{RAE}	\overline{RD} Rise \rightarrow A0 to 15 Output	x – 25		37		ns
18	t _{WW}	WR Low Width	1.5x – 55		39		ns
19	t _{DW}	D0 to 15 Valid $\rightarrow \overline{WR}$ Rise	1.5x – 78		15		ns
20	t _{WD}	WR Rise →D0 to 15 Hold	x – 49		13		ns
21	t _{AWH}	A0 to 23 Valid $\rightarrow \overline{\text{WAIT}}$ Input $\binom{1\text{WAIT}}{+ \text{n mode}}$		3.5x – 118		100	ns
22	t _{AWL}	A0 to 15 Valid $\rightarrow \overline{\text{WAIT}}$ Input $\binom{1\text{WAIT}}{+ \text{n mode}}$		3.0x – 117		70	ns
23	tcw	$\overline{\text{RD/WR}}$ Fall $\rightarrow \overline{\text{WAIT}}$ Hold $\binom{1\text{WAIT}}{+ \text{n mode}}$	2.0x + 0		125		ns
24	t _{APH}	A0 to 23 Valid \rightarrow Port Input		3.5x – 168		50	ns
25	t _{APH2}	A0 to 23 Valid \rightarrow Port Hold	3.5x		218		ns
26	t _{AP}	A0 to 23 Valid \rightarrow Port Valid		3.5x + 100		319	ns

AC Measuring Conditions

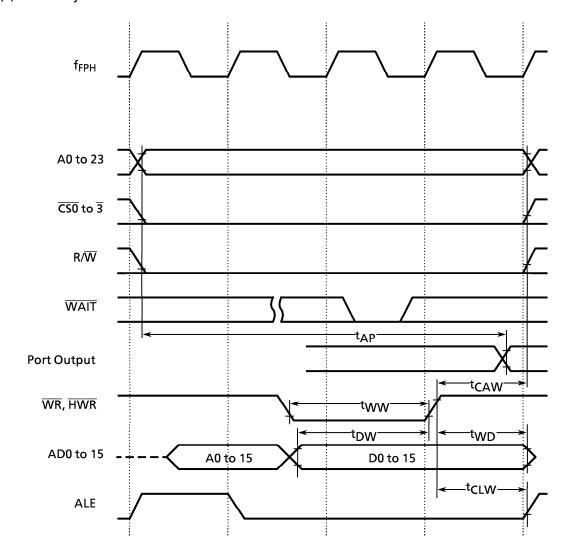
• Output Level : High 0.7 Vcc / Low 0.3 Vcc, CL = 50 pF

• Input Level : High 0.9 Vcc / Low 0.1 Vcc

(2) $Vcc = 5.0 V \pm 10 \%$


No	Symbol	Parameter	Vari	able	25 N	Unit	
INO.	Зушьог	Parameter	Min	Max	Min	Max	Unit
1	t _{FPH}	f_{FPH} Period (= x)	40	31250	40		ns
2	t _{AL}	A0 to 15 Valid \rightarrow ALE Fall	0.5x - 15		5		ns
3	t _{LA}	ALE Fall \rightarrow A0 to 15 Hold	0.5x - 15		5		ns
4	t _{LL}	ALE High Width	x – 20		20		ns
5	t _{LC}	ALE Fall $\rightarrow \overline{RD}/\overline{WR}$ Fall	0.5x - 20		0		ns
6	t _{CLR}	\overline{RD} Rise \rightarrow ALE Rise	0.5x - 15		5		
7	t _{CLW}	WR Rise → ALE Rise	x – 15		125		ns
8	t _{ACL}	A0 to 15 Valid $\rightarrow \overline{RD}/\overline{WR}$ Fall	x – 25		15		ns
9	t _{ACH}	A0 to 23 Valid $\rightarrow \overline{RD}/\overline{WR}$ Fall	1.5x - 50		10		ns
10	t _{CAR}	RD Rise→A0 to 23 Hold	0.5x - 20		0		
11	t _{CAW}	WR Rise→A0 to 23 Hold	x – 20		10		ns
12	t _{ADL}	A0 to 15 Valid→D0 to 15 Input		3.0x – 45		75	ns
13	t _{ADH}	A0 to 23 Valid→D0 to 15 Input		3.5x – 35		105	ns
14	t _{RD}	\overline{RD} Fall \rightarrow D0 to 15 Input		2.0x - 40		40	ns
15	t _{RR}	RD Low Width	2.0x - 20		40		ns
16	t _{HR}	\overline{RD} Rise \rightarrow D0 to 15 Hold	0		0		ns
17	t _{RAE}	\overline{RD} Rise \rightarrow A0 to 15 Output	x – 15		25		ns
18	t _{WW}	WR Low Width	1.5x – 20		25		ns
19	t _{DW}	D0 to 15 Valid $\rightarrow \overline{WR}$ Rise	1.5x - 50		15		ns
20	t _{WD}	WR Rise →D0 to 15 Hold	x – 15		25		ns
21	t _{AWH}	A0 to 23 Valid $\rightarrow \overline{\text{WAIT}}$ Input $\binom{1\text{WAIT}}{+ \text{n mode}}$		3.5x – 90		50	ns
22	t _{AWL}	A0 to 15 Valid $\rightarrow \overline{\text{WAIT}}$ Input $\binom{1\text{WAIT}}{+ \text{n mode}}$		3.0x - 80		40	ns
23	tcw	$\overline{\text{RD/WR}}$ Fall $\rightarrow \overline{\text{WAIT}}$ Hold $\binom{1\text{WAIT}}{+ \text{n mode}}$	2.0x + 0		80		ns
24	t _{APH}	A0 to 23 Valid → Port Input		3.5x – 120		20	ns
25	t _{APH2}	A0 to 23 Valid → Port Hold	3.5x		140		ns
26	t _{AP}	A0 to 23 Valid → Port Valid		3.5x + 100		319	ns

AC Measuring Conditions


Output Level : High 2.2 V / Low 0.8 V , CL = 50 pF
 Input Level : High 2.4 V / Low 0.45 V (AD0 to AD15)

High 0.8 Vcc / Low 0.2 Vcc (except AD0 to AD15)

(1) Read Cycle

(2) Write Cycle

4.4 AD Conversion Characteristics

 $AV_{CC} = V_{CC}$, $AV_{SS} = V_{SS}$

Symbol	Parameter	Condition	Min	Тур.	Max	Unit	
VREFH	Analog Reference Voltage (+)	V _{CC} = 3V ± 10 %	V _{CC} – 0.2 V	Vcc	V _{CC}		
VKEFH	Analog Reference Voltage (+)	$V_{CC} = 5V \pm 10 \%$	V _{CC} – 1.5 V	V_{CC}	V _{CC}		
VREFL	Analog Reference Voltage (–)	$V_{CC} = 3V \pm 10 \%$	Vss	V_{SS}	V _{SS} + 0.2 V] v 	
VKEFL	Analog Reference Voltage (–)	$V_{CC} = 5V \pm 10 \%$	Vss	V_{SS}	V _{SS} + 0.2 V		
VAIN	Analog Input Voltage Range		VREFL		VREFH		
IDEE	Analog Current for Analog Reference Voltage <vrefon> = 1</vrefon>	$V_{CC} = 3V \pm 10 \%$		0.85	1.20	mΑ	
IREF (VREFL = 0 V)	<pre><vrefon> = 1</vrefon></pre>	$V_{CC} = 5V \pm 10 \%$		1.44	2.00] '''^ 	
(VICE E = 0 V)	<vrefon> = 0</vrefon>	$V_{CC} = 2.7 \text{ to } 5.5 \text{V}$		0.02	5.0	μA	
	Error	V _{CC} = 3V ± 10 %		± 1.0	± 4.0	LSB	
-	(not including quantizing errors)	V _{CC} = 5V ± 10 %		± 1.0	± 4.0	[36	

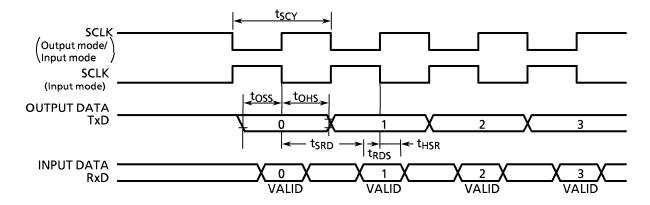
Note 1: 1LSB = (VREFH - VREFL) / 1024 [V]

Note 2: The operation above is guaranteed for $f_{\mbox{\scriptsize FPH}} \,{}^{\textstyle \ge}$ 4 MHz.

Note 3: The value I_{CC} includes the current which flows through the AVCC pin.

4.5 Serial Channel Timing (I/O Internal Mode)

(1) SCLK Input Mode


Ca la a l	Danamatan	Varia	able	25 MHz		16 MHz		1144
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	SCLK Period	16X		0.64		1.0		μS
	. Output Data (75		165		ne
toss	TOSS → SCLK Rising/Falling Edge *	$t_{SCY}/2 - 4X - 130$ (V _{CC} = 3 V ± 10%)		-		120		ns
tons	SCLK Rising/Falling Edge * → Output Data Hold	t _{SCY} /2 + 2X + 0		400		625		ns
t _{HSR}	SCLK Rising/Falling Edge * → Input Data Hold	3X + 10		130		198		ns
t _{SRD}	SCLK Rising/Falling Edge * → Valid Data Input		t _{SCY} – 0		640		1000	ns
t _{RDS}	Valid Data Input → SCLK Rising/Falling edge	0		0		0		ns

^{*)} SCLK Rising/Falling Edge: The rising edge is used in SCLK rising mode.

The falling edge is used in SCLK falling mode.

(2) SCLK Output Mode

Symbol	Parameter	Variable		25 MHz		16 MHz		Unit
Symbol	i di dilletei	Min	Max	Min	Max	Min	Max	Oiiit
tscy	SCLK Period (Programable)	16X	8192X	0.64	327	1.0	512	μs
toss	Output Data → SCLK Rising/Falling Edge	t _{SCY} /2 – 40		280		460		ns
tons	SCLK Rising/Falling Edge → Output Data Hold	t _{SCY} /2 – 40		280		460		ns
t _{HSR}	SCLK Rising/Falling Edge → Input Data Hold	0		0		0		ns
t _{SRD}	SCLK Rising/Falling Edge → Valid Data Input		t _{SCY} – 1X – 90		510		847	ns
t _{RDS}	Valid Data Input → SCLK Rising/Falling edge	1X + 90		130		153		ns

4.6 Event Counter (TA0IN, TA4IN, TB0IN0, TB0IN1, TB1IN0, TB1IN1)

Symbol	Parameter	Variable		25 MHz		16 MHz		Unit
	raiaiiletei	Min	Max	Min	Max	Min	Max	Unit
t _{VCK}	Clock Period	8X + 100		420		600		ns
t _{VCKL}	Clock Low Level width	4X + 40		200		290		ns
tvckh	Clock High Level width	4X + 40		200		290		ns

4.7 Interrupt, Capture

(1) NMI, INTO to 4 Interrupts

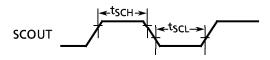
Symbol Paramete	Parameter	Variable		25 MHz		16 MHz		Unit
	rarameter	Min	Max	Min	Max	Min	Max	Ullit
t _{INTAL}	NMI, INT0 to 4 Low level width	4X + 40		200		290		ns
t _{INTAH}	NMI, INT0 to 4 High level width	4X + 40		200		290		ns

(2) INT5 to 8 Interrupt, Capture

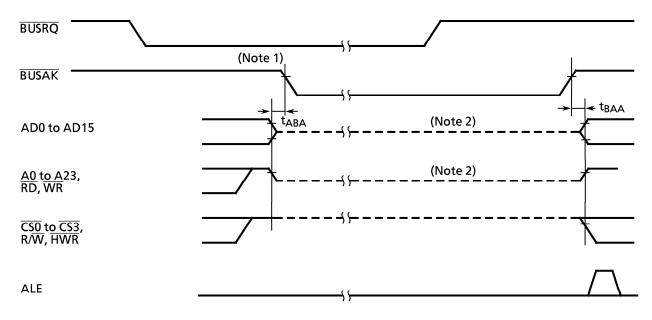
The INT5 to 8 input width depends on the system clock select mode, prescaler clock mode.

System Clock	Prescaler Clock	k (INT5 to 8 Low Level Width) (t _{IN} T (INT5 to 8 Higl		
selected <sysck></sysck>	selected <prck1,0></prck1,0>	Variable	25 MHz	Variable	25 MHz	Unit
<313CK>	ZFRCK1,02	Min	Min	Min	Min	
0 (fs)	00 (f _{FPH})	8X + 100	420	8X + 100	420	ns
0 (fc)	10 (fc/16)	128Xc + 0.1	5.22	128Xc + 0.1	5.22	
1 (fs)	1 (fs) 00 (f _{FPH})		244.3	8X + 0.1	244.3	μS

Note: Xc=Period of Clock fc


4.8 SCOUT pin AC characteristics

Cumb al Danamatan		Varia	Variable		25 MHz		ЛHz	Condition	11-4:4
Symbol Parame	Parameter	Min M	Max	Min	Max	Min	Max	Condition	Unit
_	المالية المريم المرية	0.5T – 20		_		11		V _{CC} = 3 V ± 10%	
tsch	Low Level width	0.5T – 15		5		16		V _{CC} = 5 V ± 10%	ns
_	ماغام المريما مانوالا	0.5T – 20		-		11		V _{CC} = 3 V ± 10%	
t _{SCL}	High level width	0.5T – 15		5		16		$V_{CC} = 5 V \pm 10\%$	ns


Note: T=Period of SCOUT

Measrement Condition

• Output Level: High 0.7 V_{CC} / Low 0.3 V_{CC} , CL = 10 pF

4.9 Bus Request / Bus Acknowledge

Symbol	Parameter	Variable		25 MHz		16 MHz		Unit
	raiailletei	Min	Max	Min	Max	Min	Max	Unit
t _{ABA}	Output Buffer off to BUSAK Low	0	80	0	80	0	80	ns
t _{BAA}	BUSAK High to Output Buffer on	0	80	0	80	0	80	ns

Note1: Even if the \overline{BUSRQ} signal goes low, the bus will not be released while the \overline{WAIT} signal is low. The bus will only be released when \overline{BUSRQ} goes low while \overline{WAIT} is high.

Note2: This line shows only that the output buffer is in the off state.

It does not indicate that the signal level is fixed.

Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external capacitance. Therefor, to fix the signal level using an external resistor during bus release, careful design is necessary, as fixing of the level is delayed.

The internal programmable pull-up/pull-down resistor is switched between the active and non-active states by the internal signal.

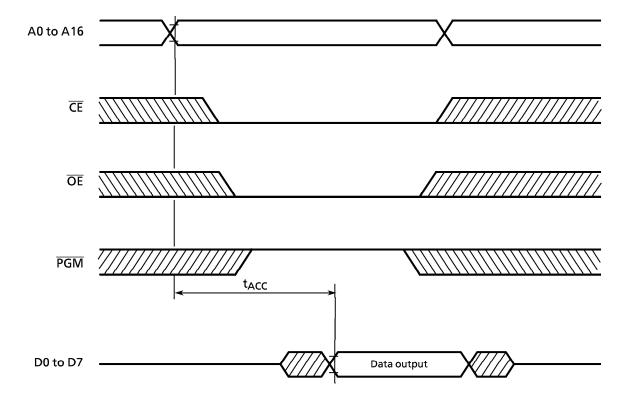
4.10 Read operation in PROM mode

DC / AC characteristics

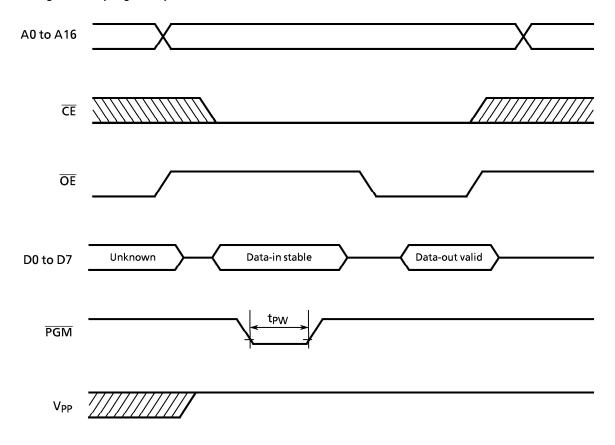
 $Ta = 25 \pm 5 \degree C \ Vcc = 5 \ V \pm 10 \%$

Symbol	Parameter	Condition	Min	Max	Unit
V _{PP} V _{IH1} V _{IL1}	V _{PP} Read Voltage Input High Voltage (A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$) Input Low Voltage (A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$)	- - -	4.5 2.2 – 0.3	5.5 V _{CC} + 0.3 0.8	\ \ \
t _{ACC}	Address to Output Delay	C _L = 50 _P F	-	2.25TCYC + α	ns

TCYC = 400 ns (10 MHz Clock) α = 200 ns


4.11 Program operation in PROM mode

DC / AC characteristics


 $Ta = 25 \pm 5$ °C $Vcc = 6.25 V \pm 0.25 V$

Symbol	Parameter	Condition	Min	Тур.	Max	Unit
V _{PP}	Programming Supply Voltage	_	12.50	12.75	13.00	V
V_{IH}	Input High Voltage	_	2.6		V _{CC} + 0.3	v
	(D0 to D7, A0 to A16, \overline{CE} , \overline{OE} , \overline{PGM})					
V_{IL}	Input Low Voltage	-	- 0.3		0.8	V
	(D0 to D7, A0 to A16, \overline{CE} , \overline{OE} , \overline{PGM})					
Icc	V _{CC} Supply Current	fc = 10 MHz	_		50	mA
Ірр	V _{PP} Supply Current	$V_{PP} = 13.00 \text{ V}$	_		50	mA
t _{PW}	PGM Program Pulse Width	C _L = 50 _P F	0.095	0.1	0.105	ms

4.12 Timing chart of read operation in PROM mode

4.13 Timing chart of program operation in PROM mode

NOTE

- 1. The power supply of V_{PP} (12.75 V) must be turned on at the same time or the later time for a power supply of V_{CC} and must be turned off at the same time or early time for a power supply of V_{CC} .
- 2. The device suffers a damage taking out and putting in on the condition of $V_{PP} = 12.75 \text{ V}$.
- 3. The maximum spec of VPP pin is 14.0 V. Be carefull a overshoot at the programming.