CMOS 4-BIT MICROCONTROLLER

TMP47C233AN, TMP47C433AN

The 47C233A / 433A are the high speed and high performance 4-bit single chip microcomputers based on the TLCS-47 CMOS series with D / A converter (pulse width modulation) outputs and A/D converter input, and are suitable application in digital tuning systems for TV sets.

PART No.	ROM	RAM	PACKAGE	PIGGYBACK
TMP47C233AN	2048 × 8-bit	128 × 4-bit	SDIP42	T14D47503345
TMP47C433AN	4096 × 8-bit	256 x 4-bit	301742	TMP47C933AE

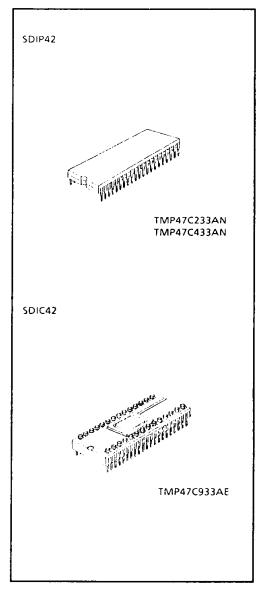
FEATURES

- ◆4-bit single chip microcomputer
- ◆Instruction execution time: 1.9 us(at 4.2 MHz)
- ♦90 basic instructions
- ◆ Table look up instructions
- ◆5-bit to 8-bit data conversion instruction
- ◆Subroutine nesting: 15 levels max.
- ◆5 interrupt sources (External: 2, Internal: 3)

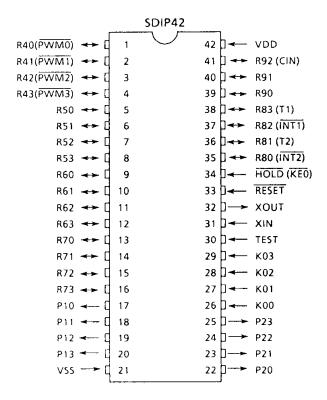
All sources have independent latches each, and multiple interrupt control is available.

- ◆1/O port (36 pins)
 - Input 2 ports 5 pins
 - Output 2 ports 8 pins
 - 1/O 6 ports 23 pins
- ◆Interval Timer
- ◆Two 12-bit Timer / Counters

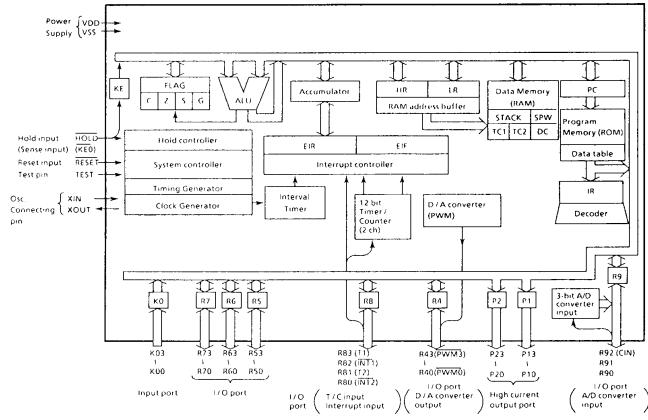
Timer, event counter, and pulse width measurement mode


- ◆D/A converter (Pulse width modulation) outputs
 - 14-bit resolution 1 channel
 - 6-bit resolution 3 channels
- ◆3-bit A / D converter input 1 channel

Auto frequency control signal (S-shaped curve) detection


◆ High current outputs

LED direct drive capability (typ. 20 mA x 8 bits)


- ♦ Hold function
 - Battery / Capacitor back up
- ◆Real Time Emulator: BM47217A

PIN ASSIGNMENT (TOP VIEW)

BLOCK DIAGRAM

5-178

PIN FUNCTION

PIN NAME	Input / Output	FUNCT	TIONS
K03 - K00	Input	4 - bit input port	
P13 - P10	Output	4 - bit output port with latch. 8 - bit data are output by the 5 - bit to 8 - b	oit data conversion instruction
P23 - P20		(OUTB @HL).	
R43 (PWM3) -R41 (PWM1)	I/O (Output)	4 - bit I / O port with latch. When used as input port	6 - bit D / A converter output
R40 (PWM0)	17 G (GG(pat)	or D/A converter outputs pins, the latch must be set to "1"	14 - bit D / A converter output
R53 - R50		4 - bit I / O port with latch.	
R63 - R60	1/0	When used as input port, the latch must be Every bit data is possible to be set, clear ar	
R73 - R70		register indirect addressing.	
R83 (T1)		4 - bit I / O port with latch.	Timer / Counter 1 external input
R82 (INT1)		When used as input port, external	External interrupt 1 input
R81 (T2)	I/O (Input)	interrupt input pin, or Timer / Counter external input pin, the latch must be set	Timer / Counter 2 external input
R80 (ĪNT2)		to "1".	External interrupt 2 input
R92 (CIN)	I / O(Input)	3 - bit I / O port with latch. When used as input port or serial port,	3-bit A/D converter input
R91 - R90	1/0	the latch must be set to "1".	
XIN	Input	Resonator connecting pin.	
хоит	Output	For inputting external clock, XIN is used as	nd XOUT is opened.
RESET	Input	Reset signal input	
HOLD (KEO)	Input (Input)	Hold request / release signal input	Sense input
TEST	Input	Test pin for out - going test. Be opened or	fixed to low level.
VDD	Power supply	+ SV	
VSS		0V (GND)	

OPERATIONAL DESCRIPTION

Concerning the 47C233A / 433A, the configuration and functions of hardwares are described.

As the description is porvided with priority on those parts—differing from the 47C200A/400A, the technical data sheets for the 47C200A / 400A—shall also be referred to.

The 47C233A / 433A have no serial interface, differing from the 47C200A / 400A.

1 SYSTEM CONFIGURATION

- (1) I / O Ports
- (2) A / D Converter (Comparator) input
- (3) D/A Converter (Pulse Width Modulation) output

2 PERIPHERAL HARDWARE FUNCTION

2.1 I/O Ports

The 47C233A / 433A have 10 I/O ports (36 pins) each as follows:

(i) K0 ; 4 - bit input ② P1, P2 ; 4 - bit output

3 R4 ; 4 - bit input / output (shared by pulse with modulation output)

4 R6 ; 4-bit input / output (Note)

\$ R5, R7 ; 4-bit input/output

6 R8 ; 4 - bit input / output (shared by external interrupt input and timer / counter

input)

R9 ; 3 - bit input / output (shared by A / D converter input: R92 pin)
 KE ; 1 - bit sense input (shared by hold request / release signal input)

Note. Port R6 becomes a tri-state output buffer when the I/O circuit code: PF is selected.

(1) Port R4 (R43-R40)

This is a 4-bit I/O port with latch. The latch should be set to "1" when the port is used as an input port. The latch is initial to "1" during reset.

It is R4 port common to PWM output. The latch should be set to "1" when PWM is used as an output port.

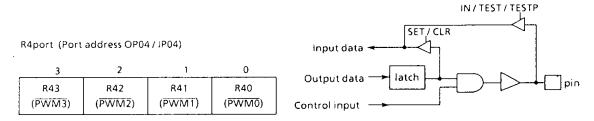


Figure 2-1. Port R4

(2) Port R6 (R63-R60)

The 4-bit I/O port with latch. The output buffers become a tri-state output buffer when the I/O circuit code: PF is selected, and the state of them is simultaneously controlled by the port. Controlling the Tri-state is performed by MSB of the port address OP09. When the data of the MSB of the OP09 are "0", the output buffers are high-impedance state. The MSB of the OP09 is initialized to "0" during reset, the output latch should be set to "1" when the port is used as output port. The output buffers should be set to high-impedance when the port is used as input port.

Example: Outputs the immediate data "5" to the R6 port.

SET %0P09, 3 ; OP09₃←1 (Output buffer is on)

OUT #5, %OP06 ; Port R6←5

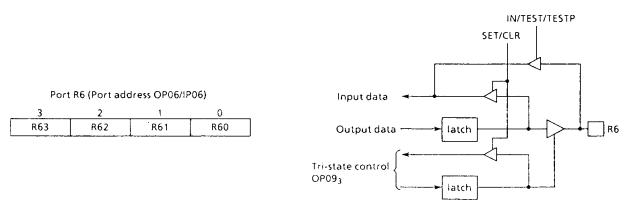


Figure 2-2. Port R6

(3) Port R9 (R92-R90)

This is a 3-bit I/O port with latch. The latch should be set to "1" when the port is used as an input port. The latch is initial to "1" during reset.

R92 (CIN) pin can also be used for A/D convertor (comparator) input for AFC (Auto Frequency Control) signal detection. R92 input is ordinary digital input which is read from bit 2 of IP09. CIN input is comparator input read from bit 3 of IP09 and uses the programmable 3-bit D/A convertor output as the reference voltage.

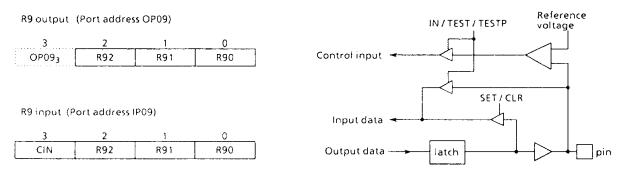


Figure 2-3. Port R9

Note. About OP093

When I/O circuit code: PF is selected, this bit functions for R6 port tri-state control. The output buffer is set to high impedance when the data is "0". When code: PC is selected, the R6 port is set for open drain output and the OUT/SET/CLR instruction for OP093 becomes ineffective.

Port		Port			Input/	Input / Output instruction	tion		
address (**)	Input (IP**)	Output (OP**)	IN %p, A IN %p, @HL	OUT A, %p OUT @HL,%p	OUT #k,%p	OUTB @HL	SET %p, b CLR %p, b	TEST %p, b TESTP %p, b	SET @L CLR @L TEST@L
^н 00	K0 input port		0	0	()			0	ı
5	P1 output latch	P1 output port	0	0	0	0		0	1
05	P2 output latch	P2 output port	0	0	0	(Note 2)	0	0	Į
03			1	ı	1	ı		ı	1
04	R4 input port	R4 output port	\bigcirc	0	0	i	0	0	()
02	R5 input port	R5 output port	0	0	()	ı	0	0	()
90	R6 input port	R6 output port	0	0	0	ŀ	0	·	О
07	R7 input port	R7 output port	0	0	· ()	ı	0	- C) ()
80	R8 input port	R8 output port	0	0	O	ļ	0	0	· 1
60	R9 input port	R9 output port (Note 3)	0	0	0	ı	0	0	ı
0 V				ı	1	1	ı	ı	ı
08			1	ı	ı	1	ı	ı	1
8			1	1	ı	ı	ı	ı	i
00			1	ı	1	ı	ı	i	ı
0E	Hold status		0	ı	ı	Ì	ı	0	i
90			ı	ļ	ı	i	I	1	ı
10H	Undefined	Hold operating mode control		0	1		ı		-
=	Undefined	1	i	1	ı	1	ı	ı	ı
12	Undefined	A/D converter input control	ı	0	ı	1	ı	i	i
13	Undefined		ı	ı	1	1	ı	ı	ı
14	Undefined		1	ı	ı	1	ı	ı	1
15	Undefined		ı	1	ı	ı	ı	ı	ı
16	Undefined	-	ı	ı	I	1	i	ı	i
17	Undefined	PWM buffer selector	1	0	ı	ı	ı	1	ı
₩.	Undefined	PWM data transfer buffer	1	0	ı	ı	ı	ı	i
19	Undefined	Interval Timer interrupt control	ŀ	0	1	ı	i	ı	ł
1 A	Undefined		1	1	i	ı	ļ	ı	ı
18	Undefined		ı	I	ı	í	ı	ı	ŀ
7	Undefined	Timer / Counter 1 control	1	0	ı	ı	ı	1	ı
0	Undefined	Timer / Counter 2 control	i	0	ı	ı	ı	ı	í
Ħ,	Undefined	-	ı	ı	ı	1	1	1	
<u>"</u>	Undefined		-		1	_	1.	1	ı
Notes.	1. "	" means the reserved state. Unavailable for the user programs.	ograms.						

Table 2-1. Port Address Assignments and Available I / O Instructions

IFO circuit code: Controlling the tri-state (R6 port) is performed by MSB of the port address OP09, when IFO circuit code select PF.

The 5 - bit to 8 - bit data conversion instruction [OUTB @HL], automatic access to ports P1 and P2.

5-182

2.2 3-bit A/D Converter (Comparator) Input

Comparator input consists of a comparator and a 3-bit D/A converter. AFC input voltage can be detected in 8 steps by sensing bit 3 of IP09 while changing the reference voltage (D/A converter output voltage) with the command register (OP12).

R92 pin is also used for comparator input. Bit 2 is used to set R92 pin for ordinary digital input.

The comparator is disabled and bit 3 is set to "0" during reset. The latch should be set to "1" when R92 pin is used for comparator input and digital input.

2.2.1 Circuit Configuration

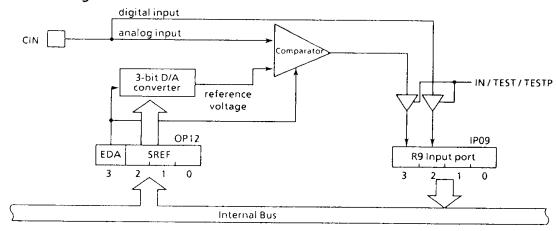


Figure 2-4. Comparator input Circuit

2.2.2 Control of Comparator Input

The reference voltage of the comparator is set using the lower 3 bits of the command register. Table 2-2 shows the reference voltage at $V_{DD} = 5V$.

Comparator input control command register (Port address OP12)

Figure 2-5. Control Command Register

1	1	1	5.00
Table 2-2.		Refe	ence Voltage

OP12

0 0

1 0

0

0 0

0

0

1 0

1

1 0

0

0

reference voltage [V]

0.62

1.25

1.87

2.50

3.12

3.75

4.37

2.3 D/A converter (PWM) output

The 47C233A/433A have four channels built-in D/A converter (PWM) outputs. PWM output can easily be obtained by connecting an external low pass filter.

PWM outputs data are multiplex to the R4 port. When the R4 (PWM) port is used for PWM output, the corresponding bits of R4 output latch should be set to "1". The output buffer is set to high impedance during reset and so must be set to ON status by instruction (refer to section 2-1 I/O ports). PWM output is controlled by the buffer selector (OP17) and the data transfer buffer (OP18). PWM data written to the data transfer buffer can be sent to the PWM data latch by writing "CH" to the buffer selector, and PWM output switches switch to PWM output. PWM data transferred to the PWM data latch remain intact until overwritten. Resetting and holding clear the buffer selector, data transfer buffer and PWM data latch to "0" (PWM output is "high" level).

2.3.1 Configuration of PWM circuit

Configuration of PWM circuit shown in Figure 2-7.

2.3.2 Output waveform of PWM circuit

(1) PWM0 output

 $\overline{PWM0}$ is a PWM output controlled by 14 bits data. The basic period of the $\overline{PWM0}$ is $T_M = 2^{15}$ / fc. The higher 8 bits of 14 bits data are used to control the pulse width of the pulse output with the period of $T_S = T_M$ / 64, which is the sub - period of the $\overline{PWM0}$. When the 8 bits data are decimal n (0 \leq n \leq 255), this pulse width becomes n \times t₀, where t₀ = 2 / fc.

The lower 6 bits of 14 bits data are used to control the generation of an additional t_0 wide pulse in each T_5 period. When the 6 bits data are decimal m (0 \leq m \leq 63), the additional pulse is generated in each of m periods out of 64 periods contained in a T_M period. The relationship between the 6 bits data and the position of T_5 period where the additional pulse is generated is shown in Table 2-3.

(2) PWM1-PWM3 output

Each of PWM1 to PWM3 is a PWM output controlled by 6 bits data. The period of them is $T_N = 27$ /fc. When the 6 bits data are decimal k (0 < k < 63), the pulse width becomes k × t₀. The waveform is also illustrated in Figure 2-6.

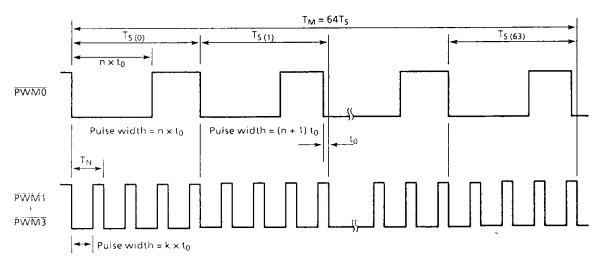


Figure 2-6. PWM Output Waveform (It is shown to the additional pulse T_{S (1)} and T_{S (63)} of the PWMO)

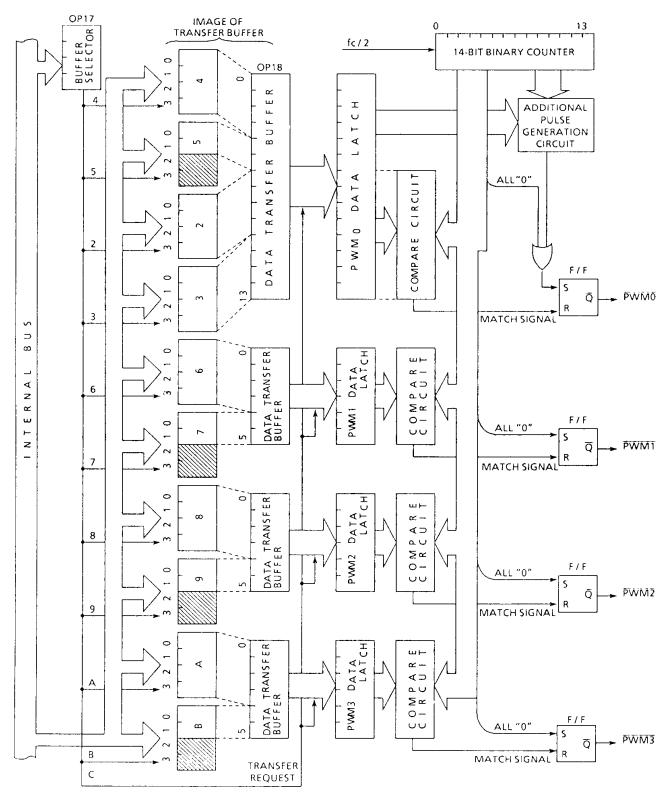


Figure 2-7. Pulse Width Modulation Circuit

Bit position of 6 bits data	Relative position of Ts where the output pulse is generated (No. i of $T_{S(i)}$ is listed)
Bit 0	32
Bit 1	16, 48
Bit 2	8, 24, 40, 56
Bit 3	4, 12, 20, 28, 36, 44, 52, 60
Bit 4	2, 6, 10, 14, 18, 22, 26, 30,, 58, 62
Bit 5	1, 3, 5, 7, 9, 11, 13, 15, 17,, 59, 61, 63

Note. When the corresponding bit is "1", it is output.

Table 2-3. Correspondence between 6 bits data and the additional pulse generated Ts periods

2.3.3 Control of PWM circuit (Data transfer)

PWM output is controlled by writting output data to a data transfer buffer (OP18). For writing, the output data are divided using the buffer selector (OP17). Buffer numbers are assigned to the data transfer buffers for these divided data, after which the data are written as shown in Table 2-4.

- ① The number of the transfer buffer to which the data are to be written is written to the buffer selector (OP17).
- (2) The corresponding PWM data are written to the transfer buffer (OP18).
- 3 Operations 1 and 2 are repeated, continuously writing data to the transfer buffer.
- (4) When all of the output data have been written, "CH" is written to the buffer selector.

While the output data are being written to the transfer buffer, the previously written data are being output. For $\overline{PWM0}$ output, switching to \overline{PWM} output occurs at a maximum of 2^{15} / fc [sec] (at 4MHz, 8192µs) after "CH" is written to the buffer selector. For $\overline{PWM1}$ through $\overline{PWM3}$ output data switching, this requires 2^9 / fc [sec] (at 4MHz, 128µs).

Buffer Number (OP17)	Correspondence t (OP18)	o bit		Mode	PWM Output
2	Bit of PWM0 transfer buffer	9 -	6	Write	Preceding data
	Bit of PWM0 transfer buffer	13 -	10	Write	Preceding data
4	Bit of PWM0 transfer buffer	3 -	0	Write	Preceding data
5	Bit of PWM0 transfer buffer	5 -	4	Write	Preceding data
6 7	Bit of PWM1 transfer buffer	3 -	0	Write	Preceding data
	Bit of PWM1 transfer buffer	5 -	4	Write	Preceding data
8	Bit of PWM2 transfer buffer	3 -	0	Write	Preceding data
	Bit of PWM2 transfer buffer	5 -	4	Write	Preceding data
A	Bit of PWM3 transfer buffer	3 -	0	Write	Preceding data
B	Bit of PWM3 transfer buffer	5 -		Write	Preceding data
C	None	·····		Transfer	Present data

Table 2-4. The bit and buffer number of data transfer buffer

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

 $(V_{SS} = 0V)$

PARAMETER	SYMBOL	PINS	RATING	UNIT
Supply Voltage	V _{DD}		- 0.5 to 7	V
Input Voltage	ViN		- 0.5 to V _{DD} + 0.5	V
Output Voltage	Vouti	Except sink open drain pin, but include R92 pin	- 0.5 to V _{DD} + 0.5	
	V _{OUT2}	Sink open drain pin except R92 pin	– 0.5 to 10	\ \ \
	louti	Ports P1, P2	30	
Output Current (Per 1 pin)	loutz	Ports R5, R7, R8, R9	3.2	mA
Output Current (Total)	ΣΙ _{ΟυΤ1}	Ports P1, P2	120	mA
Power Dissipation [Topr = 70°C]	PD		600	mW
Soldering Temperature (Time)	T _{slei}		260 (10 sec)	°C
Storage Temperature	T _{stg}		- 55 to 125	°C
Operating Temperature	Topr		– 30 to 70	°C

RECOMMENDED OPERATING CONDITIONS

 $(V_{SS} = 0V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

PARAMETER	SYMBOL	PINS	CONDITIONS	Min.	Max.	UNIT
Supply Voltage			in the Normal mode	4.5	6.0	
supply voltage	V _{DD}		in the HOLD mode	2.0	6.0	\ \ \
	V ₁₆₁₁	Except Hysteresis Input	V > 4 EV	V _{DD} × 0.7		
Input High Voltage	V _{II12}	Hysteresis Input	V _{DD} ≥ 4.5V	V _{DD} × 0.75	V _{DD}	V
	V _{IH3}		V _{DD} < 4.5V	$V_{DD} \times 0.9$		
	V _{IL1}	Except Hysteresis Input	V _{DD} ≥ 4.5V		$V_{DD} \times 0.3$	
Input Low Voltage	V _{IL2}	Hysteresis Input	V DO ₩ 4.3V	0	V _{DD} × 0.25	v
	V _{IL3}		V _{DD} < 4.5V		V _{DD} × 0.1	
Clock Frequency	fc			0.4	4.2	MHz

Note . Input Voltage V_{IH3} , V_{IL3} : in the HOLD mode.

D.C. CHARACTERISTICS

 $(V_{SS} = 0V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

PARAMETER	SYMBOL	PINS	CONDITIONS	Min.	Тур.	Max.	UNIT
Hysteresis Voltage	V _{HS}	Hysteresis Input		_	0.7	-	٧
Input Current	l _{W1}	Port KO, TEST RESET, HÖLD	V _{DD} = 5.5V,	_	_	± 2	μА
	I _{IN2}	Port R (open drain)	V _{IN} = 5.5V / 0V				
Input Low Current	l _{iL}	Port R (push-pull)	$V_{DD} = 5.5V, V_{IN} = 0.4V$	_	_	- 2	mA
Input Resistance	R _{IN1}	Port K0 with pull-up / pull-down		30	70	150	ΚΩ
mput Resistance	R _{INi2}	RESET		100	220	450	
Output Leakage Current	lio	Tri-state port Port R (open drain)	V _{DD} = 5.5V, V _{OUT} = 5.5V	-	-	2	μА
Output High Voltage	V _{ОН1}	Ports P, R (push-pull)	$V_{DD} = 4.5V$, $I_{OH} = -200\mu A$	2.4	_	_	V
output mg/, voitage	V _{OH2}	Port R (Tri-state)	$V_{DD} = 4.5V$, $I_{OH} = -0.7mA$	4.1	_	_	
Output Low Voltage	V _{OL1}	Ports R5, R7 to R9	V _{DD} = 4.5V, I _{OL} = 1.6mA				
output tow vortage	V _{OL2}	Ports R4, R6	$V_{DD} = 4.5V$, $I_{OL} = 0.7mA$] -	_	0.4	\ \
Output Low Current	loL	Port P	$V_{DD} = 4.5V, V_{OL} = 1.0V$	-	20	_	mA
Supply Current (in the Nomal mode)	l _{DD}		V _{DD} = 5.5V, fc = 4MHz	-	3	6	mΑ
Supply Current (in the HOLD mode)	¹ рон		V _{DO} = 5.5V	_	0.5	10	μА

Note 1. Typ. values show those at $T_{opr} = 25^{\circ}C$, $V_{DD} = 5V$.

Note 2. Input Current I_{IN1}: The current through resistor is not included, when the pull-up /

pull-down resistor is contained.

Note 3. Supply Current : $V_{IN} = 5.3V / 0.2V$

The KO port is open when the pull-up / pull-down resistor is

contained. The Voltage applied to the R port is within the valid

range VIL or VIH.

A / D CONVERTER CHARACTERISTICS $(V_{SS} = 0V, V_{DD} = 4.5 \text{ to } 6.0V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

PARAMETER	SYMBOL	PINS	CONDITIONS	Min.	Тур.	Max.	UNIT
Analog Input Voltage	VAIN	CIN		Vss	_	V _{DD}	٧
A / D Conversion Error	_			_	_	± 1/4	LSB

A.C. CHARACTERISTICS

 $(V_{SS} = 0V, V_{DD} = 4.5 \text{ to } 6.0V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Instruction Cycle Time	t _{cy}		1.9	-	20	μs
High level Clock Pulse Width	twch	For external clock operation	80		_	ns
Low level Clock Pulse Width	t _{WCL}	To reaction cross operation				'''

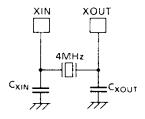
RECOMMENDED OSCILLATING CONDITIONS

 $(V_{SS} = 0V, V_{DD} = 4.5 \text{ to } 6.0V, T_{opr} = -30 \text{ to } 70^{\circ}\text{C})$

(1) 4MHz

Ceramic Resonator

CSA4.00MG (MURATA) **KBR-4.00MS**


(KYOCERA)

 $C_{XIN} = C_{XOUT} = 30pF$ $C_{XIN} = C_{XOUT} = 30pF$

Crystal Oscillator

204B-6F 4.0000 (TOYOCOM)

 $C_{XIN} = C_{XOUT} = 20pF$

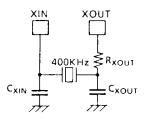
(2) 400KHz

Ceramic Resonator

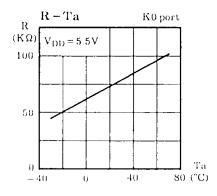
KBR-400B

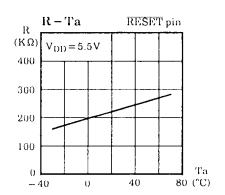
CSB400B

(MURATA)

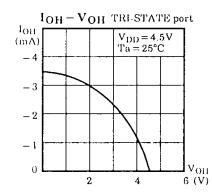

(KYOCERA)

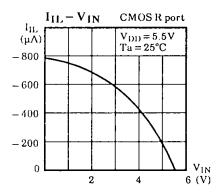
 $C_{X1N} = C_{XOUT} = 220pF$,

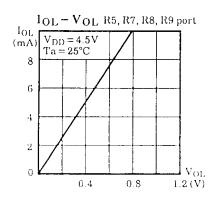

 $R_{XOUT} = 6.8K\Omega$

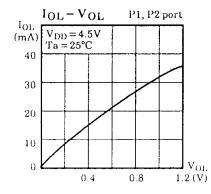

 $C_{XIN} = C_{XOUT} = 100pF$,

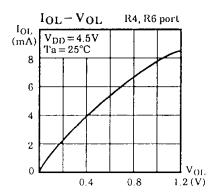

 $R_{XOUT} = 10K\Omega$

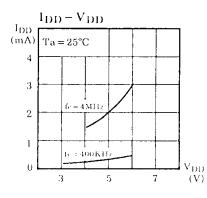


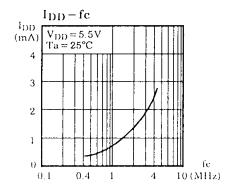

TYPICAL CHARACTERISTICS







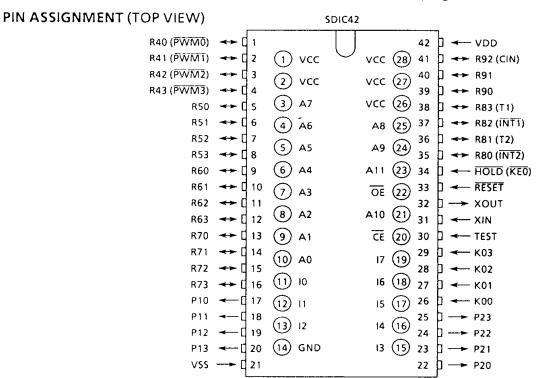




Input / Output Circuitry

- (1) Control pins
 - I/O circuitries of the 47C233A / 433A control pins are similar to that of the 47C200A / 400A.
- (2) 1/O ports

The I/O circuitries of the 47C233A / 433A I/O ports are shown below, any one of the circuitries can be chosen by a code (PC, PF) as a mask option.


PORT	1/0	input/Output CIRO	CUITRY and CODE	REMARKS
к0	Input	R _{IN}	l•w-□ \$	pull - down resistor $R_{IN} = 70KΩ (typ.)$ $R = 1KΩ (typ.)$
P1 P2	Output	PC Initial "Hi-Z"	PF Initial"High" OVDD	Sink open drain or Push-pull output High current I _{OL} = 20mA (typ.)
R5	I/O	Initial "Hi-Z"	Initial "Low" OVDD	Sink open drain or Push-pull output $R = 1K\Omega \ (typ.)$
R6	1/0	PC R	PF OVDD OVDD OVDD OVDD	Sink open drain or Tri-state Initial "Hi-Z" $R=1K\Omega$ (typ.)
R4 R7 R8	1/0	R4, R7	R8	Sink open drain Initial "Hi-Z" Hysteresis input (Port R8) R = 1KΩ (typ.)
R9	1/0	R92	R91, R90	Sink open drain Initial "Hi-Z" Comparator input (R92 pin) R = 1KΩ (typ.)

This Page Intentionally Left Blank

CMOS 4-BIT MICROCONTROLLER

TMP47C933AE

The 47C933A, which is equipped with an EPROM as program memory, is a piggyback type evaluator chip used for development and operational confirmation of the 47C233A/433A application systems (programs). The 47C933A is pin compatible with the 47C233A/433A which are mask-programed ROM devices.

PIN FUNCTION (Top of the package)

PIN NAME	Input / Output	FUNCTIONS		
A11 ~ A0	Output	Program memory address output		
17 ~ 10	Input	Program memory data input		
ČĒ	Output	Chip enable signal output		
ŌĒ		Output enable signal output		
vcc	Power supply	+ 5V (connected with VDD)		
GND	rower supply	0V (connected with VSS)		

A.C. CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Address Delay Time	t _{AD}	$V_{SS} = 0V$, $V_{DD} = 4.5$ to 6.0V	-	_	150	ns
Data Setup Time	t _{IS}	$C_L = 100 pF$ Topr = -30 to 70°C	150	-	-	ns
Data Hold Time	t _{iH}		50	-	-	ns

NOTES FOR USE

(1) Program memory

The program area are as shown in Figure 1. When this chip is used as evaluator of the 47C233A, data conversion table for [OUTB @HL] instruction must be allocated at two areas and they must be the same contents as shown in Figure 1.

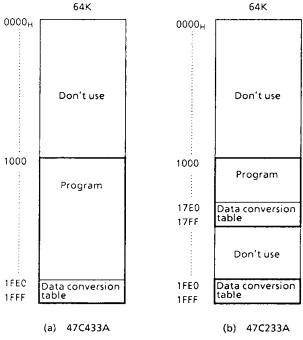


Figure 1. Program area

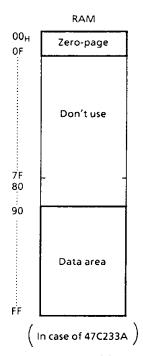


Figure 2. RAM addressing

(2) Data memory

The 47C933A contains 256×4 -bit (equivalent to 47C433A) data memory. When the 47C933A is used as evaluator of the 47C233A, programming should be performed assuming that the RAM is assigned to addresses $00\sim0$ F_H and $90\sim$ FF_H as show in Figure 2 by considering the application software evaluation.

(3) I/O ports

Input/Output circuitries of I/O ports in the 47C933A are similar to the code PC of the 47C233A/433A. When this chip is used as evaluator with other I/O code, it is nacessary to provide the external resistors.

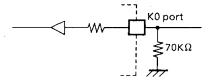


Figure 3. External circuitry

Note. Caution is required when using the 47C933A as a code PF evaluator. The follwing ports of the 47C933A differ from those of the 47C233A/433A (code PF).

- ① Ports P1 and P2 are not push-pull output (initial "High").
- Port R5 is not push-pull output (initial "Low").
- ③ Port R6 is not tristate output (initial "Hi-Z").