SKNH 91

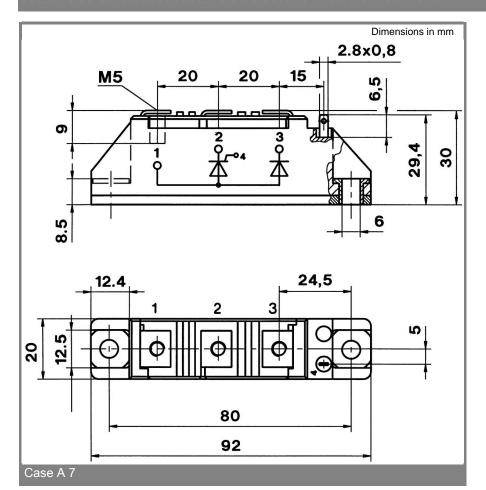
SEMIPACK[®] 1

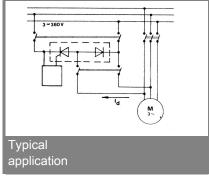
Modules with Thyristor and Free-Wheeling Diode

SKNH 91

Features

- Heat transfer through ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63 532
- Electrical data see also data sheet SKKH 92


Typical Applications


- Special modules for DC braking of AC induction motor
- 1) available on request

V_{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 150 A (maximum value for continuous operation)		
V	V	I _{TAV} = 95 A (sin. 180; T _c = 85 °C)		
1300	1200	SKNH 91/12E		
1500	1400	SKNH 91/14E		
1700	1600	SKNH 91/16E		
1900	1800	SKNH 91/18E ¹⁾		

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	95 (68)	А
I _{TSM}	T _{vi} = 25 °C; 10 ms	2000	Α
	T _{vi} = 125 °C; 10 ms	1750	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	20000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	15000	A²s
V _T	T _{vi} = 25 °C; I _T = 300 A	max. 1,65	V
$V_{T(TO)}$	T _{vi} = 125 °C	max. 0,9	V
r _T	T _{vj} = 125 °C	max. 2	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 20	mA
t _{gd}	$T_{vi} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A}/\mu\text{s}$	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
t _q	T _{vi} = 125 °C ,	100	μs
I _H	T _{vj} = 25 °C; typ. / max.	/ 250	mA
IL	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ. / max.}$	/ 600	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 6	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,28 / 0,14	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,3 / 0,15	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,32 / 0,16	K/W
$R_{th(c-s)}$	per thyristor / per module	0,2 / 0,1	K/W
T_{vj}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 %	Nm
M _t	to terminals	5 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	120	g
Case		A 7	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

2 28-08-2003 IMP © by SEMIKRON