CY7C107B CY7C1007B

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C107B and CY7C1007B are high-performance CMOS static RAMs organized as $1,048,576$ words by 1 bit. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\mathrm{CE}}$) and three-state drivers. These devices have an automatic power-down feature that reduces power consumption by more than 65% when deselected.

$1 \mathrm{M} \times 1$ Static RAM

Writing to the devices is accomplished by taking Chip Enable ($\overline{\mathrm{CE}}$) and Write Enable ($\overline{\mathrm{WE}}$) inputs LOW. Data on the input pin $\left(D_{\text {IN }}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{19}).
Reading from the devices is accomplished by taking Chip Enable (CE) LOW while Write Enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the data output ($\mathrm{D}_{\mathrm{OUT}}$) pin.
The output pin ($\mathrm{D}_{\text {OUT }}$) is placed in a high-impedance state when the device is deselected (CE HIGH) or during a write operation ($\overline{\mathrm{CE}}$ and WE LOW).
The CY7C107B is available in a standard 400-mil-wide SOJ; the CY7C1007B is available in a standard 300 -mil-wide SOJ.

Selection Guide

	7C107B-12 7C1007B-12	7C107B-15 7C1007B-15	7C107B-20 7C1007B-20	7C107B-25 7C1007B-25	7C107B-35 7C1007B-35
Maximum Access Time (ns)	12	15	20	25	35
Maximum Operating Current (mA)	90	80	75	70	60
Maximum CMOS Standby Current SB2 (mA)	2	2	2	2	2

[^0]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} \ldots . .-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs in High Z State ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into Outputs (LOW) .. 20 mA
Static Discharge Voltage ... >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current. \qquad $>200 \mathrm{~mA}$

Operating Range

| Range | Ambient
 Temperature${ }^{[2]}$ |
| :--- | :---: | :---: |$\quad \mathbf{V}_{\text {CC }}$.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{aligned} & \text { 7C107B-12 } \\ & \text { 7C1007B-12 } \end{aligned}$		$\begin{aligned} & \text { 7C107B-15 } \\ & \text { 7C1007B-15 } \end{aligned}$		$\begin{aligned} & \text { 7C107B-20 } \\ & \text { 7C1007B-20 } \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}^{+} \\ 0.3 \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
los	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-300		-300		-300	mA
${ }^{\text {cc }}$	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		90		80		75	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-TTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f} \end{aligned}$		20		20		20	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current- CMOS Inputs	$\begin{aligned} & \mathrm{Max}_{\mathrm{CE}} \mathrm{~V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \text { or } \\ & \text { an, } \mathrm{f}=0 \end{aligned}$		2		2		2	mA

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}}(\min)=.-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "Instant On" case temperature.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions	$\begin{gathered} \text { 7C107B-25 } \\ \text { 7C1007B-25 } \end{gathered}$		$\begin{aligned} & \text { 7C107B-35 } \\ & \text { 7C1007B-35 } \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{l} \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	$\mathrm{V}_{C C}+0.3$	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$		-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-5	+5	-5	+5	$\mu \mathrm{A}$
los	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \\ & \hline \end{aligned}$		70		60	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-TTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {IL }}, \\ & f=f_{\text {MAX }} \end{aligned}$		20		20	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-CMOS Inputs	$\begin{aligned} & \mathrm{Max}_{\mathrm{CE}} \mathrm{~V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 .3 \mathrm{~V} \text {, or } \\ & \mathrm{V}_{\mathbb{I N}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$		2		2	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathbb{I N}}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	7	pF
$\mathrm{C}_{\text {IN }}$: Controls			10	pF
Cout	Output Capacitance		10	pF

Note:
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalentto: THÉVENIN EQUIVALENT
OUTPUTo_1.73V

Switching Characteristics ${ }^{[5]}$ Over the Operating Range

Parameter	Description	$\begin{aligned} & \text { 7C107B-12 } \\ & \text { 7C1007B-12 } \end{aligned}$		$\begin{aligned} & \text { 7C107B-15 } \\ & \text { 7C1007B-15 } \end{aligned}$		$\begin{aligned} & \text { 7C107B-20 } \\ & \text { 7C1007B-20 } \end{aligned}$		$\begin{aligned} & \text { 7C107B-25 } \\ & \text { 7C1007B-25 } \end{aligned}$		$\begin{aligned} & \text { 7C107B-35 } \\ & \text { 7C1007B-35 } \end{aligned}$		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	12		15		20		25		35		ns
t_{AA}	Address to Data Valid		12		15		20		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		12		15		20		25		35	ns
tlzCe	$\overline{\mathrm{CE}}$ LOW to Low ${ }^{[6]}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		6		7		8		10		10	ns
t_{PU}	$\overline{\text { CE LOW to Power-Up }}$	0		0		0		0		0		ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20		25		35	ns
WRITE CYCLE ${ }^{[8]}$												
$\mathrm{t}_{\text {Wc }}$	Write Cycle Time	12		15		20		25		35		ns
$t_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	10		12		15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		0		0		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	10		12		15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$		6		7		8		10		10	ns

Notes:
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{H Z W E}$ is less than $t_{\text {LZWE }}$ for any given device.
7. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (b) of $A C$ Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. $\overline{C E}$ and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Read Cycle No. 2 ${ }^{[11,12]}$

Write Cycle No. 1 (CE Controlled) ${ }^{[13]}$

Notes:

9. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. WE is HIGH for read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 (WE Controlled) ${ }^{[13]}$

Note:

13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	Dout	Mode	Power
H	X	High Z	Power-Down	Standby $\left(I_{\text {SB }}\right)$
L	H	Data Out	Read	Active $\left(\mathrm{I}_{\text {CC }}\right)$
L	L	High Z	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
12	CY7C107B-12VC	V28	28-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1007B-12VC	V28	28-Lead (300-Mil) Molded SOJ	Commercial
15	CY7C107B-15VC	V28	28-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1007B-15VC	V28	28-Lead (300-Mil) Molded SOJ	Commercial
15	CY7C107B-15VI	V28	28-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1007B-15VI	V28	28-Lead (300-Mil) Molded SOJ	Industrial
20	CY7C107B-20VC	V28	28-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1007B-20VC	V28	28-Lead (300-Mil) Molded SOJ	Commercial
25	CY7C107B-25VC	V28	28-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1007B-25VC	V28	28-Lead (300-Mil) Molded SOJ	Commercial

Contact factory for "L" version availability.

Package Diagrams

28-Lead (400-Mil) Molded SOJ V28

DIMENSIDNS IN INCHES MIN.

CY7C107B CY7C1007B

Document Title: CY7C107B/CY7C1007B 1M x 1 Static RAM Document Number: 38-05030				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109950	12/02/01	SZV	Change from Spec number: 38-01116 to 38-05030

[^0]: Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
 Document \#: 38-05030 Rev. **

