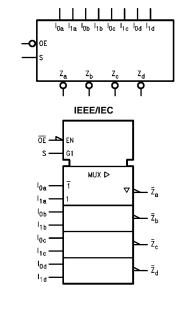
FAIRCHILD

SEMICONDUCTOR

74F258A **Quad 2-Input Multiplexer with 3-STATE Outputs**

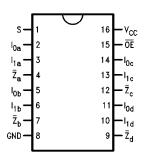
General Description

Features


■ Inverting 3-STATE outputs

The 74F258A is a guad 2-input multiplexer with 3-STATE outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (\overline{OE}) input, allowing the outputs to interface directly with bus-oriented systems.

Ordering Code:


Order Number	Package Number	Package Description
74F258ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F258ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F258APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Logic Symbols

Connection Diagram

Multiplexer expansion by tying outputs together

April 1988

Revised August 1999

© 1999 Fairchild Semiconductor Corporation DS009508 www.fairchildsemi.com

74F258A

Unit Loading/Fan Out

Din Manuar	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
S	Common Data Select Input	1.0/1.0	20 μA/–0.6 mA	
OE	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA	
I _{0a} –I _{0d}	Data Inputs from Source 0	1.0/1.0	20 µA/–0.6 mA	
I _{1a} –I _{1d}	Data Inputs from Source 1	1.0/1.0	20 µA/–0.6 mA	
$\overline{Z}_{a} - \overline{Z}_{d}$	3-STATE Inverting Data Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)	

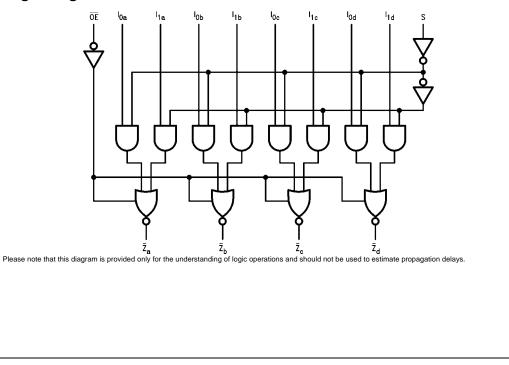
Truth Table

	Output	Select	Data		Output		
	Enable	Input	Inputs				
	OE	S	l _o l ₁		Z		
	н	х	Х	х	Z		
	L	н	х	L	н		
	L	н	х	н	L		
	L	L	L	х	н		
	L	L	н	Х	L		
H = HIG	= HIGH Voltage Level						

L = LOW Voltage Level

X = Immaterial

Logic Diagram


Z = High Impedance

Functional Description

The 74F258A is a quad 2-input multiplexer with 3-STATE outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the I_{0x} inputs are selected and when Select is HIGH, the I_{1x} inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The 74F258A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equation for the outputs is shown below:

$$\overline{Z}_n = \overline{OE} \bullet (I_{1n} \bullet S + I_{0n} \bullet \overline{S})$$

When the Output Enable input $\overline{(OE)}$ is HIGH, the outputs are forced to a high impedance OFF state. If the outputs of the 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-STATE devices whose outputs are tied together are designed so there is no overlap.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage 74F258A

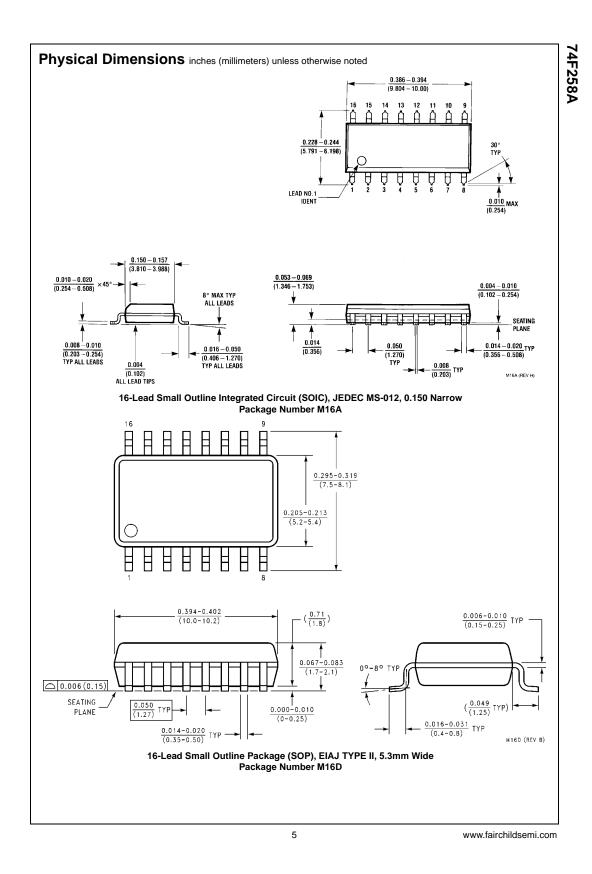
 $0^{\circ}C$ to $+70^{\circ}C$

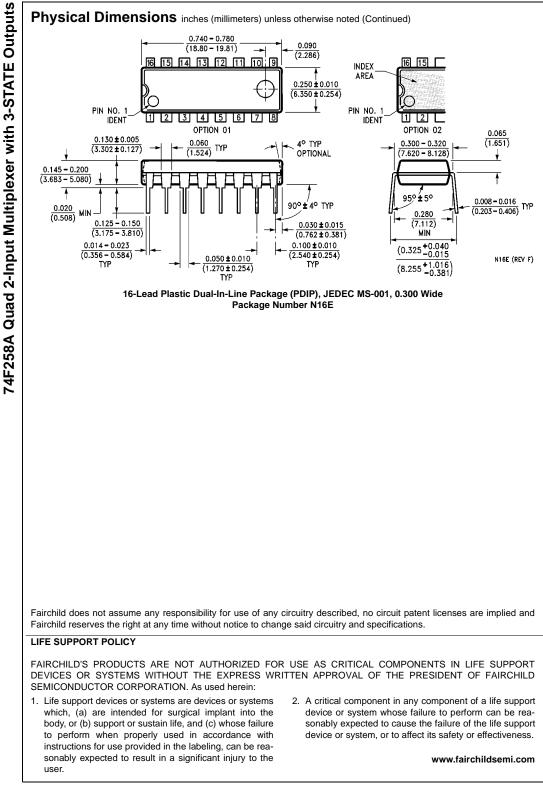
+4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA	
	Voltage	10% V _{CC}	2.4			v	Min	I _{OH} = -3 mA	
		5% V _{CC}	2.7			v	IVIIN	$I_{OH} = -1 \text{ mA}$	
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	v		1 04	
	Voltage				0.5	V	Min	$I_{OL} = 24 \text{ mA}$	
I _{IH}	Input HIGH				5.0		Max	V 0.7V	
	Current				5.0	μA	IVIAX	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current				7.0		Ман	V 7 0V	
	Breakdown Test				7.0	μA	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH				50	μA	Max		
	Leakage Current				50	μΑ		$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage	4.75				V	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75		0.0	V _{IOD} = 150 mV	
	Circuit Current				3.75	μA	0.0	All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$	
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$	
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = V_{CC}$	
ICCH	Power Supply Current			6.2	9.5	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			15.1	23	mA	Max	$V_0 = LOW$	
I _{CCZ}	Power Supply Current			11.3	17	mA	Max	V _O = HIGH Z	


◄
∞
ŝ
N
ίĽ.
4
Ň

AC Electrical Characteristics

Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			5 to +125°C = 5.0V 50 pF	$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = 5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5		5.3	2.0	7.5	2.0	6.0	ns
t _{PHL}	I _n to Z _n	1.0		4.0	1.0	6.0	1.0	5.0	
t _{PLH}	Propagation Delay	3.0		7.5	3.0	9.5	3.0	8.5	
t _{PHL}	S to Z n	2.5		7.0	2.5	9.0	2.5	8.0	ns
t _{PZH}	Output Enable Time	2.0		6.0	2.0	8.0	2.0	7.0	
t _{PZL}		2.5		7.0	2.5	9.0	2.5	8.0	
t _{PHZ}	Output Disable Time	2.0		6.0	1.5	7.0	2.0	7.0	ns
t _{PLZ}		2.0		6.0	2.0	8.5	2.0	7.0	

www.fairchildsemi.com

