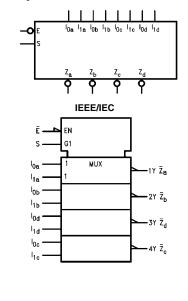
FAIRCHILD

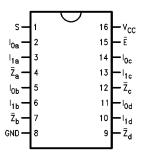
SEMICONDUCTOR

74F158A Quad 2-Input Multiplexer

General Description


The F158A is a high speed quad 2-input multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four outputs present the selected data in the inverted form. The F158A can also generate any four of the 16 different functions of two variables.

74F158A Quad 2-Input Multiplexer


Ordering Code:

Order Number	Package Number	Package Description
74F158ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F158ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F158APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel, Specify	by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS009484

www.fairchildsemi.com

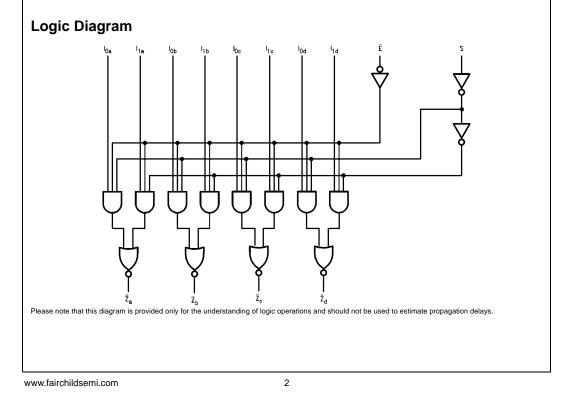
74F158A

Unit Loading/Fan Out

Dia Nama	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
I _{0a} –I _{0d}	Source 0 Data Inputs	1.0/1.0	20 µA/–0.6 mA		
I _{1a} –I _{1d}	Source 1 Data Inputs	1.0/1.0	20 μA/–0.6 mA		
E	Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA		
S	Select Input	1.0/1.0	20 µA/–0.6 mA		
$\overline{Z}_{a} - \overline{Z}_{d}$	Inverted Outputs	50/33.3	–1 mA/20 mA		

Truth Table

	In	Outputs		
E	S	I ₀	I ₁	z
Н	Х	Х	Х	Н
L	L	L	Х	Н
L	L	н	х	L
L	н	Х	L	Н
L	н	Х	н	L


H = HIGH Voltage Level L = LOW Voltage Level

 $\frac{X = Immaterial}{\overline{Z}_n = \overline{E} \times (I_{1n}S + I_{0n} \overline{S})}$

Functional Description

The F158A quad 2-input multiplexer selects four bits of data from two sources under the control of a common Select input (S) and presents the data in inverted form at the four outputs. The Enable input (Ē) is active LOW. When \overline{E} is HIGH, all of the outputs (\overline{Z}) are forced HIGH regardless of all other inputs. The F158A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input.

A common use of the F158A is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The F158A can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

Downloaded from Elcodis.com electronic components distributor

Absolute Maximum Ratings(Note 1)

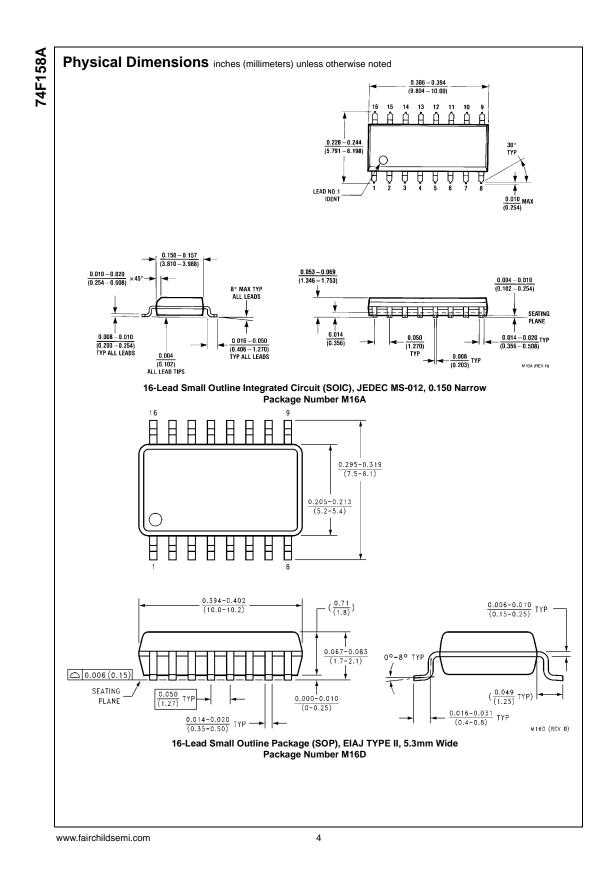
	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

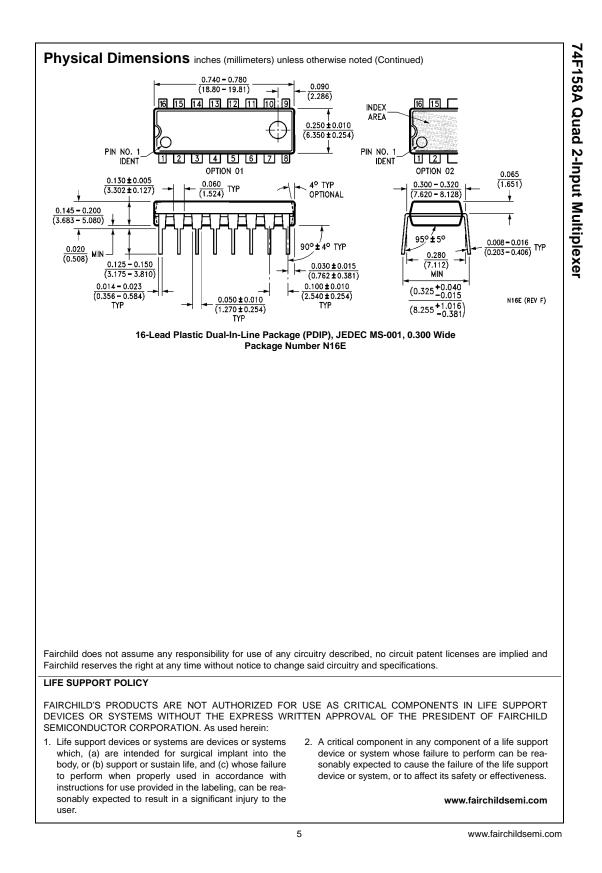
Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage 74F158A

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
011	Output HIGH	10% V _{CC}	2.5			V	Min	$I_{OH} = -1 \text{ mA}$	
	Voltage	5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	1 20 mA	
	Voltage				0.5	v	IVIII	I _{OL} = 20 mA	
I _{IH}	Input HIGH				5.0	μA	Max	$V_{IN} = 2.7V$	
	Current				5.0	μΑ	IVIdX		
DVI	Input HIGH Current				7.0	۸	Max	V _{IN} = 7.0V	
	Breakdown Test				7.0	μA	IVIAX	$v_{\rm IN} = 7.0v$	
ICEX	Output HIGH				50	μΑ	Max	V _V	
	Leakage Current							$V_{OUT} = V_{CC}$	
V _{ID} I	Input Leakage		4.75			v	0.0	I _{ID} = 1.9 μA	
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μΑ	0.0	V _{IOD} = 150 mV	
	Circuit Current				3.75			All Other Pins Grounded	
Ι _{ΙL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
l _{os}	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{CCH}	Power Supply Current			10	15	mA	Max	V _O = HIGH	
ICCL	Power Supply Current			15	25	mA	Max	$V_0 = LOW$	

AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } ++70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	Min	Max	t
t _{PLH}	Propagation Delay	3.0	5.5	8.5	3.0	10.5	3.0	9.5	
t _{PHL}	S to Z _n	2.5	4.5	6.5	2.5	8.0	2.5	7.0	ns
t _{PLH}	Propagation Delay	2.5	4.5	6.0	2.5	8.0	2.5	7.0	ns
t _{PHL}	E to Z _n	2.0	4.0	6.0	2.0	7.0	2.0	6.5	
t _{PLH}	Propagation Delay	2.5	4.0	5.9	2.5	8.5	2.5	7.0	
t _{PHL}	I_n to \overline{Z}_n	1.5	2.5	4.0	1.0	5.0	1.5	4.5	ns

