FAIRCHILD

SEMICONDUCTOR

74ABT244 Octal Buffer/Line Driver with 3-STATE Outputs

General Description

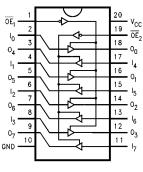
The ABT244 is an octal buffer and line driver with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus-oriented transmitter/ receiver.

Features

- Non-inverting buffers
- Output sink capability of 64 mA, source capability of 32 mA

May 1992

Revised November 1999


- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Disable time less than enable time to avoid bus contention

Ordering Code:

Order Number	Package Number	Package Description
74ABT244CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ABT244CSJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT244CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74ABT244CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ABT244CPC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

	Pin Names	Description
ł	$\overline{OE}_1, \overline{OE}_2$	Output Enable Input
		(Active LOW)
	I ₀ —I ₇	Inputs
,	0 ₀ –0 ₇	Outputs

Truth Table

OE ₁	I ₀₋₃	0 ₀₋₃	OE ₂	I ₄₋₇	0 ₄₋₇
Н	Х	Z	н	Х	Z
L	н	н	L	н	н
L	L	L	L	L	L
H Voltage V Voltage I					

X = Immaterial

Z = High Impedance

Absolute Maximum Ratings(Note 1)

-65°C to +150°C
-55°C to +125°C
-55 C 10 +125 C
-55°C to +150°C
-0.5V to +7.0V
-0.5V to +7.0V
-30 mA to +5.0 mA
-0.5V to 5.5V
-0.5V to V _{CC}
twice the rated I _{OL} (mA)
–500 mA
10V

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	2.5			V	Min	I _{OH} = -3 mA
		2.0			V	Min	$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage			0.55			$I_{OL} = 64 \text{ mA}$
I _{IH}	Input HIGH Current			1	μΑ	Max	V _{IN} = 2.7V (Note 4)
				1			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Breakdown Test			7	μΑ	Max	V _{IN} = 7.0V
IIL	Input LOW Current			-1		Max	V _{IN} = 0.5V (Note 4)
				-1	μA	wax	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA
							All Other Pins Grounded
I _{OZH}	Output Leakage Current			10	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Current			-10	μA	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
l _{os}	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output High Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test			100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current			50	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current			30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current			50	μA	Max	$\overline{OE}_n = V_{CC}$
							All Others at V _{CC} or Ground
ICCT	Additional I _{CC} /Input Outputs Enabled			2.5	mA		$V_{\rm I} = V_{\rm CC} - 2.1 V$
	Outputs 3-STATE			2.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V
	Outputs 3-STATE			50	μA		Data Input V _I = V _{CC} - 2.1V
							All Others at V _{CC} or Ground
ICCD	Dynamic I _{CC} No Load				mA/		Outputs OPEN
	(Note 4)			0.1	MHz	Max	$\overline{OE}_n = GND$, (Note 3)
							One Bit Toggling, 50% Duty Cycle

Note 3: For 8 bits toggling, $I_{CCD} < 0.8 \mbox{ mA/MHz}.$

Note 4: Guaranteed, but not tested.

DC Electrical Characteristics

(SOIC pa	ackage)						
Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions $C_L = 50 \text{ pF},$ $R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.5	0.8	V	5.0	$T_A = 25^{\circ}C$ (Note 5)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.3	-0.8		V	5.0	$T_A = 25^{\circ}C$ (Note 5)
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	2.7	3.1		V	5.0	T _A = 25°C (Note 7)
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	2.0	1.5		V	5.0	$T_A = 25^{\circ}C$ (Note 6)
V _{ILD}	Maximum LOW Level Dynamic Input Voltage		1.1	0.8	V	5.0	$T_A = 25^{\circ}C$ (Note 6)

Note 5: Max number of data inputs (n) switching, n - 1 inputs switching 0V to 3V. Input-under-test switching; 3V to threshold (V_{LD}), 0V to threshold (V_{LD}).

Guaranteed, but not tested.
Note 7: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

(SOIC and	d SSOP package)		T _A = +25°C		T _A = -55°0	C to +125°C	T _A = -40°	C to +85°C		
Symbol	Parameter		$V_{CC} = +5V$		$V_{CC} = 4$.5V–5.5V	$V_{CC} = 4$.5V–5.5V	Units	
Symbol	Farameter		$C_L = 50 \ pF$		C _L =	50 pF	$C_L = 50 \text{ pF}$		Units	
		Min	Тур	Max	Min	Max	Min	Max		
t _{PLH}	Propagation Delay	1.0	2.5	3.6	1.0	5.3	1.0	3.6	ns	
t _{PHL}	Data to Outputs	1.0	2.3	3.6	1.0	5.0	1.0	3.6	ns	
t _{PZH}	Output Enable	1.5	3.5	6.0	0.8	6.5	1.5	6.0	50	
t _{PZL}	Time	1.5	3.6	6.0	1.2	7.9	1.5	6.0	ns	
t _{PHZ}	Output Disable	1.7	3.5	5.6	1.2	7.6	1.7	5.6	ns	
t _{PLZ}	Time	1.7	3.3	5.6	1.0	7.9	1.7	5.6	115	

Extended AC Electrical Characteristics

(SOIC package)

Symbol	Parameter	$T_{A}-40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V-5.5V$ $C_{L} = 50 \text{ pF}$ 8 Outputs Switching		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V-5.5V$ $C_{L} = 250 \text{ pF}$ 1 Output Switching		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V-5.5V$ $C_L = 250 \text{ pF}$ 8 Outputs Switching		Units	
			(Note 8)		(No	te 9)	(Not	e 10)	
		Min	Тур	Max	Min	Max	Min	Max	
f _{TOGGLE}	Max Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay	1.5		5.0	1.5	6.0	2.5	8.5	ns
t _{PHL}	Data to Outputs	1.5		5.0	1.5	6.0	2.5	8.5	115
t _{PZH}	Output Enable Time	1.5		6.5	2.5	7.5	2.5	10.0	
t _{PZL}		1.5		6.5	2.5	7.5	2.5	12.0	ns
t _{PHZ}	Output Disable Time	1.0		5.6	(Not	0 11)	(Not	e 11)	ns
t _{PLZ}		1.0		5.6	(Note 11)		(1101	e 11)	115

Note 8: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 9: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 10: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 11: The 3-STATE delays are dominated by the RC network (500Ω, 250 pF) on the output and have been excluded from the datasheet.

74ABT244

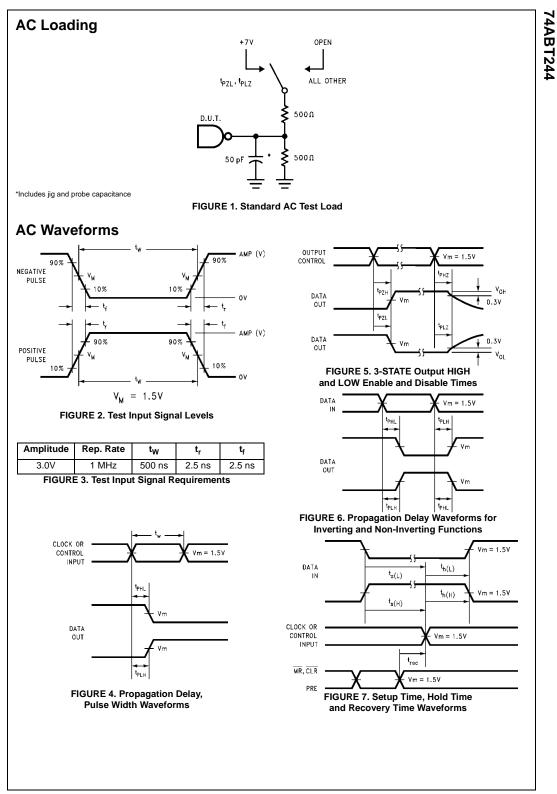
74ABT244

Skew					
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
		$\mathbf{V_{CC}}=\mathbf{4.5V}\mathbf{-5.5V}$	$V_{CC}=4.5V5.5V$		
0. militad	Burnata	C _L = 50 pF	$C_L = 250 \text{ pF}$	11-11-	
Symbol	Parameter	8 Outputs Switching	8 Outputs Switching	Units	
		(Note 14)	(Note 15)		
		Max	Max		
t _{oshl}	Pin to Pin Skew	0.8	1.8	ns	
(Note 12)	HL Transitions	0.0	1.0	113	
OSLH	Pin to Pin Skew	0.8	1.8	ns	
(Note 12)	LH Transitions	0.8	1.0	ns	
PS	Duty Cycle	1.0	2.5	20	
(Note 16)	LH–HL Skew	1.0	2.0	ns	
t _{OST}	Pin to Pin Skew	1.0	2.5	20	
(Note 12)	LH/HL Transitions	1.0	2.0	ns	
PV	Device to Device Skew	1.5	3.0	20	
(Note 13)	LH/HL Transitions	1.5	3.0	ns	

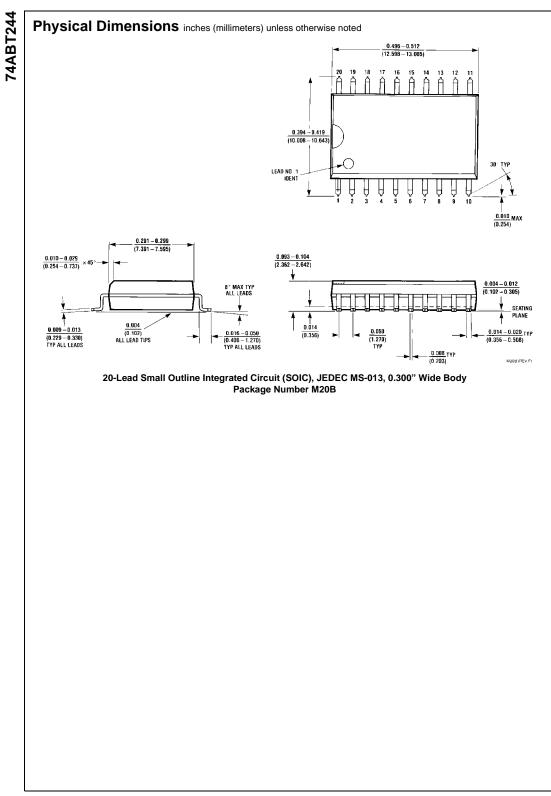
Note 12: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device The specification applies to any outputs switching HIGH-to-LOW (t_{OSH}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}). The specification is guaranteed but not tested.

Note 13: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.

Note 14: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

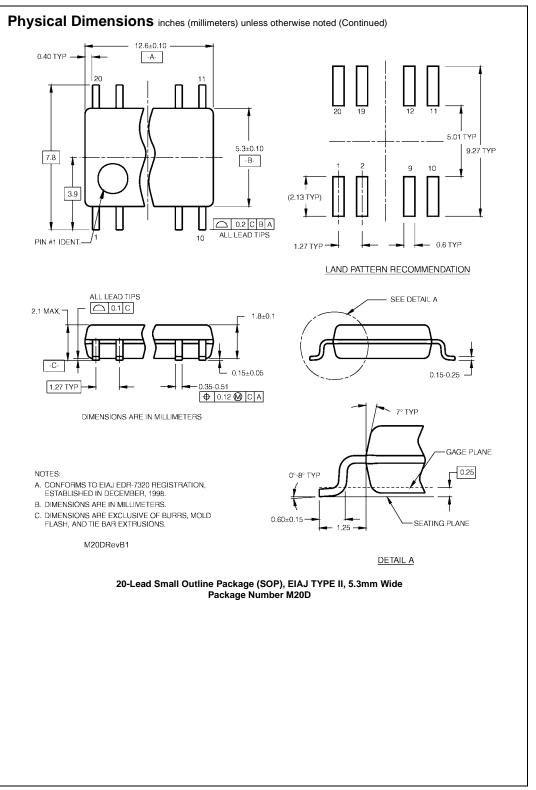

Note 15: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 16: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

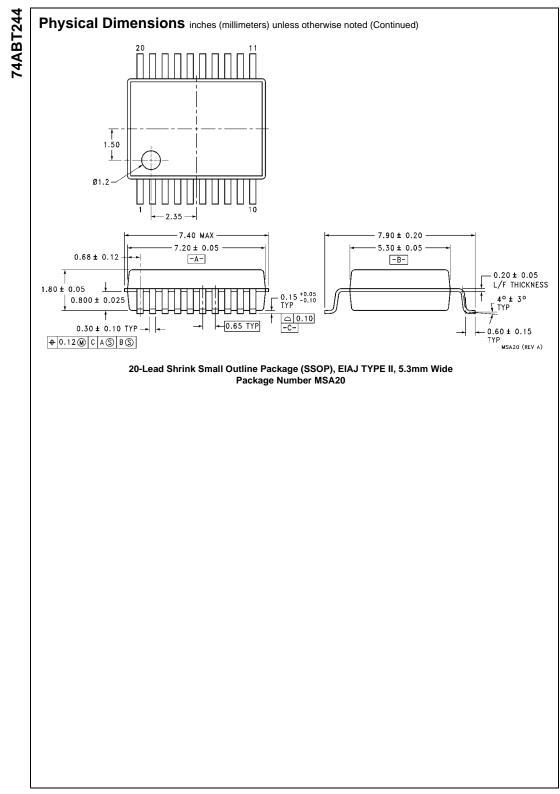

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 17)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

Note 17: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

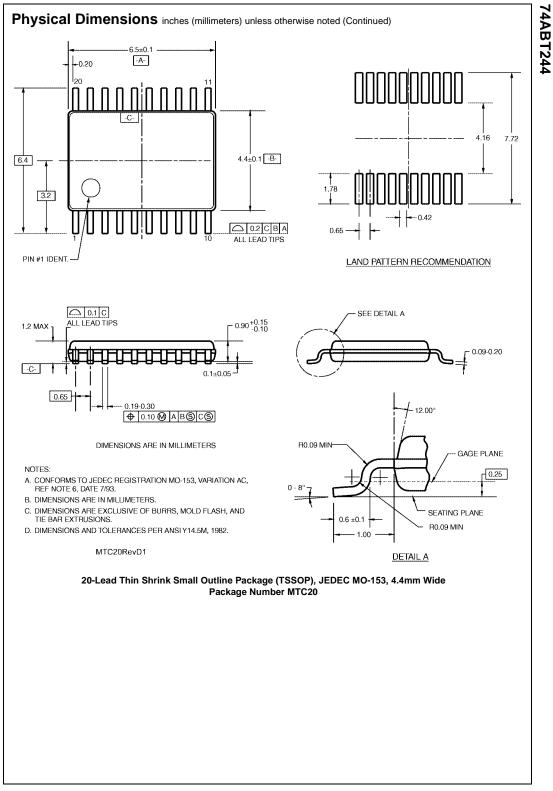


5

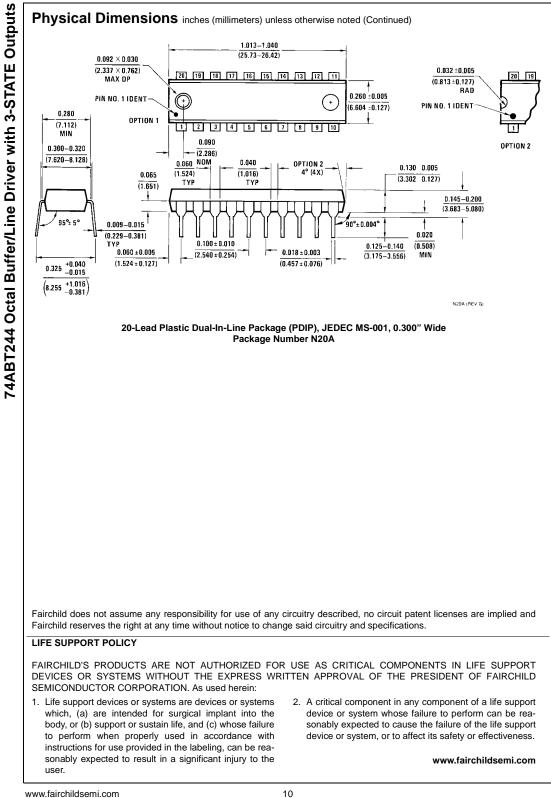


www.fairchildsemi.com

6



74ABT244



www.fairchildsemi.com

8

9

Downloaded from Elcodis.com electronic components distributor