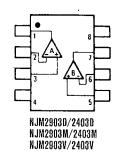
SINGLE-SUPPLY DUAL COMPARATOR

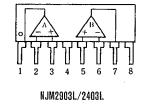
GENERAL DESCRIPTION

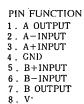
JRC

The NJM2903/2403 consist of two independent precision voltage comparators with an offset voltage specification as low as 5.0mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. The NJM2903/2403 has a unique characteristics: the input common-mode voltage range includes ground, even though operated from a single power supply voltage. Application areas include limit comparators, simple analog-to-digital converters; pulse, square-wave and time delay generators; wide range Vco; MOS clock timers; multivibrators and high voltage digital logic gates. The NJM2903/2403 were designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the NJM2903/2403 will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

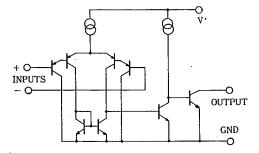
 $(+2V \sim +36V)$

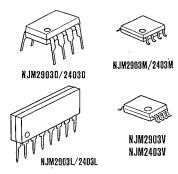

(15mA @2403)


DIP8, DMP8, SIP8, (SSOP8)


FEATURES

- Operating Voltage
- Single Supply Operation
- Open Collector Output
- High Output Sink Current
- Package Outline
- Bipolar Technology


PIN CONFIGURATION



EQUIVALENT CIRCUIT (1/2 Shown)

New Japan Radio Co., Ltd.

PACKAGE OUTLINE

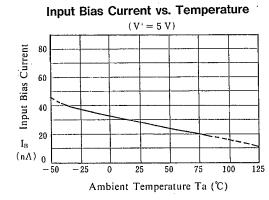
5 - 24

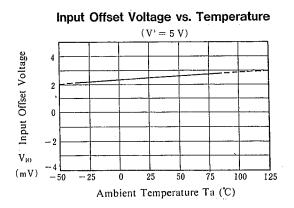
ABSOLUTE MAXIMUM RATINGS (Ta=25℃) SYMBOL RATINGS UNIT PARAMETER V⁺ 36(or ±18) v Supply Voltage v Differential Input Voltage V_{ID} 36 Vin ۷ Input Voltage -0.3~+36 $\mathbf{P}_{\mathbf{D}}$ (DIP8) 500 mW (DMP8) 300 mW Power Dissipation (SSOP8) 250 mW (SIP8) 800 mW °C **'**Topr -40~+85 Operating Temperature Range Storage Temperature Range Tstg -50~+125 °C

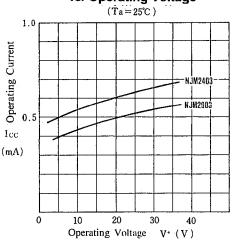
ELECTRICAL CHARACTERISTICS

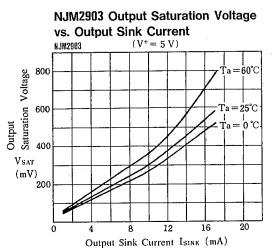
(V⁺=5V, Ta=25℃)

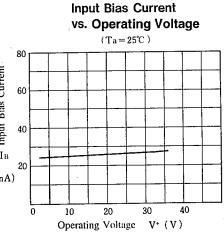
5-25

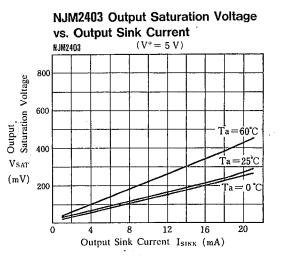

PARAMETER	SYMBOL.	TEST CONDITION	2903			2403			LINUT
			MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	Vio	$R_s = 0\Omega, V_O \cong 1.4V$			7		-	10	mV
Input Offset Current	lio		—	—	50			100	nA
Input Bias Current	IB		—	30	250		40	500	nА
Input Common Mode Voltage Range	VICM		0~3.5	—		0~3.5			v
Large Signal Voltage Gain	Av	$R_L = 15k\Omega$	—	106	—	—	106		dB
Response Time	t _R	$R_L 5.1 k\Omega$	—	1.5			1.5	—	μS
Output Sink Current	I _{sink}	$V_{IN}^{-}=IV, V_{IN}^{+}=0V, V_{0}=1.5V$	6	-	-	20		_	mA
Output Saturation Voltage	V_{SAT}	$V_{1N}^{-}=!V, V_{1N}^{+}=0Vm$ $I_{S1NK}=3mA$	-	200	400			—	mν
Output Saturation Voltage	Vsat	$V_{IN}^{-}=1V, V_{IN}^{+}=0V,$ $I_{SINK}=15mA$	-	_	—		200	400	mV
Output Leakage Current	ILEAK	$V_{1N}^{-}=0V, V_{1N}^{+}=0V, V_{0}=5V$	-		1.0	-	—	1.0	μA
Operating Current	lcc			0.4	1.0		0.5	1.5	mA

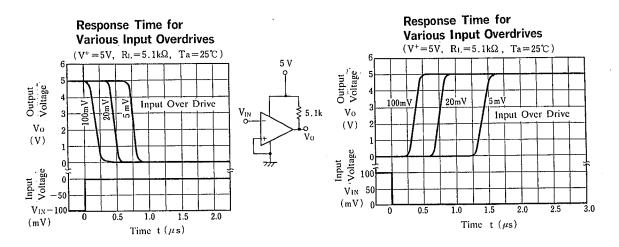

-New Japan Radio Co.,Ltd.-


5

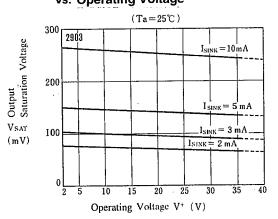

NJM2903/2403


TYPICAL CHARACTERISTICS

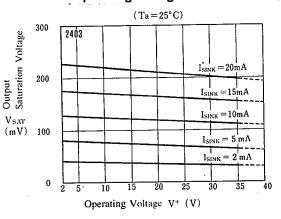


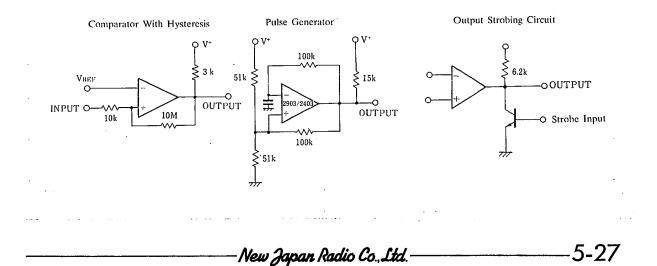


Operating Current vs. Operating Voltage


> ± Input Bias Current (nA)

5-26-


TYPICAL CHARACTERISTICS


NJM2903 Output Saturation Voltage vs. Operating Voltage

NJM2403 Output Saturation Voltage vs. Operating Voltage

TYPICAL APPLICATIONS

Downloaded from Elcodis.com electronic components distributor

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.