

June 1999

LM3480 100 mA, SOT-23, Quasi Low-Dropout Linear Voltage Regulator

General Description

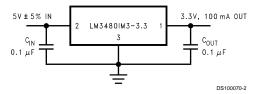
The LM3480 is an integrated linear voltage regulator. It features operation from an input as high as 30V and a guaranteed maximum dropout of 1.2V at the full 100 mA load. Standard packaging for the LM3480 is the 3-lead SuperSOT® package.

The 5, 12, and 15V members of the LM3480 series are intended as tiny alternatives to industry standard LM78LXX series and similar devices. The 1.2V quasi low dropout of LM3480 series devices makes them a nice fit in many applications where the 2 to 2.5V dropout of LM78LXX series devices precludes their (LM78LXX series devices) use.

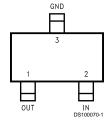
The LM3480 series features a 3.3V member. The SOT packaging and quasi low dropout features of the LM3480 series converge in this device to provide a very nice, very tiny 3.3V, 100 mA bias supply that regulates directly off the system 5V±5% power supply.

Key Specifications

- 30V maximum input for operation
- 1.2V guaranteed maximum dropout over full load and temperature ranges
- 100 mA guaranteed minimum load current
- ±5% guaranteed output voltage tolerance over full load and temperature ranges
- -40 to +125°C junction temperature range for operation


Features

- 3.3, 5, 12, and 15V versions available
- Packaged in the tiny 3-lead SuperSOT package


Applications

- Tiny alternative to LM78LXX series and similar devices
- Tiny 5V±5% to 3.3V, 100 mA converter
- Post regulator for switching DC/DC converter
- Bias supply for analog circuits

Typical Application Circuit

Connection Diagram

Top View
SOT-23 Package
3-Lead, Molded-Plastic Small-Outline Transistor (SOT) Package
Package Code MA03B (Note 1)

SuperSOT ® is a registered trademark of National Semiconductor.

© 1999 National Semiconductor Corporation D

Ordering Information

Output Voltage	Order Number	Package Marking	Comments	
(V)	(Note 2)	(Note 3)		
3.3	LM3480IM3-3.3	LOA	250 Units on Tape and Reel	
3.3	LM3480IM3X-3.3	L0A	3k Units on Tape and Reel	
5	LM3480IM3-5.0	L0B	250 Units on Tape and Reel	
5	LM3480IM3X-5.0	L0B	3k Units on Tape and Reel	
12	LM3480IM3-12	LOC	250 Units on Tape and Reel	
12	LM3480IM3X-12	LOC	3k Units on Tape and Reel	
15	LM3480IM3-15	LOD	250 Units on Tape and Reel	
15	LM3480IM3X-15	LOD	3k Units on Tape and Reel	

Absolute Maximum Ratings (Note 4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage (IN to GND) 35V
Power Dissipation (Note 5) 333mW
Junction Temp. (Note 5) +150°C

Ambient Storage Temp.
Soldering Time, Temp. (Note 6)

Wave 4 sec., 260°C Infrared 10 sec., 240°C

Vapor Phase 75 sec., 219°C

ESD (Note 7)

2kV

Operating Ratings (Note 4)

Electrical Characteristics LM3480-3.3, LM3480-5.0

Typicals and limits appearing in normal type apply for $T_A = T_J = 25^{\circ}C$. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to $+125^{\circ}C$. (Notes 9, 10, 11)

-65 to +150°C

Nominal Output Voltage (V _{NOM})			3.3V		5.0V		Unite
Symbol	Parameter	Conditions	Typical	Limit	Typical	Limit	Units
V _{OUT}	Output Voltage	$V_{IN} = V_{NOM} + 1.5V,$	3.30		5.00		V
001		1 mA ≤ I _{OUT} ≤ 100 mA		3.17		4.80	V(min)
				3.14		4.75	V(min)
				3.43		5.20	V(max)
				3.46		5.25	V(max)
ΔV_{OUT}	Line Regulation	$V_{NOM} + 1.5V \le V_{IN} \le 30V$	10		12		mV
	-	I _{OUT} = 1 mA		25		25	mV(max)
ΔV_{OUT}	Load Regulation	$V_{IN} = V_{NOM} + 1.5V,$	20		20		mV
	_	10 mA ≤ I _{OUT} ≤ 100 mA		40		40	mV(max)
I _{GND}	Ground Pin	$V_{NOM} + 1.5V \le V_{IN} \le 30V$,	2		2		mA
	Current	No Load		4		4	mA(max)
V _{IN} -	Dropout Voltage	I _{OUT} = 10 mA	0.7		0.7		V
V _{OUT}				0.9		0.9	V(max)
				1.0		1.0	V(max)
		I _{OUT} = 100 mA	0.9		0.9		V
				1.1		1.1	V(max)
				1.2		1.2	V(max)
e _n	Output Noise	V _{IN} = 10V,	100		150		μV_{rms}
**	Voltage	Bandwidth: 10 Hz to 100 kHz					

LM3480-12, LM3480-15

Typicals and limits appearing in normal type apply for $T_A = T_J = 25^{\circ}C$. Limits appearing in boldface type apply over the entire junction temperature range for operation, -40 to $+125^{\circ}C$. (Notes 9, 10, 11)

Nominal Output Voltage (V _{NOM})		12V		15V		Units	
Symbol	Parameter	Conditions	Typical	Limit	Typical	Limit	Units
V _{OUT}	Output Voltage	$V_{IN} = V_{NOM} + 1.5V,$	12.00		15.00		V
		1 mA ≤ I _{OUT} ≤ 100 mA		11.52		14.40	V(min)
				11.40		14.25	V(min)
				12.48		15.60	V(max)
				12.60		15.75	V(max)
ΔV_{OUT}	Line Regulation	$V_{NOM} + 1.5V \le V_{IN} \le 30V$,	14		16		mV
		I _{OUT} = 1 mA		40		40	mV(max)
ΔV_{OUT}	Load Regulation	$V_{IN} = V_{NOM} + 1.5V,$	36		45		mV
		10 mA ≤ I _{OUT} ≤ 100 mA		60		75	mV(max)
I _{GND}	Ground Pin	$V_{NOM} + 1.5V \le V_{IN} \le 30V$,	2		2		mA
	Current	No Load		4		4	mA(max)
V _{IN} -	Dropout Voltage	I _{OUT} = 10 mA	0.7		0.7		V
V _{OUT}				0.9		0.9	V(max)
				1.0		1.0	V(max)
		I _{OUT} = 100 mA	0.9		0.9		V
				1.1		1.1	V(max)
				1.2		1.2	V(max)
e _n	Output Noise	V _{IN} = 10V,	360		450		μV_{rms}
	Voltage	Bandwidth: 10 Hz to 100 kHz					

Note 1: The package code MA03B is internal to National Semiconductor Corporation and indicates a specific version of the SOT-23 package and associated mechanical drawings.

Note 2: The suffix "I" indicates the junction temperature range for operation is the industrial temperature range, -40 to +125°C. The suffix "M3" indicates the die is packaged in the 3-lead SOT-23 package. The suffix "X" indicates the devices will be supplied in blocks of 3k units as opposed to blocks of 250 units.

Note 3: Because the entire part number does not fit on the SOT-23 package, the SOT-23 package is marked with this code instead of the part number.

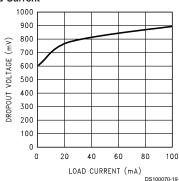
Note 4: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 5: The Absolute Maximum power dissipation depends on the ambient temperature and can be calculated using $P = (T_J - T_A)/\theta_{JA}$ where T_J is the junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance. The 333 mW rating results from substituting the Absolute Maximum junction temperature, 150°C, for T_J , 50°C for T_A , and 300°C/W for θ_{JA} . More power can be safely dissipated at lower ambient temperatures. Less power can be safely dissipated at higher ambient temperatures. The Absolute Maximum power dissipation can be increased by 3.33 mW for each "C below 50°C ambient. It must be derated by 3.33 mW for each "C above 50°C ambient. A θ_{JA} of 300°C/W represents the worst-case condition of no heat sinking of the 3-lead plastic SOT-23 package. Heat sinking enables the safe dissipation of more power. The LM3480 actively limits its junction temperature to about 150°C.

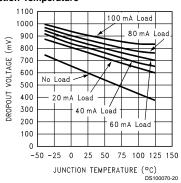
Note 6: Times shown are dwell times. Temperatures shown are dwell temperatures. For detailed information on soldering plastic small-outline packages, refer to the Packaging Databook available from National Semiconductor Corporation.

Note 7: For testing purposes, ESD was applied using the human-body model, a 100 pF capacitor discharged through a 1.5 k Ω resistor.

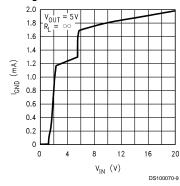
Note 8: As with the Absolute Maximum power dissipation, the maximum power dissipation for operation depends on the ambient temperature. The 250 mW rating appearing under Operating Ratings results from substituting the maximum junction temperature for operation, 125°C, for T_J, 50°C for T_A, and 300°C/W for 9_{JA} in P = (T_J - T_A)/0_{JA}. More power can be dissipated at lower ambient temperatures. Less power can be dissipated at higher ambient temperatures. The maximum power dissipation for operation appearing under Operating Ratings can be increased by 3.33 mW for each "C below 50°C ambient. It must be derate

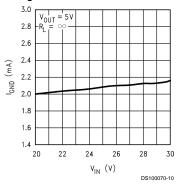

Note 9: A typical is the center of characterization data taken with $T_A = T_J = 25^{\circ}C$. Typicals are not guaranteed.

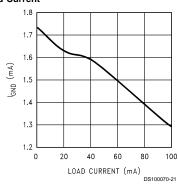
Note 10: All limits are guaranteed. All electrical characteristics having room-temperature limits are tested during production with $T_A = T_J = 25^{\circ}C$. All hot and cold limits are guaranteed by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

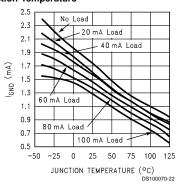

Note 11: All voltages except dropout are with respect to the voltage at the GND pin.

Typical Performance Characteristics Unless indicated otherwise, V_{IN} = V_{NOM} + 1.5V, C_{IN} = 0.1 μ F, C_{OUT} = 0.1 μ F, and T_A =25°C.

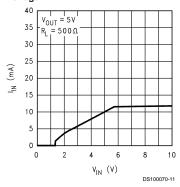

Dropout Voltage vs Load Current


Dropout Voltage vs Junction Temperature

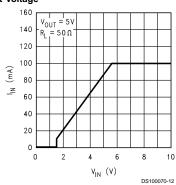

Ground Pin Current vs Input Voltage


Ground Pin Current vs Input Voltage

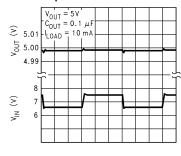
Ground Pin Current vs Load Current



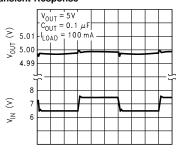
Ground Pin Current vs Junction Temperature



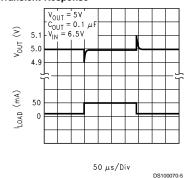
Typical Performance Characteristics Unless indicated otherwise, V_{IN} = V_{NOM} + 1.5V, C_{IN} = 0.1 μ F, C_{OUT} = 0.1 μ F, and T_A =25°C. (Continued)


Input Current vs Input Voltage

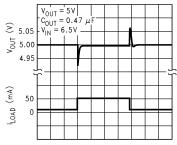
Input Current vs Input Voltage


Line Transient Response

 $200~\mu \mathrm{s/Div}$

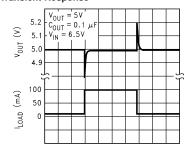

DS100070-3

Line Transient Response

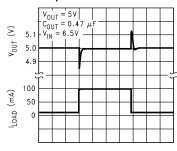


200 μs/Div DS100070-4

Load Transient Response

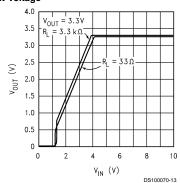

Load Transient Response

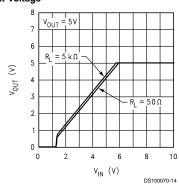
50 μs/Div DS100070-6


Typical Performance Characteristics Unless indicated otherwise, V_{IN} = V_{NOM} + 1.5V, C_{IN} = 0.1 μF , C_{OUT} = 0.1 μF , and T_{A} =25°C. (Continued)

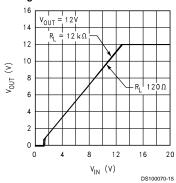
Load Transient Response

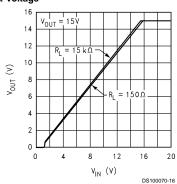
50 μs/Div DS100070-7


Load Transient Response

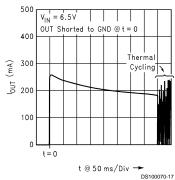

50 μs/Div

DS100070-8

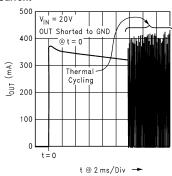

Output Voltage vs Input Voltage


Output Voltage vs Input Voltage

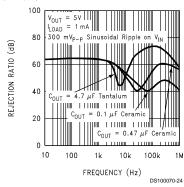
Output Voltage vs Input Voltage

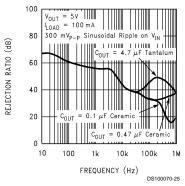


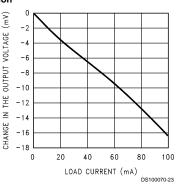
Output Voltage vs Input Voltage

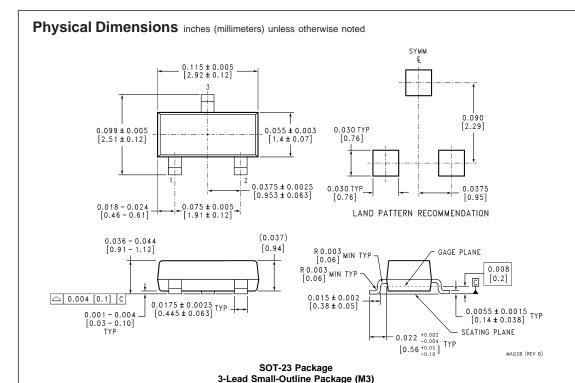


Typical Performance Characteristics Unless indicated otherwise, $V_{IN} = V_{NOM} + 1.5V$, $C_{IN} = 0.1 \ \mu F$, $C_{OUT} = 0.1 \ \mu F$, and $T_{A} = 25 \ ^{\circ}C$. (Continued)


Output Short-Circuit Current


Output Short-Circuit Current


Power Supply Rejection Ratio



Power Supply Rejection Ratio

DC Load Regulation

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

For Ordering, Refer to Ordering Information Table NS Package Number MA03B

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.