National Semiconductor

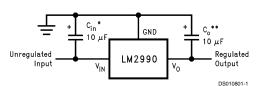
LM2990 Negative Low Dropout Regulator

General Description

The LM2990 is a three-terminal, low dropout, 1 ampere negative voltage regulator available with fixed output voltages of -5, -5.2, -12, and -15V.

The LM2990 uses new circuit design techniques to provide low dropout and low quiescent current. The dropout voltage at 1A load current is typically 0.6V and a guaranteed worst-case maximum of 1V over the entire operating temperature range. The quiescent current is typically 1 mA with 1A load current and an input-output voltage differential greater than 3V. A unique circuit design of the internal bias supply limits the quiescent current to only 9 mA (typical) when the regulator is in the dropout mode ($V_{OUT} - V_{IN} \leq 3V$). Output voltage accuracy is guaranteed to ±5% over load, and temperature extremes.

The LM2990 is short-circuit proof, and thermal shutdown includes hysteresis to enhance the reliability of the device when overloaded for an extended period of time. The LM2990 is available in a 3-lead TO-220 package and is rated for operation over the automotive temperature range of -40° C to +125°C.

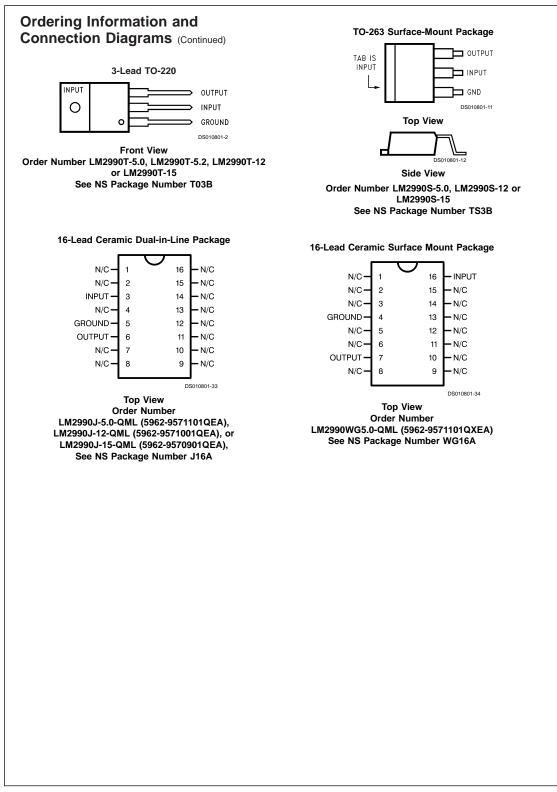

Features

- 5% output accuracy over entire operating range
- Output current in excess of 1A
- Dropout voltage typically 0.6V at 1A load
- Low guiescent current
- Internal short circuit current limit
- Internal thermal shutdown with hysteresis
- Functional complement to the LM2940 series

Applications

- Post switcher regulator
- Local, on-card, regulation
- Battery operated equipment

Typical Application


*Required if the regulator is located further than 6 inches from the power supply filter capacitors. A 1 µF solid tantalum or a 10 µF aluminum electrolytic capacitor is recommended.

**Required for stability. Must be at least a 10 μF aluminum electrolytic or a 1 μF solid tantalum to maintain stability. May be increased without bound to maintain regulation during transients. Locate the capacitor as close as possible to the regulator. The equivalent series resistance (ESR) is critical, and should be less than 10Ω over the same operating temperature range as the regulator.

Ordering Information and Connection Diagrams

TO-220
TO-263
J16A
WG16A

© 1999 National Semiconductor Corporation DS010801

2

Downloaded from Elcodis.com electronic components distributor

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Storage Temperature Lead Temperature (Soldering, 10 sec.)

Operating Ratings(Note 1)

Junction Temperature Range (T_J) Maximum Input Voltage (Operational)

-40°C to +125°C -26V

Electrical Characteristics

Input Voltage

ESD Susceptibility (Note 2)

Power Dissipation (Note 3)

Junction Temperature (T_{Jmax})

 $V_{IN} = -5V + V_{O(NOM)}$ (Note 6) , $I_O = 1A$, $C_O = 47 \ \mu$ F, unless otherwise specified. **Boldface** limits apply over the entire operating temperature range, $-40^{\circ}C \le T_J \le 125^{\circ}$ C, all other limits apply for $T_J = 25^{\circ}$ C.

-26V to +0.3V

Internally Limited

2 kV

125°C

Parameter	Conditions	LM2990-5.0		LM2990-5.2		Units
		Typ (Note 4)	Limit (Note 5)	Typ (Note 4)	Limit (Note 5)	(Limit)
Output Voltage (V _O)	$5 \text{ mA} \le I_{O} \le 1 \text{A}$		-4.90		-5.10	V (max)
			-5.10		-5.30	mV (min)
		5		-5.2		V
	5 mA ≤ I _O ≤ 1A		-4.75		-4.94	V (max)
			-5.25		-5.46	V (min)
Line Regulation	I _O = 5 mA,	4	40	4	40	mV (max)
	$V_{O(NOM)} - 1V > V_{IN} > -26V$					
Load Regulation	$50 \text{ mA} \le I_O \le 1\text{A}$	1	40	1	40	mV (max)
Dropout Voltage	I_{O} = 0.1A, $\Delta V_{O} \le 100 \text{ mV}$	0.1	0.3	0.1	0.3	V (max)
	I_{O} = 1A, $\Delta V_{O} \le 100 \text{ mV}$	0.6	1	0.6	1	V (max)
Quiescent Current (I _q)	I _O ≤ 1A	1	5	1	5	mA (max)
	$I_{O} = 1A, V_{IN} = V_{O(NOM)}$	9	50	9	50	mA (max)
Short Circuit Current	$R_{L} = 1\Omega$ (Note 7)	1.8	1.5	1.8	1.5	A (min)
Maximum Output Current	(Note 7)	1.8	1.5	1.8	1.5	A (min)
Ripple Rejection	V _{ripple} = 1 V _{rms} ,	58	50	58	50	dB (min)
	$f_{\text{ripple}} = 1 \text{ kHz}, I_{O} = 5 \text{ mA}$					
Output Noise Voltage	10 Hz–100 kHz, I _O = 5 mA	250	750	250	750	μV (max)
Long Term Stability	1000 Hours	2000		2000		ppm

Electrical Characteristics

 $V_{IN} = -5V + V_{O(NOM)}$ (Note 6) , $I_O = 1A$, $C_O = 47 \ \mu$ F, unless otherwise specified. **Boldface** limits apply over the entire operating temperature range, $-40^{\circ}C \le T_J \le 125^{\circ}C$, all other limits apply for $T_J = 25^{\circ}C$.

Parameter	Conditions	LM2990-12		LM2990-15		Units
		Тур	Limit	Тур	Limit	(Limit)
		(Note 4)	(Note 5)	(Note 4)	(Note 5)	
Output Voltage (V _O)	$5 \text{ mA} \le I_O \le 1\text{A}$		-11.76		-14.70	V (max)
			-12.24		-15.30	V (min)
		-12		-15		V
	$5 \text{ mA} \leq I_{O} \leq 1 \text{A}$		-11.40		-14.25	V (max)
			-12.60		-15.75	V (min)
Line Regulation	I _O = 5 mA,	6	60	6	60	mV (max
	$V_{O(NOM)} - 1V > V_{IN} > -26V$					
Load Regulation	$50 \text{ mA} \le I_O \le 1\text{A}$	3	50	3	50	mV (max
Dropout Voltage	I_{O} = 0.1A, $\Delta V_{O} \le 100 \text{ mV}$	0.1	0.3	0.1	0.3	V (max)
	I_{O} = 1A, $\Delta V_{O} \le 100 \text{ mV}$	0.6	1	0.6	1	V (max)
Quiescent Current (I _q)	I _O ≤ 1A	1	5	1	5	mA (max
	$I_{O} = 1A, V_{IN} = V_{O(NOM)}$	9	50	9	50	mA (max

260°C

Electrical Characteristics (Continued)

 $V_{IN} = -5V + V_{O(NOM)}$ (Note 6) , $I_O = 1A$, $C_O = 47 \ \mu$ F, unless otherwise specified. **Boldface** limits apply over the entire operating temperature range, $-40^{\circ}C \le T_J \le 125^{\circ}C$, all other limits apply for $T_J = 25^{\circ}C$.

		LM2990-12		LM2990-15		Units
Parameter	Conditions	Тур	Limit	Тур	Limit	(Limit)
		(Note 4)	(Note 5)	(Note 4)	(Note 5)	
Short Circuit Current	$R_{L} = 1\Omega$ (Note 7)	1.2	0.9	1.0	0.75	A (min)
Maximum Output Current	(Note 7)	1.8	1.4	1.8	1.4	A (min)
Ripple Rejection	V _{ripple} = 1 V _{rms} ,	52	42	52	42	dB (min)
	f_{ripple} = 1 kHz, I _O = 5 mA					
Output Noise Voltage	10 Hz–100 kHz, I _O = 5 mA	500	1500	600	1800	μV (max)
Long Term Stability	1000 Hours	2000		2000		ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Human body model, 100 pF discharged through a 1.5 $k\Omega$ resistor.

Note 3: The maximum power dissipation is a function of T_{Jmax} , θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{Jmax} - T_A)\theta_{IA}$. If this dissipation is exceeded, the die temperature will rise above 125°C, and the LM2990 will eventually go into thermal shutdown at a T_J of approximately 160°C. For the LM2990, the junction-to-ambient thermal resistance, is 53°C/W, 73°C/W for the TO-263, and the junction-to-case thermal resistance is 3°C. If the TO-263 package is used, the thermal resistance can be reduced by increasing the P.C. board copper area thermally connected to the package. Using 0.5 square inches of copper area, θ_{JA} is 50°C/W; with 1 square inch of copper area, θ_{JA} is 37°C/W; and with 1.6 or more square inches of copper area, θ_{JA} is 32°C/W.

Note 4: Typicals are at $T_J = 25^{\circ}C$ and represent the most likely parametric norm.

Note 5: Limits are guaranteed and 100% production tested.

Note 6: $V_{O(NOM)}$ is the nominal (typical) regulator output voltage, -5V, -5.2V, -12V or -15V.

Note 7: The short circuit current is less than the maximum output current with the -12V and -15V versions due to internal foldback current limiting. The -5V and -5.2V versions, tested with a lower input voltage, does not reach the foldback current limit and therefore conducts a higher short circuit current level. If the LM2990 output is pulled above ground, the maximum allowed current sunk back into the LM2990 is 1.5A.

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at (V_{O} + 5V) input, dropout voltage is dependent upon load current and junction temperature.

Input Voltage: The DC voltage applied to the input terminals with respect to ground.

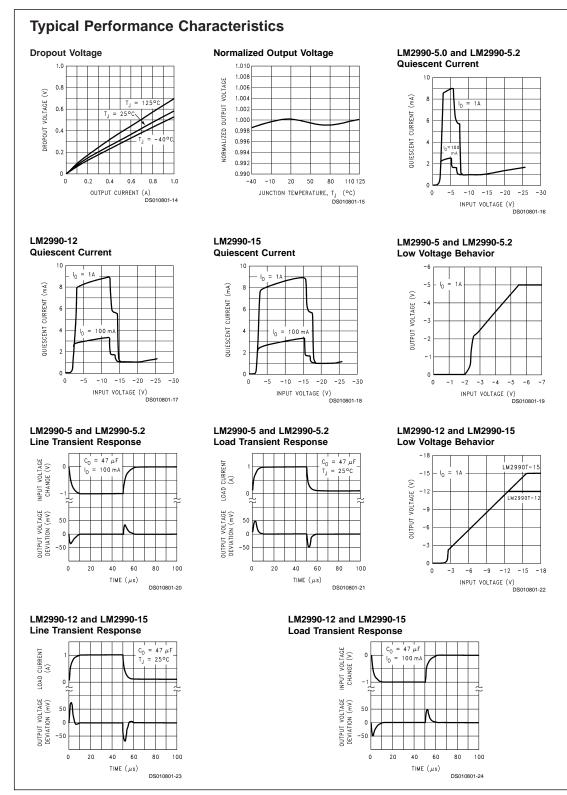
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.

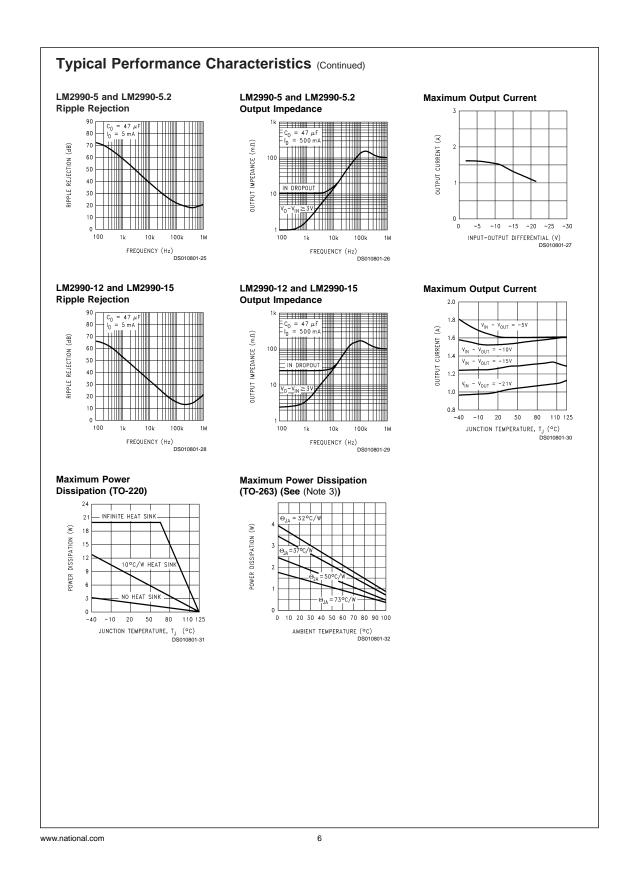
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

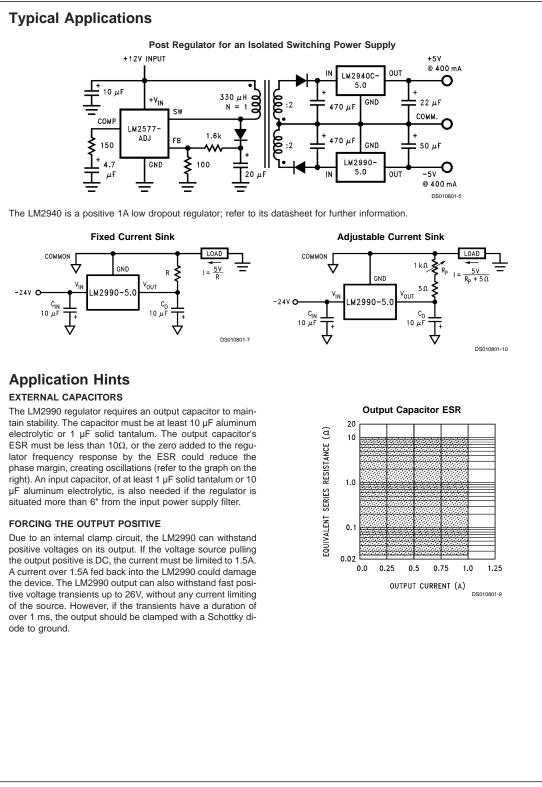
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accellerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.

Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

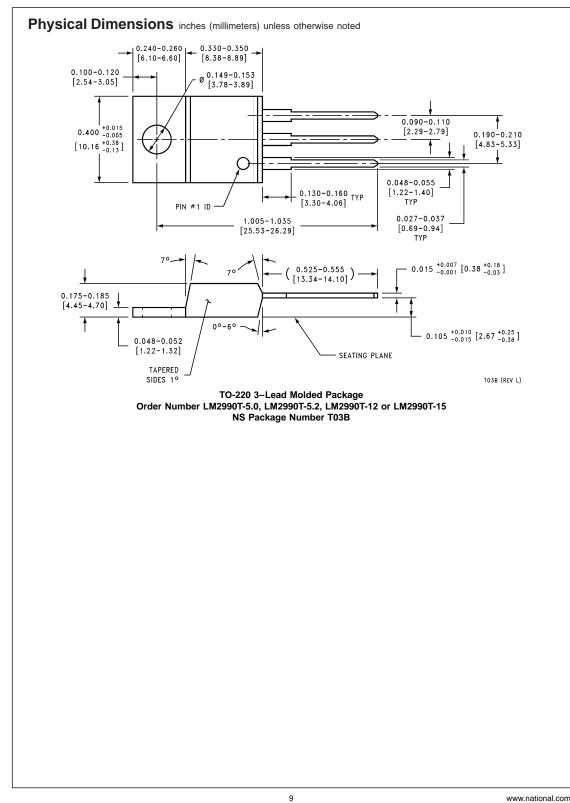

Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.

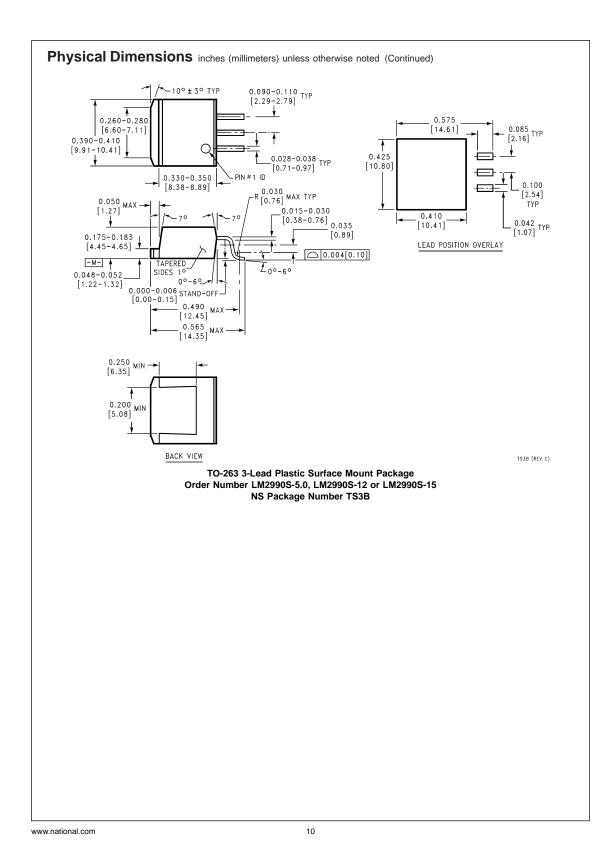

Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.

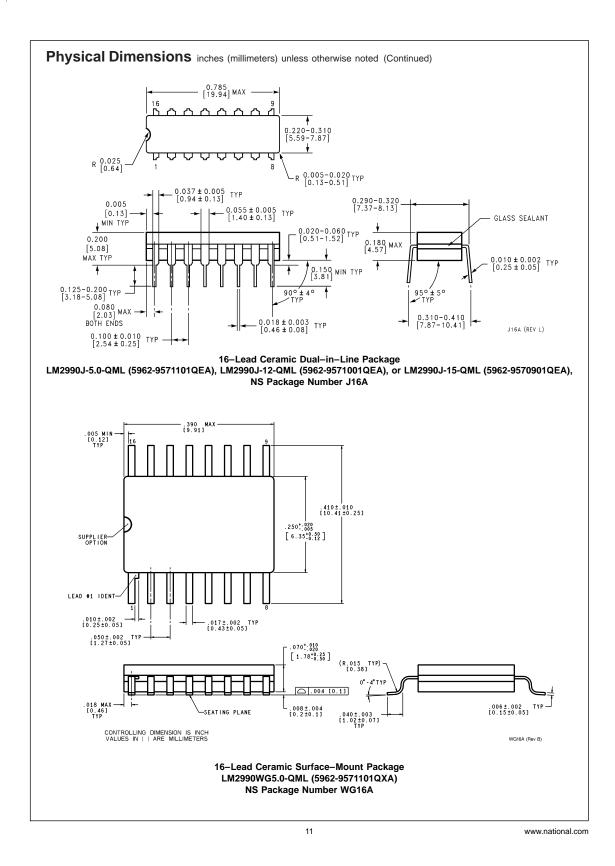

Temperature Stability of V_o: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

www.national.com

4







8

LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant support device or system whose failure to perform into the body, or (b) support or sustain life, and can be reasonably expected to cause the failure of whose failure to perform when properly used in the life support device or system, or to affect its accordance with instructions for use provided in the safety or effectiveness. labeling, can be reasonably expected to result in a significant injury to the user. National Semiconductor National Semiconductor National Semiconductor Asia Pacific Customer National Semiconductor Corporation Europe Japan Ltd. Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80 Tel: 81-3-5639-7560 Fax: 81-3-5639-7507 Response Group Tel: 65-2544466 Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Fax: 65-2504466 Email: support@nsc.com Email: sea.support@nsc.com

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.