

Absolute Maximum Ratings（Note 1）		Recommended Operating Conditions
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Free Air Ambient Temperature $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Supply Voltage $\quad+4.5 \mathrm{~V}$ to +5.5 V
V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V	Minimum Input Edge Rate（ $\Delta \mathrm{V} / \Delta \mathrm{t}$ ）
Input Voltage（Note 2）	-0.5 V to +7.0 V	Data Input $\quad 50 \mathrm{mV} / \mathrm{ns}$
Input Current（Note 2）	-30 mA to +5.0 mA	Enable Input $\quad 20 \mathrm{mV} / \mathrm{ns}$
Voltage Applied to Any Output in the Disabled or		
Power－off State	－0．5V to 5.5 V	
in the HIGH State	-0.5 V to V_{CC}	
Current Applied to Output in LOW State（Max）	twice the rated $\mathrm{loL}_{\text {L }}(\mathrm{mA})$	
DC Latchup Source Current	$-500 \mathrm{~mA}$	may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Over Voltage Latchup（／／O）	10 V	Note 2：Either voltage limit or current limit is sufficient to protect inputs

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}(\overline{\mathrm{OE}, \mathrm{T} / \overline{\mathrm{R}})}$
V_{OH}	Output HIGH Voltage	2.5			V	Min	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
		2.0			V	Min	$\mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
I_{H}	Input HIGH Current			1	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\overline{\mathrm{OE}, \mathrm{~T} / \bar{R})} \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}(\overline{\mathrm{OE}, \mathrm{~T} / \overline{\mathrm{R}})} \end{aligned}$
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}(\overline{\mathrm{OE}}, \mathrm{T} / \overline{\mathrm{R}})$
$\mathrm{l}_{\text {BVIT }}$	Input HIGH Current Breakdown Test（1／O）			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
ILL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{OE}, \mathrm{~T} / \overline{\mathrm{R}})} \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}(\overline{\mathrm{OE}, \mathrm{~T} / \overline{\mathrm{R}})} \end{aligned}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}(\overline{\mathrm{OE}}, \mathrm{~T} / \overline{\mathrm{R}})$ All Other Pins Grounded
$\mathrm{I}_{\mathrm{IH}}+\mathrm{I}_{\text {OZH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	$0-5.5 \mathrm{~V}$	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right) ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OzL }}$	Output Leakage Current			－10	$\mu \mathrm{A}$	0－5．5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right) ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
los	Output Short－Circuit Current	－100		－275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{l}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
Izz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \text {; } \\ & \text { All Others GND } \end{aligned}$
$\stackrel{I_{\text {CCH }}}{ }$	Power Supply Current			50	$\mu \mathrm{A}$	Max	All Outputs HIGH
${ }^{\text {CCL }}$	Power Supply Current			30	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {CCz }}$	Power Supply Current			50	$\mu \mathrm{A}$	Max	$\begin{aligned} & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~T} / \overline{\mathrm{R}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \text { All Other } \mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
${ }_{\text {ICCT }}$	Additional Outputs Enabled I cc／Input Outputs 3－STATE Outputs 3－STATE			$\begin{aligned} & \hline 2.5 \\ & 2.5 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	Max	$\begin{aligned} & \hline V_{1}=V_{C C}-2.1 \mathrm{~V} \\ & \mathrm{OE}, \mathrm{~T} / \overline{\mathrm{R}} \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { Data Input } \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} . \end{aligned}$
${ }^{\text {CCD }}$	Dynamic ICC ${ }_{\text {c }}$ No Load			0.1	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open $\overline{\mathrm{OE}}=\mathrm{GND}, \mathrm{~T} / \overline{\mathrm{R}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}}$ One Bit Toggling，50\％Duty Cycle

DC Electrical Characteristics
(SOIC package)

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}		0.7	1.0	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	-1.3	-1.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.7	3.1		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	2.0	1.7		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		0.9	0.6	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)

Note 3: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output at LOW. Guaranteed, but not tested.
Note 4: Max number of data inputs (n) switching. $\mathrm{n}-1$ inputs switching 0 V to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\mathrm{ILD}}$), 0 V to threshold ($\mathrm{V}_{\mathrm{IHD}}$) Guaranteed, but not tested.
Note 5: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

(SOIC and SSOP package)

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Outputs	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.7 \end{aligned}$	6.0 6.0	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output Disable Time	1.0 1.0	3.6 3.3	6.1 5.6	$\begin{aligned} & \hline 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 5.6 \end{aligned}$	ns

Extended AC Electrical Characteristics

(SOIC package)

Symbol	Parameter	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 6)			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 1 Output Switching (Note 7)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 8)		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {TOGGLE }}$	Max Toggle Frequency		100						MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Outputs	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & t_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & t_{\mathrm{PHZ}} \\ & t_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \hline 6.5 \\ & 5.6 \end{aligned}$	(Note 9)		(Note 9)		ns

Note 6: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase
(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 7: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
Note 8: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase
(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load

Note 9: The 3-STATE delays are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and have been excluded from the datasheet

*Includes jig and probe capacitance
FIGURE 1. Standard AC Test Load

$V_{M}=1.5 \mathrm{~V}$
FIGURE 2. Test Input Signal Levels

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{W}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements

AC Waveforms

FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 5. Propagation Delay, Pulse Width Waveforms

FIGURE 6. 3-STATE Output HIGH and LOW Enable and Disable Times

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M20B

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
