FAIRCHILD

SEMICONDUCTOR

MM74HC4066 Quad Analog Switch

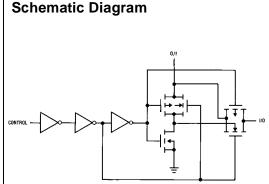
General Description

The MM74HC4066 devices are digitally controlled analog switches utilizing advanced silicon-gate CMOS technology. These switches have low "ON" resistance and low "OFF" leakages. They are bidirectional switches, thus any analog input may be used as an output and visa-versa. Also the MM74HC4066 switches contain linearization circuitry which lowers the "ON" resistance and increases switch linearity. The MM74HC4066 devices allow control of up to 12V (peak) analog signals with digital control signals of the same range. Each switch has its own control input which disables each switch when LOW. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to $V_{\rm CC}$ and ground.

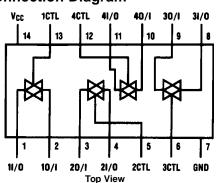
Features

- Typical switch enable time: 15 ns
- Wide analog input voltage range: 0–12V
- Low "ON" resistance: 30 typ. (MM74HC4066)

August 1984


Revised January 2000

- Low quiescent current: 80 µA maximum (74HC)
- Matched switch characteristics
- Individual switch controls


Ordering Code:

Order Number	Package Number	Package Description
MM74HC4066M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HC4066SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC4066MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC4066N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

Input	Switch
CTL	I/O–O/I
L	"OFF"
Н	"ON"

© 2000 Fairchild Semiconductor Corporation DS005355

www.fairchildsemi.com

(Note 2)

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

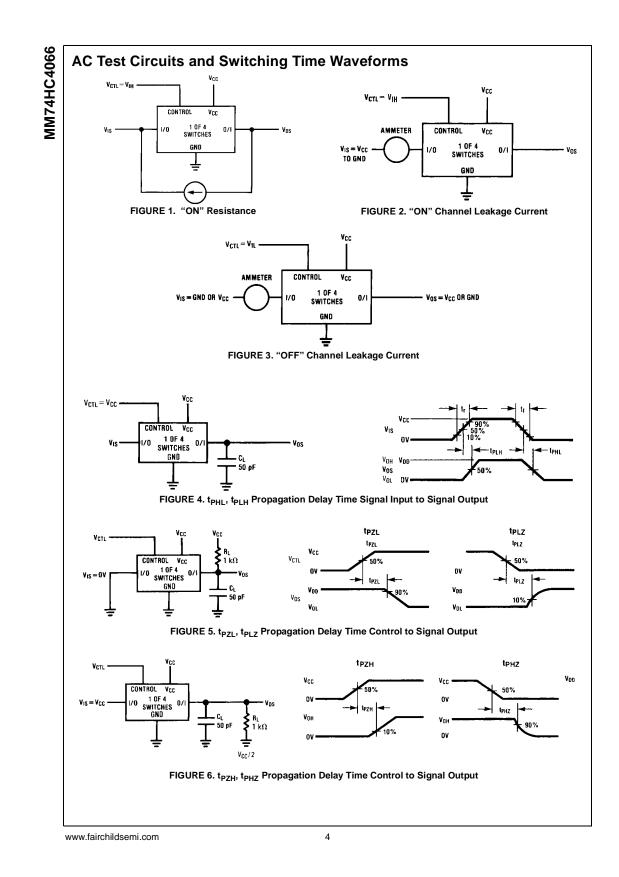
Supply Voltage (V _{CC})	-0.5 to +15V
DC Control Input Voltage (VIN)	-1.5 to V _{CC} +1.5V
DC Switch I/O Voltage (V _{IO})	$V_{\text{EE}}0.5$ to V_{CC} +0.5V
Clamp Diode Current (IIK, IOK)	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

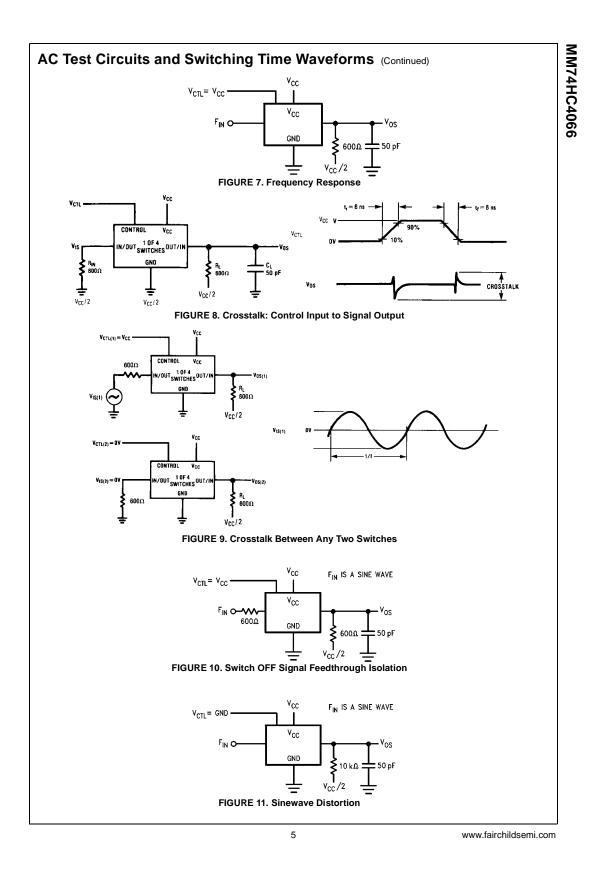
	Min	Max	Units
Supply Voltage (V _{CC})	2	12	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 9.0V$		400	ns
Note 1: Absolute Maximum Ratings are those	values be	yond whice	ch dam-

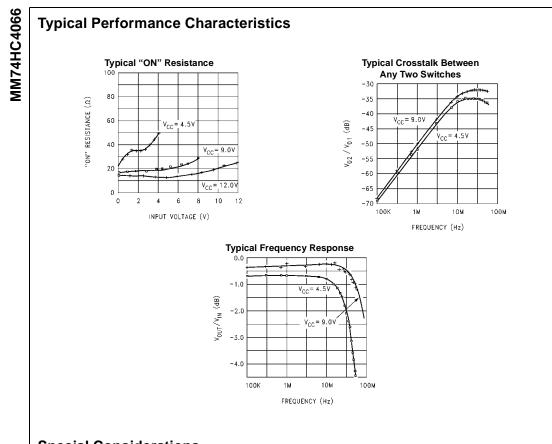
age to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

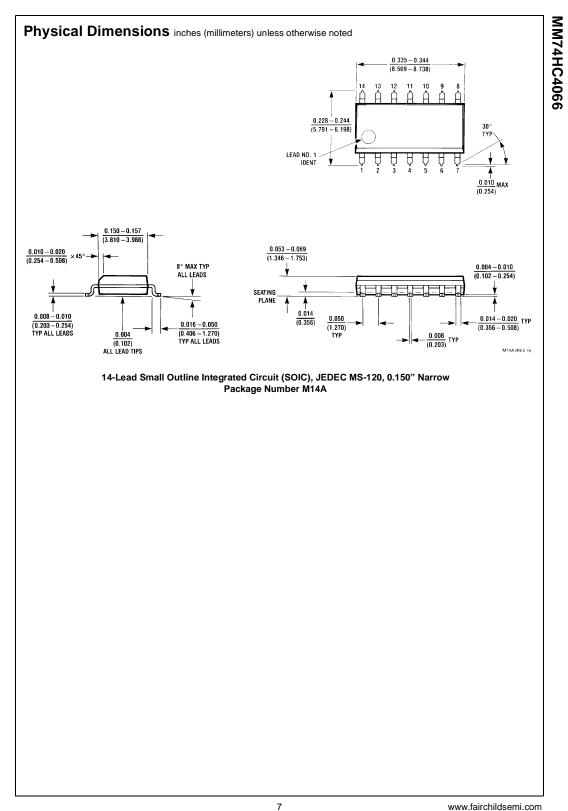

Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_A=-40$ to $85^\circ C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol				Тур		Guaranteed Limits		
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			9.0V		6.3	5.3	6.3	V
			12.0V		8.4	8.4	8.4	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			9.0V		2.7	2.7	2.7	V
			12.0V		3.6	3.6	3.6	V
R _{ON}	Maximum "ON" Resistance	$V_{CTL} = V_{IH}, I_{S} = 2.0 \text{ mA}$	4.5V	100	170	200	220	Ω
	(Note 5)	$V_{IS} = V_{CC}$ to GND	9.0V	50	85	105	110	Ω
		(Figure 1)	12.0	30	70	85	90	Ω
			2.0V	120	180	215	240	Ω
		$V_{CTL} = V_{IH}, I_{S} = 2.0 \text{ mA}$	4.5V	50	80	100	120	Ω
		$V_{IS} = V_{CC} or GND$	9.0V	35	60	75	80	Ω
		(Figure 1)	12.0V	20	40	60	70	Ω
R _{ON}	Maximum "ON" Resistance	V _{CTL} = V _{IH}	4.5V	10	15	20	20	Ω
	Matching	$V_{IS} = V_{CC}$ to GND	9.0V	5	10	15	15	Ω
			12.0V	5	10	15	3.15 6.3 8.4 0.5 1.35 2.7 3.6 220 110 90 240 120 80 70 20	Ω
I _{IN}	Maximum Control	$V_{IN} = V_{CC}$ or GND			±0.1	±1.0	8.4 0.5 1.35 2.7 3.6 220 110 90 240 120 80 70 20 15 15 ±1.0 ±600 ±800 ±1000 ±150	μA
	Input Current	$V_{CC} = 2 - 6V$						
I _{IZ}	Maximum Switch "OFF"	$V_{OS} = V_{CC}$ or GND	6.0V	10	±60	±600	±600	nA
	Leakage Current	$V_{IS} = GND \text{ or } V_{CC}$	9.0V	15	±80	±800	±800	nA
		V _{CTL} = V _{IL} (Figure 3)	12.0V	20	±100	±1000	±1000	nA
I _{IZ}	Maximum Switch "ON"	V _{IS} = V _{CC} to GND	6.0V	10	±40	±150	±150	nA
	Leakage Current	$V_{CTL} = V_{IH}$	9.0V	15	±50	±200	±200	nA
		V _{OS} = OPEN (Figure 2)	12.0V	20	±60	±300	±300	nA
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC} \text{ or } GND$	6.0V		2.0	20	40	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$	9.0V		4.0	40	80	μA
			12.0V		8.0	80	160	μΑ

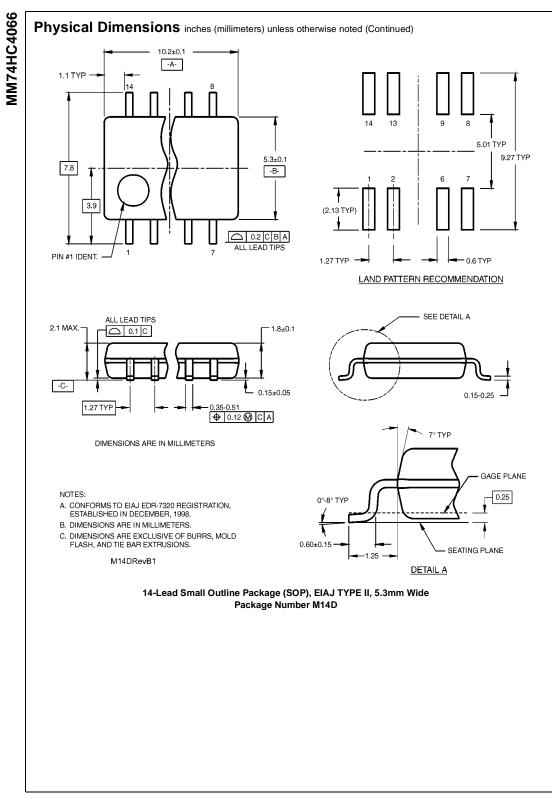

Note 4: For a power supply of 5V \pm 10% the worst case on resistance (R_{ON}) occurs for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.


Note 5: At supply voltages (V_{CC}-GND) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

	Conditions	V	T _A =	25°C	$T_A{=}{-}40$ to $85^\circ C$	$I_A = -55 \text{ to } 125^{\circ}\text{C}$	I Imit.
Parameter	Conditions	V _{CC}	Тур		Guaranteed L	imits	Units
Maximum Propagation		2.0V	25	50	30	75	ns
Delay Switch In to Out		4.5V	5	10	13	15	ns
		9.0V	4	8	10	12	ns
		12.0V	3	7	11	13	ns
Maximum Switch Turn	$R_L = 1 k\Omega$	2.0V	30	100	125	150	ns
'ON" Delay		4.5V	12	20	25	30	ns
		9.0V	6	12	15	18	ns
		12.0V	5	10	13	15	ns
Maximum Switch Turn	$R_L = 1 k\Omega$	2.0V	60	168	210	252	ns
OFF" Delay		4.5V	25	36	45	54	ns
		9.0V	20	32	40	48	ns
		12.0V	15	30	38	45	
Minimum Frequency	$R_L = 600\Omega$	4.5V	40		1		MH
Response (Figure 7)	V _{IS} = 2 V _{PP} at (V _{CC} /2)	9.0V	100				MH
$20 \log (V_0/V_1) = -3 dB$							
Crosstalk Between					1		
	=	4.5V	-52				dB
,	(, (,						dB
	$R_1 = 600\Omega$, $F = 1 MHz$						m٧
	=						m۷
		0.01	200				
•	=						
		4.5V	_12				dB
							dB
	$P = 10 k_0 C = 50 pE$	9.00	-44				uD
		4.51/	012				%
rigure II)							% %
Antimum Control	V _{IS} = O V _{PP}	9.00		10	10	10	
			5	10	10	10	pF
· ·			20				~ 5
			20				pF
							_
-	V _{CTL} = GND		0.5				pF
•							_
•			15				pF
	faximum Switch Turn DFF" Delay finimum Frequency tesponse (Figure 7) 0 log $(V_0/V_1) = -3$ dB rosstalk Between ny Two Switches Figure 8) teak Control to Switch eedthrough Noise (Figure 9) witch OFF Signal eedthrough solation Figure 10) total Harmonic bistortion Figure 11) faximum Control put Capacitance faximum Switch total Capacitance faximum Feedthrough capacitance fower Dissipation capacitance	faximum Switch Turn $R_L = 1 \text{ k}\Omega$ DFF" Delay $R_L = 600\Omega$ tesponse (Figure 7) $V_{IS} = 2 \text{ V}_{PP} \text{ at } (V_{CC}/2)$ $0 \text{ log } (V_0/V_I) = -3 \text{ dB}$ (Note 6) (Note 7) rosstalk Between $R_L = 600\Omega, F = 1 \text{ MHz}$ ny Two Switches (Note 7) (Note 8) Figure 8) Feak Control to Switch readthrough Noise (Figure 9) $R_L = 600\Omega, F = 1 \text{ MHz}$ witch OFF Signal $R_L = 600\Omega, F = 1 \text{ MHz}$ vedthrough $V_{ICT} V_{IL}$ eedthrough $V_{ICT} V_{IL}$ isolation (Note 7) (Note 8) Figure 10) $R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF},$ otal Harmonic $R_L = 10 \text{ k}\Omega, C_L = 50 \text{ pF},$ Figure 11) $V_{IS} = 4 \text{ V}_{PP}$ $V_{IS} = 4 \text{ V}_{PP}$ $V_{IS} = 8 \text{ V}_{PP}$ faximum Control $P_{IS} = 8 \text{ V}_{PP}$ faximum Switch $V_{CTL} = \text{GND}$ sapacitance P_{IS} for Usipation P_{IS} sapacitance $V_{CTL} = \text{GND}$ sapacitance $P_{IS} = 1 \text{ kHz} (Null R_L/R_{ON} \text{ Attenuation}). $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $

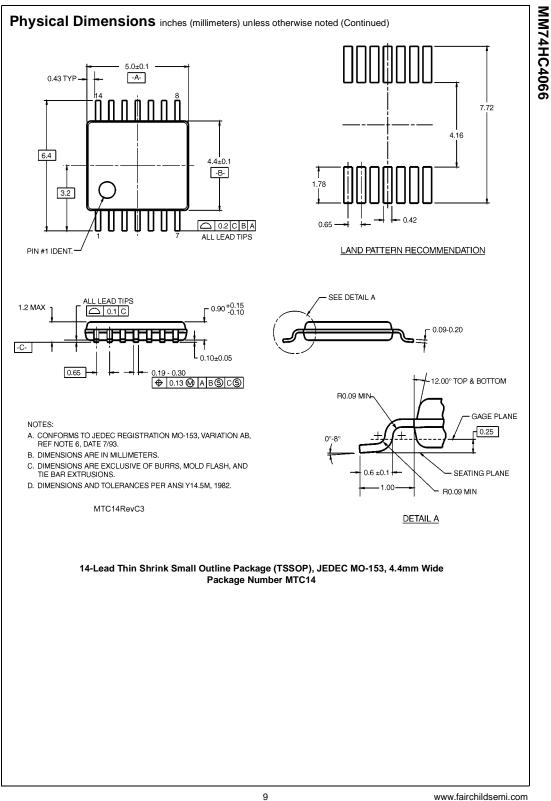
MM74HC4066

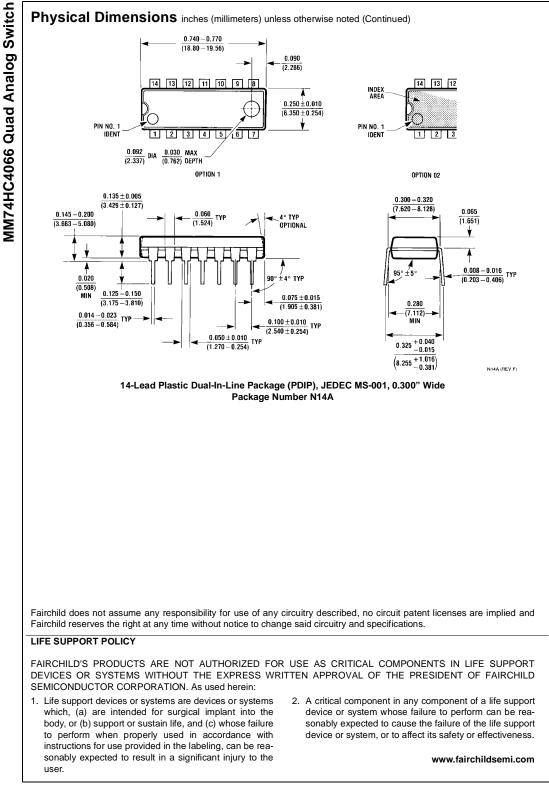



Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into

the analog switch input pins, the voltage drop across the switch must not exceed 0.6 V (calculated from the ON resistance).


www.fairchildsemi.com



www.fairchildsemi.com

8

www.fairchildsemi.com

10