

Truth Table

Inputs			Outputs		
$\overline{\text { Clear }}$	A	B	Q	$\overline{\mathbf{Q}}$	
L	X	X	L	H	
X	H	X	L	H	
X	X	L	L	H	
H	L	\uparrow		U	
H	\downarrow	H	Ω	U	
\uparrow	L	H	Ω	U	

[^0]Logic Diagram

Absolute Maximum Ratings(Note 1)

 (Note 2)Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$
DC Input Voltage $\left(\mathrm{V}_{\mathbb{N}}\right)$
DC Output Voltage (V $\mathrm{V}_{\text {OUT }}$)
Clamp Diode Current ($\mathrm{I}_{\mathrm{I}}, \mathrm{l}_{\mathrm{OK}}$)
DC Output Current, per pin (lout)
DC V_{CC} or GND Current, per pin (ICC)
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
Power Dissipation (P_{D})
(Note 3)
S.O. Package only

Lead Temperature (T_{L})
(Soldering 10 seconds)
-0.5 V to +7.0 V
-1.5 V to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
600 mW 500 mW

Recommended Operating

 Conditions| | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2 | 6 | V |
| DC Input or Output Voltage | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}\right)$ | | | |

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} \mid \mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$		Units
				Typ		Guaranteed Li	imits	
V_{IH}	Minimum HIGH Level Input Voltage		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { IL }}$	Maximum LOW Level Input Voltage		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \hline 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\text {OUT }} \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}}$ OL	Maximum LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 4 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\overline{I_{\mathrm{N}}}$	Maximum Input Current (Pins 7, 15)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.5	± 5.0	± 5.0	$\mu \mathrm{A}$
I_{IN}	Maximum Input Current (all other pins)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
$\overline{\mathrm{I} C}$	Maximum Quiescent Supply Current (standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		8.0	80	160	$\mu \mathrm{A}$
$\overline{\mathrm{I} C}$	Maximum Active Supply Current (per monostable)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{R} / \mathrm{C}_{\mathrm{EXT}}=0.5 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 36 \\ 0.33 \\ 0.7 \end{gathered}$	$\begin{aligned} & 80 \\ & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 1.3 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 130 \\ & 1.6 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$

Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst-case output voltages $\left(\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}\right)$ occur for HC at 4.5 V . Thus the 4.5 V values should be used when design
ing with this supply. Worst-case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst-case leakage current
$\left(\mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{CC}}\right.$, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	Typ	Limit	Units
$\mathrm{t}_{\text {PLH }}$	Maximum Trigger Propagation Delay A, B or Clear to Q		22	33	ns
${ }_{\text {tPHL }}$	Maximum Trigger Propagation Delay A, B or Clear to \bar{Q}		25	42	ns
${ }_{\text {tPHL }}$	Maximum Propagation Delay, Clear to Q		20	27	ns
$\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay, Clear to \bar{Q}		22	33	ns
t_{W}	Minimum Pulse Width, A, B or Clear		14	26	ns
$\mathrm{t}_{\text {REM }}$	Minimum Clear Removal Time			0	ns
$t_{\text {WQ(MIN }}$	Minimum Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=28 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \end{aligned}$	400		ns
$t_{\text {WQ }}$	Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=1000 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \end{aligned}$	10		$\mu \mathrm{s}$

AC Electrical Characteristics

Symbol	Parameter	Conditions		V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$		Units	
				Typ		Guaranteed L	mits			
$\mathrm{t}_{\text {PLH }}$	Maximum Trigger Propagation Delay, A, B or Clear to Q				$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 77 \\ & 26 \\ & 21 \end{aligned}$	$\begin{gathered} 169 \\ 42 \\ 32 \end{gathered}$	$\begin{gathered} \hline 194 \\ 51 \\ 39 \end{gathered}$	$\begin{gathered} \hline 210 \\ 57 \\ 44 \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {PHL }}$	Maximum Trigger Propagation Delay, A, B or Clear to \bar{Q}			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 88 \\ & 29 \\ & 24 \end{aligned}$	$\begin{gathered} 197 \\ 48 \\ 38 \end{gathered}$	$\begin{gathered} 229 \\ 60 \\ 46 \end{gathered}$	$\begin{gathered} 250 \\ 67 \\ 51 \end{gathered}$	ns ns ns	
$\overline{t_{\text {PHL }}}$	Maximum Propagation Delay Clear to Q			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 54 \\ & 23 \\ & 19 \end{aligned}$	$\begin{gathered} \hline 114 \\ 34 \\ 28 \end{gathered}$	$\begin{gathered} 132 \\ 41 \\ 33 \end{gathered}$	$\begin{gathered} \hline 143 \\ 45 \\ 36 \end{gathered}$	ns ns ns	
$\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Clear to \bar{Q}			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 56 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 116 \\ & 36 \\ & 29 \end{aligned}$	$\begin{gathered} 135 \\ 42 \\ 34 \end{gathered}$	$\begin{gathered} 147 \\ 46 \\ 37 \end{gathered}$	ns ns ns	
t_{W}	Minimum Pulse Width A, B, Clear			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 57 \\ & 17 \\ & 12 \end{aligned}$	$\begin{gathered} 123 \\ 30 \\ 21 \end{gathered}$	$\begin{gathered} \hline 144 \\ 37 \\ 27 \end{gathered}$	$\begin{gathered} 157 \\ 42 \\ 30 \end{gathered}$	ns ns ns	
$\mathrm{t}_{\text {REM }}$	Minimum Clear Removal Time			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns ns ns	
$\overline{\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}}$	Maximum Output Rise and Fall Time			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns ns ns	
$\mathrm{t}_{\text {WQ(MIN) }}$	Minimum Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=28 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{EXT}}=6 \mathrm{k} \Omega(\mathrm{~V} \end{aligned}$	$c=2 V)$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 450 \\ & 380 \end{aligned}$				$\mu \mathrm{s}$ ns ns	
$t_{\text {WQ }}$	Output Pulse Width	$\begin{aligned} & \mathrm{C}_{\mathrm{EXT}}=0.1 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \end{aligned}$	Mn	5.0 V	1	0.9	0.86	0.85	ms	
			Max	5.0 V	1	1.1	1.14	1.15	ms	
$\overline{\mathrm{C}_{\text {IN }}}$	Maximum Input Capacitance (Pins 7 \& 15)				12	20	20	20	pF	
C_{IN}	Maximum Input Capacitance (other inputs)				6	10	10	10	pF	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	(Note 5)			70				pF	

Note 5: $C_{P D}$ determines the no load dynamic power consumption, $P_{D}=C_{P D} V_{C C} 2 f+I_{C C} V_{C C}$, and the no load dynamic current consumption, $I_{S}=C_{P D} V_{C C} f+I_{C C}$.
www.fairchildsemi.com

Theory of Operation

1POSITIVE EDGE TRIGGER
2NEGATIVE EDGE TRIGGER
3POSITIVE EDGE TRIGGER
4POSITIVE EDGE RE-TRIGGER (PULSE LENGTHENING)
5RESET PULSE SHORTENING
6CLEAR TRIGGER

FIGURE 1.

TRIGGER OPERATION

As shown in Figure 1 and the logic diagram, before an input trigger occurs, the one shot is in the quiescent state with the Q output LOW, and the timing capacitor $\mathrm{C}_{\mathrm{EXT}}$ completely charged to V_{CC}. When the trigger input A goes from V_{CC} to GND (while inputs B and clear are held to V_{CC}) a valid trigger is recognized, which turns on comparator C1 and Nchannel transistor N11. At the same time the output latch is set. With transistor N 1 on, the capacitor $\mathrm{C}_{\text {EXT }}$ rapidly discharges toward GND until $\mathrm{V}_{\text {REF } 1}$ is reached. At this point the output of comparator C 1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C 2 turns on. With transistor N1 off, the capacitor $\mathrm{C}_{\mathrm{EXT}}$ begins to charge through the timing resistor, $\mathrm{R}_{\mathrm{EXT}}$, toward V_{Cc}. When the voltage across $\mathrm{C}_{\mathrm{EXT}}$ equals $\mathrm{V}_{\text {REF2 }}$, comparator C 2 changes state causing the output latch to reset (Q goes LOW) while at the same time disabling comparator C2. This ends the timing cycle with the monostable in the quiescent state, waiting for the next trigger.
A valid trigger is also recognized when trigger input B goes from GND to V_{CC} (while input A is at GND and input clear is at $\mathrm{V}_{C C}{ }^{2}$). The MM74HC123A can also be triggered when clear goes from GND to $V_{C C}$ (while A is at GND and B is at $V_{C C} 6$).
It should be noted that in the quiescent state $\mathrm{C}_{\mathrm{EXT}}$ is fully charged to V_{CC} causing the current through resistor $\mathrm{R}_{\text {EXT }}$ to be zero. Both comparators are "off" with the total device current due only to reverse junction leakages. An added feature of the MM74HC123A is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of
the value of $\mathrm{C}_{\mathrm{EXT}}, \mathrm{R}_{\mathrm{EXT}}$, or the duty cycle of the input waveform.

RETRIGGER OPERATION

The MM74HC123A is retriggered if a valid trigger occurs 3 followed by another trigger 4 before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at the $\mathrm{R} / \mathrm{C}_{\mathrm{EXT}}$ pin has begun to rise from $V_{\text {REF1 } 1}$, but has not yet reached $V_{\text {REF2 }}$, will cause an increase in output pulse width T . When a valid retrigger is initiated 4, the voltage at the $\mathrm{R} / \mathrm{C}_{\text {EXT }}$ pin will again drop to $\mathrm{V}_{\text {REF1 }}$ before progressing along the RC charging curve toward V_{CC}. The Q output will remain HIGH until time T , after the last valid retrigger.
Because the trigger-control circuit flip-flop resets shortly after C_{X} has discharged to the reference voltage of the lower reference circuit, the minimum retrigger time, t_{rr} is a function of internal propagation delays and the discharge time of C_{x} :

$$
t_{\mathrm{rr}} \approx 20+\frac{187}{V_{\mathrm{CC}}-0.7}+\frac{565+\left(0.256 V_{\mathrm{CC}}\right) C_{X}}{\left[V_{\mathrm{CC}}-0.7\right]^{2}}
$$

Another removal/retrigger time occurs when a short clear pulse is used. Upon receipt of a clear, the one shot must charge the capacitor up to the upper trip point before the one shot is ready to receive the next trigger. This time is dependent on the capacitor used and is approximately:

$$
t_{\mathrm{rr}}=196+\frac{640}{V_{\mathrm{CC}}-0.7}+\frac{522+\left(0.3 V_{\mathrm{CC}}\right) C_{X}}{\left(V_{\mathrm{CC}}-0.7\right)^{2}} \mathrm{~ns}
$$

RESET OPERATION

These one shots may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on clear sets the reset latch and causes the capacitor to be fast charged to V_{CC} by turning on transistor Q1 5. When the voltage on the capacitor reaches $\mathrm{V}_{\text {REF2 }}$, the reset latch will clear and then be ready to accept another pulse. If the
clear input is held low, any trigger inputs that occur will be inhibited and the Q and Q outputs of the output latch will not change. Since the Q output is reset when an input lowlevel is detected on the Clear input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

Note: R and C are not subjected to temperature. The C is polypropylene

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

[^0]: H = HIGH Level
 L = LOW Level
 $\uparrow=$ Transition from LOW-to-HIGH
 $\downarrow=$ Transition from HIGH-to-LOW
 $\Omega=$ One HIGH Level Pulse
 $\tau=$ One LOW Level Pulse
 X = Irrelevant

