74F245 Octal Bidirectional Transceiver with 3-STATE Outputs

FAIRCHILD

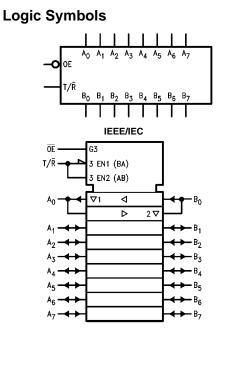
SEMICONDUCTOR

74F245 Octal Bidirectional Transceiver with 3-STATE Outputs

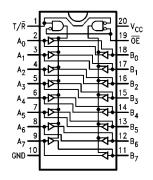
General Description

The 74F245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at the A Ports and 64 mA at the B Ports. The Transmit/Receive (T/ \overline{R}) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A Ports to B Ports; Receive (active LOW) enables data from B Ports to A Ports. The Output

Enable input, when HIGH, disables both A and B Ports by placing them in a High Z condition.


Features

- Non-inverting buffers
- Bidirectional data path
- A outputs sink 24 mA
- B outputs sink 64 mA


Ordering Code:

Order Number	Package Number	Package Description					
74F245SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
74F245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74F245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide					
74F245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide					
74F245PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS009503.prf

74F245

Unit Loading/Fan Out

	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
OE	Output Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA		
T/R	Transmit/Receive Input	1.0/2.0	20 μA/–1.2 mA		
A ₀ –A ₇	Side A Inputs or	3.5/1.083	70 μA/–0.65 mA		
	3-STATE Outputs	150/40(38.3)	-3 mA/24 mA (20 mA)		
B ₀ –B ₇	Side B Inputs or	3.5/1.083	70 μA/–0.65 mA		
	3-STATE Outputs	600/106.6(80)	–12 mA/64 mA (48 mA		

Truth Table

Inpu	its	Output			
OE	T/R	- Output			
L	L	Bus B Data to Bus A			
L	н	Bus A Data to Bus B			
н	Х	High Z State			

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V_{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

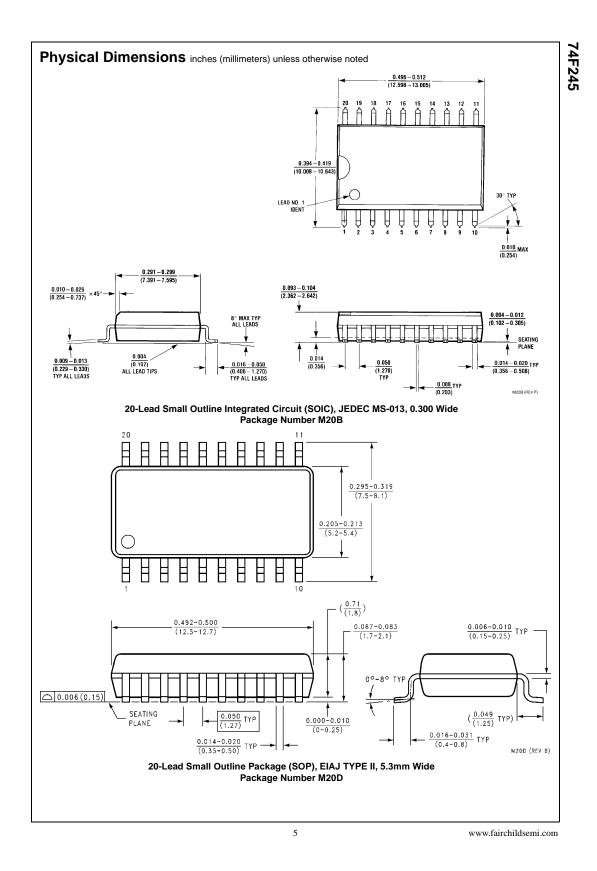
Recommended Operating Conditions

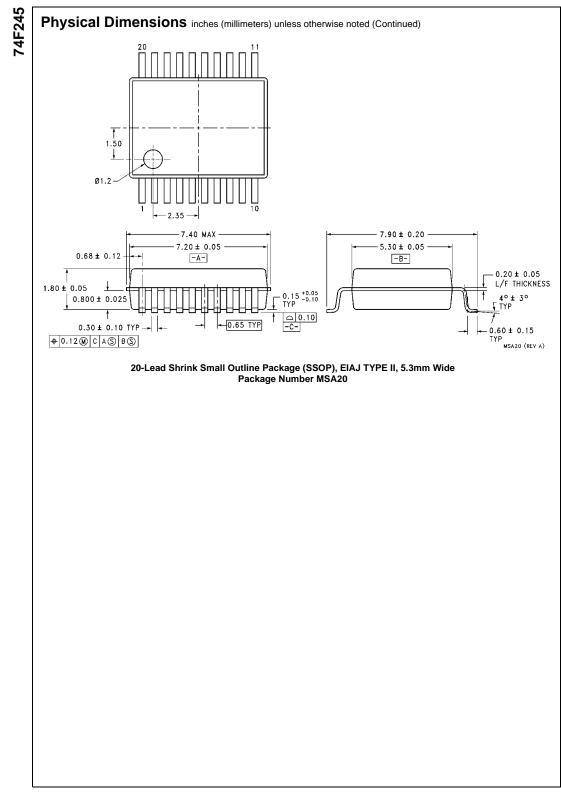
Free Air Ambient Temperature Supply Voltage 74F245

0°C to +70°C +4.5V to +5.5V

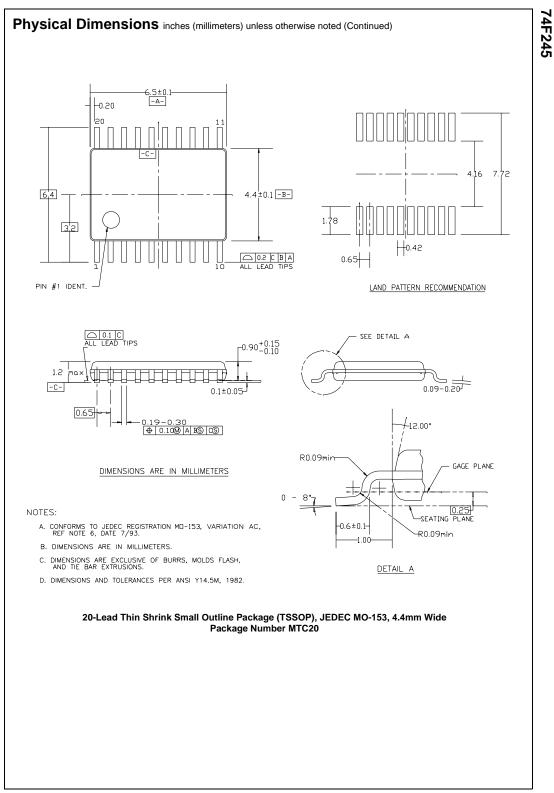
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

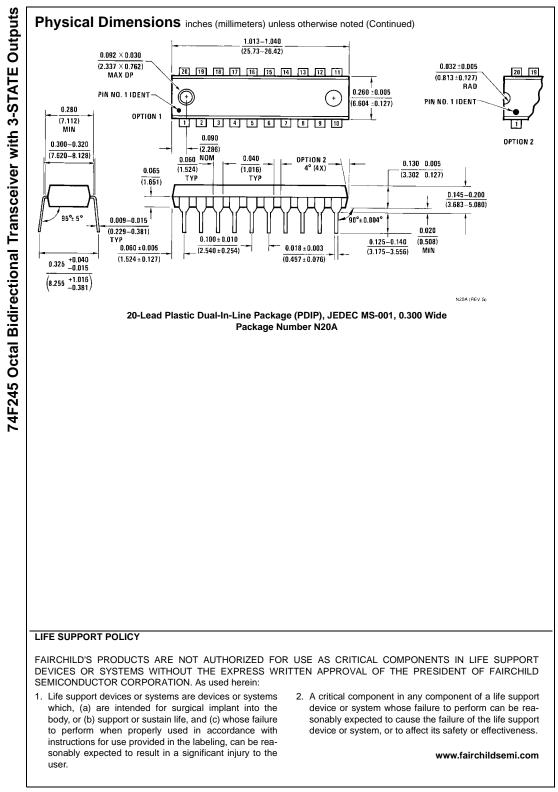
Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter	meter		Min Typ		Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage)			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA} (A_n)$
		10% V _{CC}	2.0					$I_{OH} = -15 \text{ mA} (B_n)$
		5% V_{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n)$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	$I_{OL} = 24 \text{ mA} (A_n)$
		10% V _{CC}			0.55			$I_{OL} = 64 \text{ mA} (B_n)$
IIH	Input HIGH Current				5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Break	down Test			7.0	μΑ	Max	$V_{IN} = 7.0V (\overline{OE}, T/\overline{R})$
I _{BVIT}	Input HIGH Current Break	down (I/O)			0.5	mA	Max	V _{IN} = 5.5 V (A _n , B _n)
I _{CEX}	Output HIGH Leakage Cur	rent			50	μA	Max	$V_{OUT} = V_{CC} (A_n, B_n)$
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test							All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μΑ	0.0	V _{IOD} = 150 mV
	Circuit Current							All Other Pins Grounded
IIL	Input LOW Current				-1.2	mA	Max	$V_{IN} = 0.5V (T/\overline{R}, \overline{OE})$
I _{IH} + I _{OZH}	Output Leakage Current				70	μA	Max	$V_{OUT} = 2.7V (A_n, B_n)$
I _{IL} + I _{OZL}	Output Leakage Current				-650	μA	Max	$V_{OUT} = 0.5V (A_n, B_n)$
los	Output Short-Circuit Curre	nt	-60		-150	mA	Max	$V_{OUT} = 0V (A_n)$
			-100		-225			$V_{OUT} = 0V (B_n)$
I _{ZZ}	Bus Drainage Test				500	μA	0.0V	$V_{OUT} = 5.25V(A_n, B_n)$
I _{CCH}	Power Supply Current			70	90	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			95	120	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			85	110	mA	Max	V _O = HIGH Z

AC Electrical Characteristics


Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0$ $C_L = 50 \text{ pF}$	/		C to +125°C 50 pF	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.2	6.0	2.0	7.5	2.0	7.0	ns
t _{PHL}	A _n to B _n or B _n to A _n	2.5	4.2	6.0	2.0	7.5	2.0	7.0	
t _{PZH}	Output Enable Time	3.0	5.3	7.0	2.5	9.0	2.5	8.0	
t _{PZL}		3.5	6.0	8.0	3.0	10.0	3.0	9.0	ns
t _{PHZ}	Output Disable Time	2.0	5.0	6.5	2.0	9.0	2.0	7.5	
t _{PLZ}		2.0	5.0	6.5	2.0	10.0	2.0	7.5	



www.fairchildsemi.com

6

7

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.