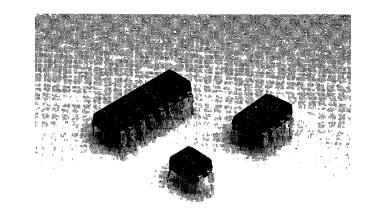
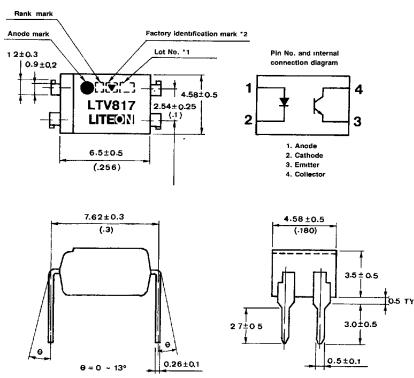


High Density Mounting Type Photocoupler

LEV817/LEV827/LEV847

T.41-83

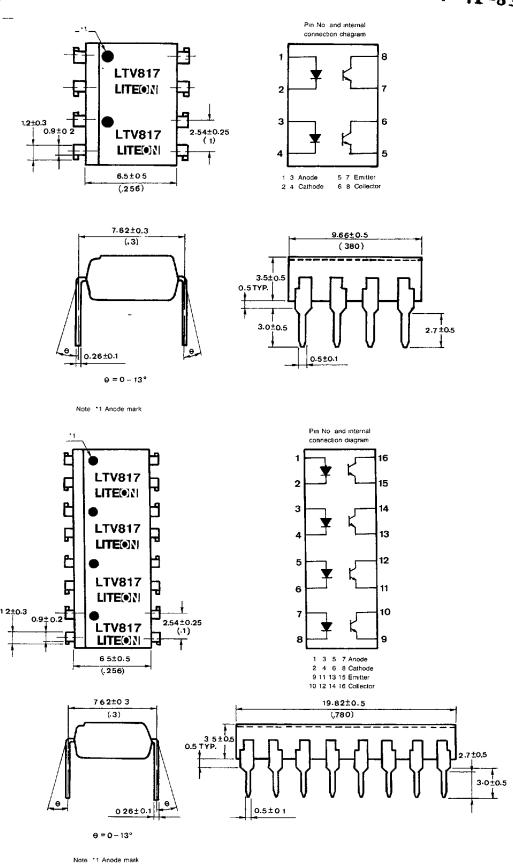

■ FEATURES


- Current transfer ratio CTR: MIN. 50% at I_F = 5mA, V_{CE} = 5V
- 2. High input-output isolation voltage (V_{ISO}: 5,000 Vrms)
- Compact dual-in-line package LTV817: 1-channel type, LTV827: 2-channel type LTV847: 4-channel type
- 4. UL. approved (No. E 113898(s))

■ APPLICATIONS

- 1. Computer terminals
- 2. System appliances, measuring instruments
- 3. Registers, copiers, automatic vending machines
- 4. Electric home appliances such as fan heaters, etc.
- 5. Medical instruments, physical and chemical equipments.
- Signal transmission between circuits of different potentials and impedances

■ OUTLINE DIMENSIONS (UNIT: mm)



- "1 2-digit number marked according to DIN standard
- *2 Two versions available, one with factory identification mark and the other without

A-82

97

T-41-83

This Material Copyrighted By Its Respective Manufacturer

A-83

98

■ RATINGS AND CHARACTERISTICS

• Absolute maximum ratings

(Ta = 25 °C)

	Parameter	Symbol	Rating	Unit
Input	Forward current	lF	50	mA
	*1 Peak forward current	l _{EM}	1	А
	Reverse voltage	V _R	6	٧
	Power dissipation	Р	70	mW
Output	Collector-emitter voltage	VCEO	35	V
	Emitter-collector voltage	VECO	6	V
	Collector current	lC	50	mA
	Collector power dissipation	PC	150	mW
Total power dissipation		P _{tot}	200	mW
Operating temperature		^T opr	-30 ~ +100	°C
Storage temperature		T _{stg}	−55~+125	°C
* 2 Isolation voltage		V _{ISO}	5	kVrms
*3 Soldering temperature		T _{sol}	260	°C

^{*1} Pulse width \leq 100 μ s, Duty ratio 0.001

^{*2} AC for 1 minute, 40~60% R.H.

^{*3} For 10 seconds

T-41-83

• Electro-optical characteristics

(Ta = 25°C)

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Input	Forward voltage	VF		1.2	1.4	V	1 _F = 20mA	
	Peak forward voltage	VFM		_	3.0	V	I _{FM} = 0.5A	
	Reverse current	lR	_	_	10	μΑ	V _R = 4V	
	Terminal capacitance	Ct	_	30	250	рF	V = 0, f = 1kHz	
Output	Collector dark current	ICEO		_	100	nA	V _{CE} =20V, I _F =0, R _{BE} =∞	
	Collector-emitter breakdown voltage	BVCEO	35	_	_	٧	I _C =0.1mA, I _F =0	
	Emitter-collector breakdown voltage	BVECO	6	_	_	٧	I _E = 10μA, I _F = 0	
Transfer characteristics	* Collector current	lC	2.5	_	30	mA	I _F =5mA, V _{CE} =5V	
	Collector-emitter saturation voltage	V _{CE} (sat)		0.1	02	V	I _F =20mA, I _C =1mA	
	Isolation resistance	R _{ISO}	5×10¹º	1011		Ω	500V DC, 40~60% R.H.	
	Floating capacitance	Cf	_	0.6	1.0	pF	V=0, f=1 MHz	
	Cut-off frequency	f _C	_	80	_	kHz	$V_{CE} = 5V$, $I_{C} = 2mA$ $R_{L} = 100\Omega$, $-3dB$	
	Response time (Rise)	t _r	_	4	18	μS	$V_{CE} = 2V$, $I_{C} = 2mA$, $R_L = 100\Omega$	
	Response time (Fall)	t _f		3	18	μS		

A-85 100 *CTR = $\frac{IC}{IF}$ × 100%

■ SUPPLEMENT

- Isolation voltage shall be measured in the following method.
 - (1) Anode and cathode on input side, collector and emitter on output side shall be shortened individually.
 - (2) The isolation voltage tester with a zero-cross circuit shall be used.
 - (3) The waveform of applied voltage shall be a sine wave.
 (It is recommended that the isolation voltage shall be measured in insulation oil.)

• Rank table of collector current IC (for LTV 817 only)

Model No.	Rank mark	IC (mA)
LTV817A	A	4.0~8.0
LTV817B	В	6.5~13
LTV817C	С	10~20
LTV817D	D	15~30
LTV817	A, B, C, D or No mark	2.5~30

Conditions	IF = 5mA VCE = 5V	
	Ta=25°C	

Inspection standard

Outgoing inspection standard for LITON products are shown below.

(1) A single sampling plan, normal inspection level II based on MIL-STD-105D is applied. The AQL according to the inspection items are shown below.

Defect	Inspection item	AQL (%)	Judgement criterion	
Major defect	Electrical characteristicsUnreadable markingOpen, short	0 25	Depend on the specification	
Minor defect	AppearanceDimension	0.4		

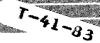


Fig. 1 Forward Current vs. Ambient Temperature

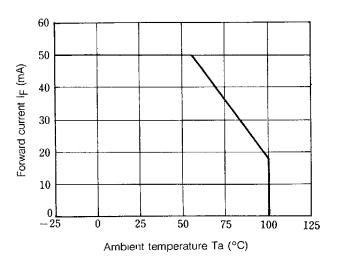


Fig. 3 Peak Forward Current vs. Duty Ratio

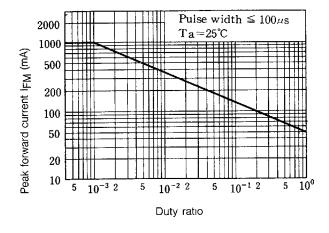


Fig. 5. Forward Current vs. Forward Voltage

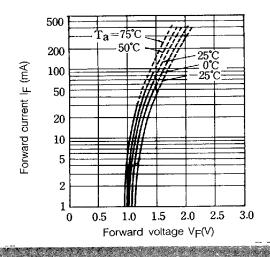


Fig. 2 Collector Power Dissipation vs.
Ambient Temperature

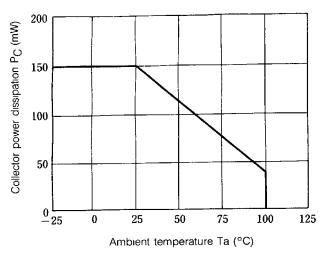


Fig. 4 Current Transfer Ratio vs. Forward Current

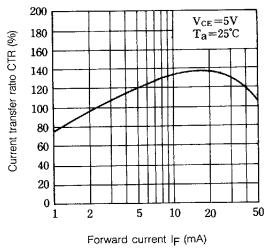


Fig. 6 Collector Current vs.
Collector-emitter Voltae

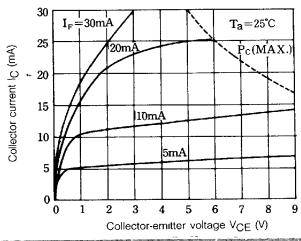


Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature

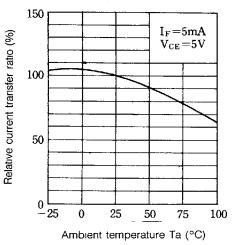


Fig. 9 Collector Dark Current vs.
Ambient Temperature

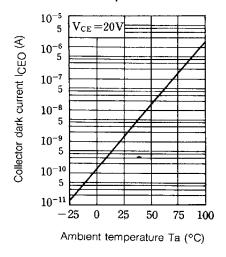


Fig. 11 Frequency Response

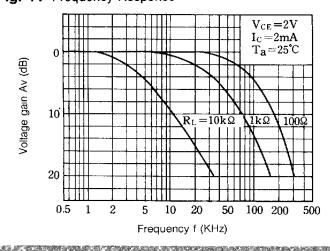


Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

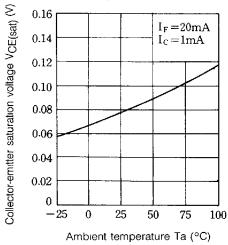


Fig. 10 Response Time vs. Load Resistance

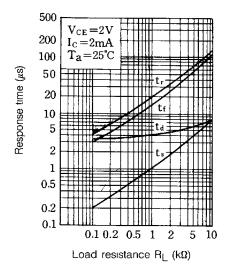
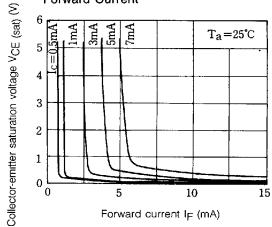
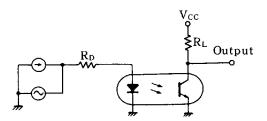



Fig. 12 Collector-emitter Saturation Voltage vs.
Forward Current

A-88 103

T-41-83


Test Circuit for Response Time

nput R_D

R_L Output Input
Output

10%

Test Circuit for Frequency Response

A-89

104