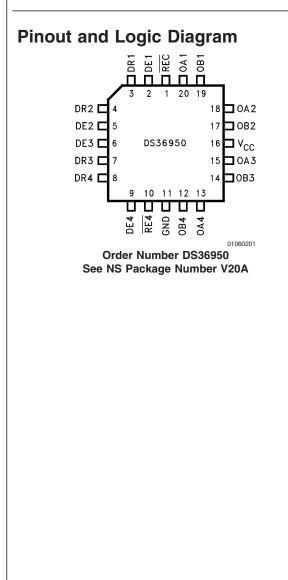
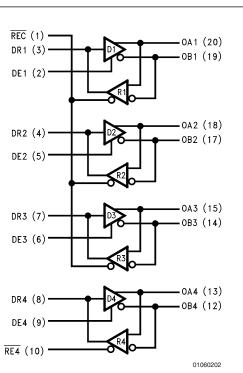
July 1998

DS36950 Quad Differential Bus Transceiver General Description


The DS36950 is a low power, space-saving quad EIA-485 differential bus transceiver especially suited for high speed, parallel, multipoint, computer I/O bus applications. A compact 20-pin surface mount PLCC package provides high transceiver integration and a very small PC board footprint. Timing uncertainty across an interface using multiple devices, a typical problem in a parallel interface, is specified — minimum and maximum propagation delay times are guaranteed.

Six devices can implement a complete IPI master or slave interface. Three transceivers in a package are pinned out for

connection to a parallel databus. The fourth transceiver, with the flexibility provided by its individual enables, can serve as a control bus transceiver.


Features

- Pinout for IPI interface
- Compact 20-pin PLCC package
- Meets EIA-485 standard for multipoint bus transmission
- Greater than 60 mA source/sink
- Thermal Shutdown Protection

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 2004 National Semiconductor Corporation DS010602

Absolute Maximum Ratings (Note 1)

DS36950

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	7V
Control Input Voltage	$V_{CC} + 0.5V$
Driver Input Voltage	$V_{CC} + 0.5V$
Driver Output Voltage/Receiver	
Input Voltage	-10V to +15V
Receiver Output Voltage	5.5V
Continuous Power Dissipation @	
25°C	
V Package	1.73W

Derate V Package 13.9 mW/°C above	e 25°C
Storage Temp. Range	–65°C to +150°C
Lead Temp. (Soldering 4 Sec.)	260°C

Recommended Operating Conditions

Supply Voltage, V _{CC}	4.75V to 5.25V
Bus Voltage	-7V to +12V
Operating Free Air Temp. (T _A)	0°C to +70°C

Electrical Characteristics (Note 2)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Мах	Units
DRIVER C	HARACTERISTICS						
V _{ODL}	Differential Driver Output	$I_L = 60 \text{ mA}$		1.5	1.9		V
	Voltage (Full Load)	$V_{CM} = 0V$					
V _{OD}	Differential Driver Output	R _L = 100Ω (EIA-422)		2.0	3.5		V
	Voltage (Termination Load)	$R_{L} = 54\Omega$ (EIA-485)		1.5	3.2		V
$\Delta IV_{OD}I$	Change in Magnitude of Driver	$R_L = 54\Omega$ or 100Ω					
	Differential Output Voltage for	(Note 4) (Figure 1)				0.2	V
	Complementary Output States	(EIA-485)					
V _{oc}	Driver Common Mode Output	$R_L = 54\Omega$				3.0	V
	Voltage (Note 5)	(Figure 1) (EIA-485)					
$\Delta IV_{OC}I$	Change in Magnitude of Common	(Note 4) (Figure 1)				0.2	V
	Mode Output Voltage	(EIA-485)					
V _{OH}	Output Voltage HIGH	I _{он} = –55 mA		2.7	3.2		V
V _{OL}	Output Voltage LOW	I _{OL} = 55 mA			1.4	1.7	V
V _{IH}	Input Voltage HIGH			2.0			V
V _{IL}	Input Voltage LOW					0.8	V
V _{CL}	Input Clamp Voltage	l = –18 mA				-1.5	V
I _{IH}	Input High Current	V ₁ = 2.4V (Note 3)				20	μA
I _{IL}	Input Low Current	V _I = 0.4V (Note 3)				-20	μA
l _{osc}	Driver Short-Circuit	$V_{O} = -7V$	(EIA-485)		-130	-250	mA
	Output Current	$V_{O} = 0V$	(EIA-422)		-90	-150	mA
	(Note 9)	V _O = +12V	(EIA-485)		130	250	mA
RECEIVER	CHARACTERISTICS			I			
I _{OSR}	Short Circuit Output Current	$V_{O} = 0V$ (Note 9)		-15	-28	-75	mA
l _{oz}	TRI-STATE [®] Output Current	$V_{\rm O} = 0.4$ V to 2.4V				20	μA
V _{он}	Output Voltage High	$V_{ID} = 0.20V, I_{OH} = -0.4 \text{ mA}$		2.4	3.0		V
V _{OL}	Output Voltage Low	$V_{ID} = -0.20V, I_{OL} = 4 \text{ mA}$			0.35	0.5	V
V _{TH}	Differential Input High	$V_{O} = V_{OH}, I_{O} = -0.4 \text{ mA}$			0.03	0.20	V
	Threshold Voltage	(EIA-422/485)					
V _{TL}	Differential Input Low	$V_{O} = V_{OL}, I_{O} = 4.0 \text{ mA}$		-0.20	-0.03		V
	Threshold Voltage (Note 6)	(EIA-422/485)					
V _{HST}	Hysteresis (Note 7)	$V_{CM} = 0V$		35	60		mV
_	ND RECEIVER CHARACTERISTICS			I			
V _{IH}	Enable Input Voltage High			2.0			V
V _{IL}	Enable Input Voltage Low					0.8	V

Symbol	Parameter	Conditions			Min	Тур	Max	Units
DRIVER AN	ND RECEIVER CHARACTERISTICS	I			1		1	1
V _{CL}	Enable Input Clamp Voltage	I = -18 mA					-1.5	V
IN	Line Input Current	Other Input = 0V V		12V		0.5	1	mA
	(Note 8)		$V_1 = -$	7V		-0.45	-0.8	mA
I _{IH}	Enable Input Current High	$V_{OH} = 2.4V$ RE	RE4 c	or DE			20	μA
			REC				60	μA
IL	Enable Input Current Low	$V_{OL} = 0.4V$	RE4 c	or DE			-20	μA
		REC	REC				-60	μA
сс	Supply Current (Note 10)	No Load, Outputs E	Enabled			75	90	mA
ccz	Supply Current (Note 10)	No Load, Outputs D	Load, Outputs Disabled			50	70	mA
	NGLE-ENDED CHARACTERISTICS		I		Ту		I	
l _{PZH}	$R_{L} = 110\Omega \ (Figure 4)$				35		40	ns
	$R_{L} = 110\Omega \ (Figure 5)$				25		40	ns
PHZ	$R_{L} = 110\Omega (Figure 4)$				15		25	ns
t _{PLZ}	$R_{L} = 110\Omega \ (Figure 5)$				35		40	ns
	FFERENTIAL CHARACTERISTICS		1		I		I	
	Rise & Fall Time	$R_L = 54\Omega$			13		16	ns
t _R , t _F	Rise & Fall Time Differential Propagation	$R_{L} = 54\Omega$ $C_{L} = 50 \text{ pF}$	·	9	13 15		16 19	ns ns
R, t _F				9 9				_
t _R , t _F t _{PLHD} t _{PHLD}	Differential Propagation	C _L = 50 pF		-	15		19	ns
t _R , t _F t _{PLHD} t _{PHLD}	Differential Propagation Delays (Note 15) It _{PLHD} – t _{PHLD} Differential Skew CHARACTERISTICS	$C_L = 50 \text{ pF}$ $C_D = 15 \text{ pF}$		9	15		19 19	ns ns
R, T _F PLHD PHLD SKD RECEIVER	Differential Propagation Delays (Note 15) It _{PLHD} - t _{PHLD} Differential Skew CHARACTERISTICS Differential Propagation Delays	$C_{L} = 50 \text{ pF}$ $C_{D} = 15 \text{ pF}$ $(Figures 3, 8)$		9	15 15 3 14		19 19 6 19	ns ns
R, [†] F PLHD PHLD SKD RECEIVER PLHD PHLD	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$C_{L} = 50 \text{ pF}$ $C_{D} = 15 \text{ pF}$ $(Figures 3, 8)$		9	15 15 3 14 14		19 19 6 19 19 19	ns ns ns ns ns
R, [†] F PHLD SKD RECEIVER PHHD PHLD SKD	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$C_{L} = 50 \text{ pF}$ $C_{D} = 15 \text{ pF}$ $(Figures 3, 8)$ $(Figures 5)$ $(Figures 4, 8)$		9	15 15 3 3 14 14 14		19 19 6 19 19 19 3	ns ns ns ns ns ns
t _R , t _F	Differential Propagation Delays (Note 15) $It_{PLHD} - t_{PHLD}I$ Differential Skew CHARACTERISTICS Differential Propagation Delays $C_L = 15 \text{ pF}, V_{CM} = 1.5V$ (Figure 6 $It_{PLHD} - t_{PHLD}I$ Differential Receiv Output Enable Time to High Leve	6) C _L = 50 pF C _D = 15 pF (<i>Figures 3, 8</i>)		9	15 15 3 14 14 14 14 15		19 19 6 19 19 19 3 22	ns ns ns ns ns ns ns
t _R , t _F t _{PLHD} t _{PHLD} t _{SKD}	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$C_{L} = 50 \text{ pF}$ $C_{D} = 15 \text{ pF}$ $(Figures 3, 8)$ $(Figures 4, 8)$ $(Figures 5, 8)$ $(Figures 4, 8)$		9	15 15 3 3 14 14 14		19 19 6 19 19 19 3	ns ns ns ns ns ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Current into device pins is define as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

Note 3: I_{IH} and I_{IL} includes driver input current and receiver TRI-STATE leakage current.

Note 4: $\Delta IV_{OD}I$ and $\Delta IV_{OC}I$ are changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input changes state.

Note 5: In EIA Standards EIA-422 and EIA-485, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}.

Note 6: Threshold parameter limits specified as an algebraic value rather than by magnitude.

Note 7: Hysteresis defined as $V_{HST} = V_{TH} - V_{TL}$.

Note 8: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.

Note 9: Short one output at a time.

Note 10: Total package supply current.

Note 11: All typicals are given for V_{CC} = 5.0V and T_A = 25 $^\circ C.$

3

DS36950

Parameter Measurement Information

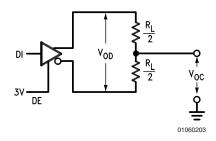


FIGURE 1. Driver V_{OD} and V_{OC}

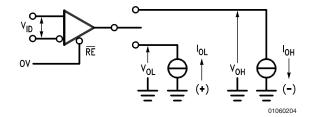


FIGURE 2. Receiver V_{OH} and V_{OL}

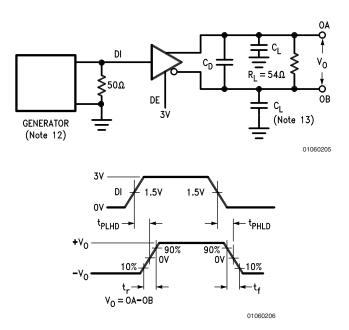
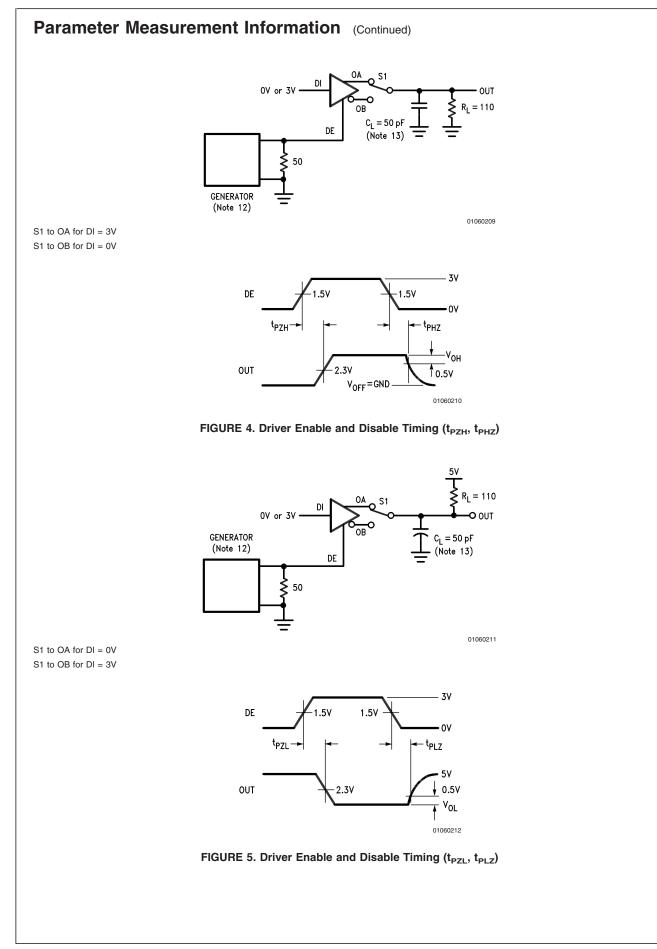



FIGURE 3. Driver Differential Propagation Delay and Transition Timing

Parameter Measurement Information (Continued)

DS36950

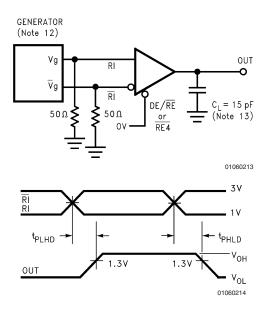
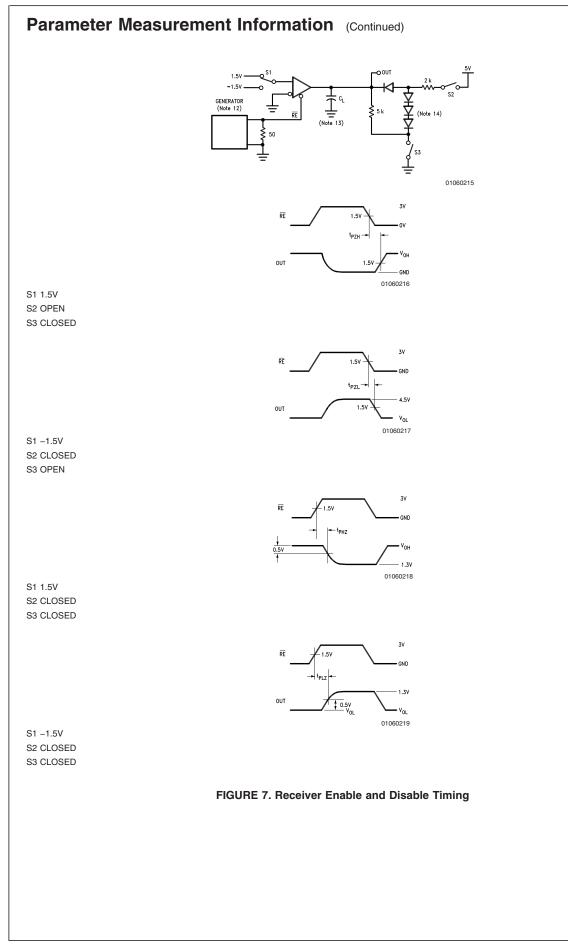
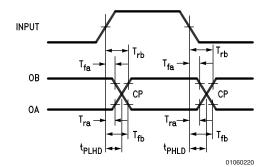




FIGURE 6. Receiver Differential Propagation Delay Timing

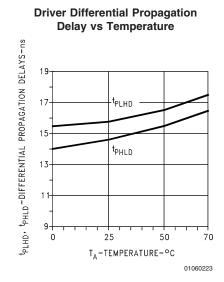
Parameter Measurement Information (Continued)

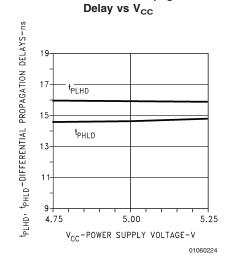
TCP = Crossing Point Tra, Trb, Tfa, and Tfb are propagation delay measurements to the 20% and 80% levels.

 $\label{eq:TCP} \mathsf{TCP} = \frac{(\mathsf{Tfb} \times \mathsf{Trb}) - (\mathsf{Tra} \times \mathsf{Tfa})}{\mathsf{Trb} - \mathsf{Tra} - \mathsf{Tfa} + \mathsf{Tfb}}$

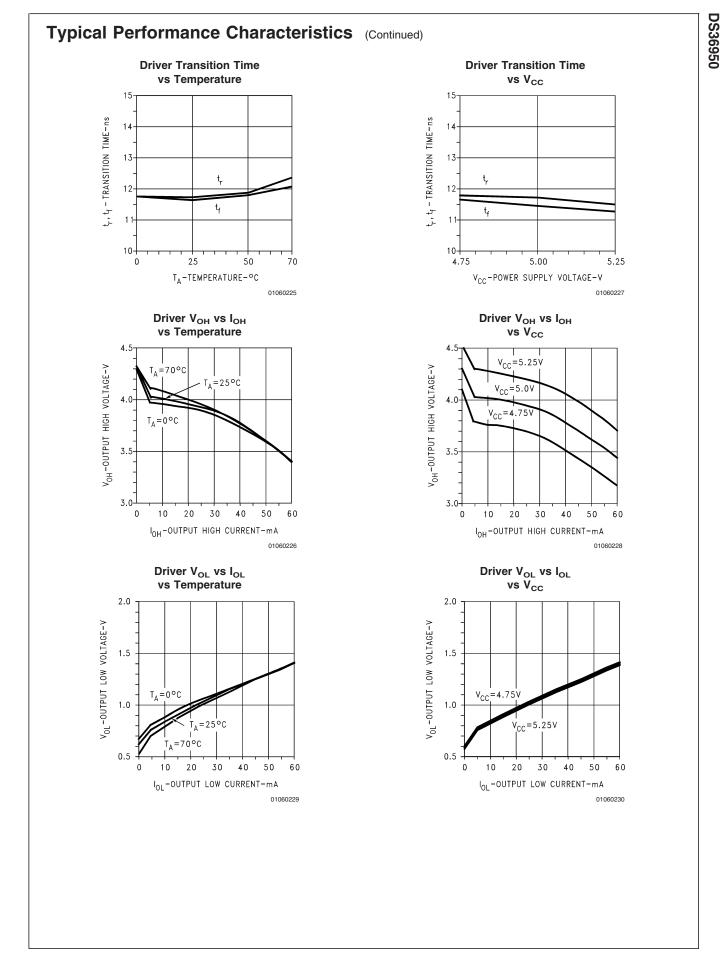
FIGURE 8. Propagation Delay Timing for Calculation of Driver Differential Propagation Delays

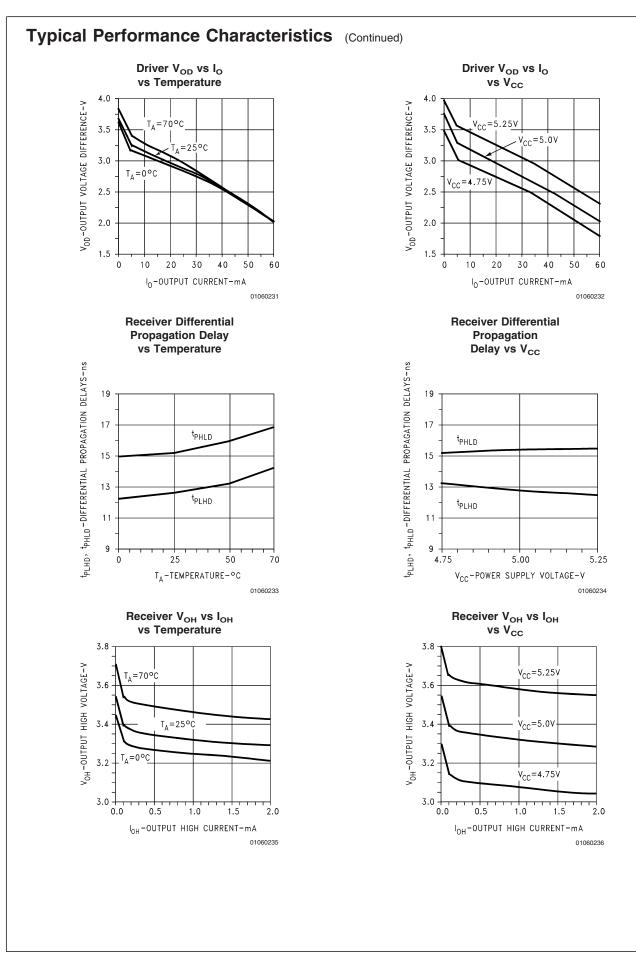
Note 12: The input pulse is supplied by a generator having the following characteristics:

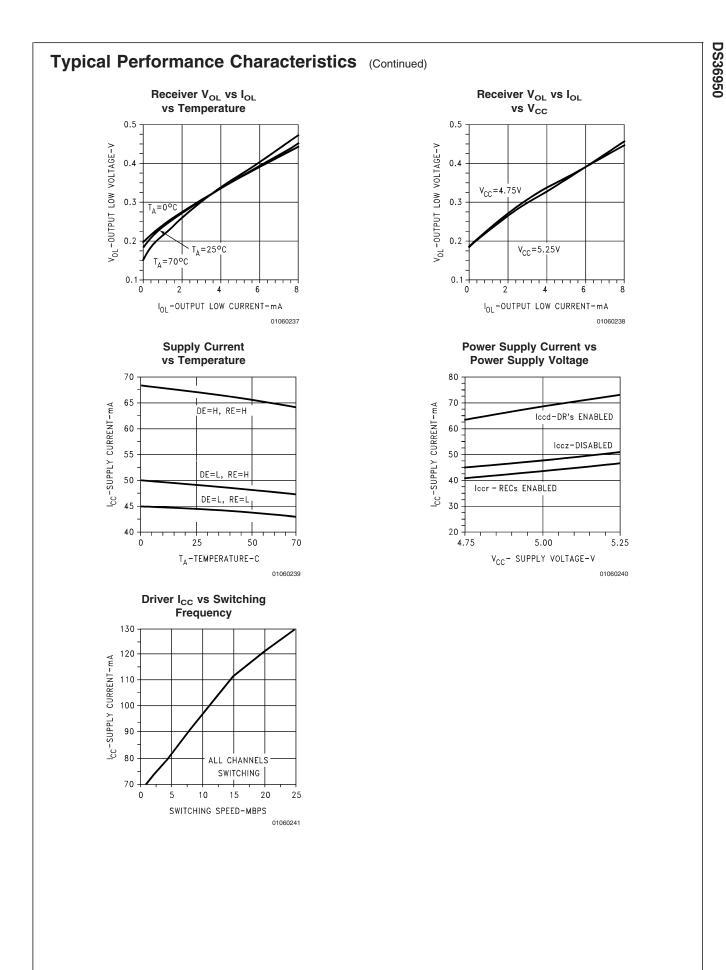

f = 1.0 MHz, 50% Duty Cycle, t_f and t_r < 6.0 ns, Z_{Ω} = 50 Ω

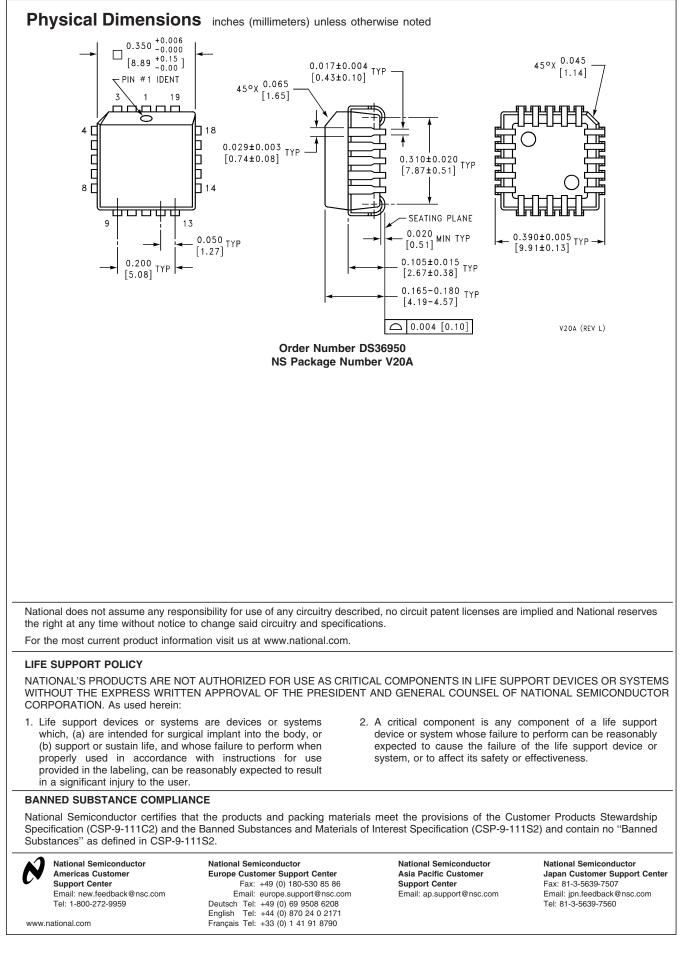

Note 13: C_L includes probe and stray capacitance.

Note 14: Diodes are 1N916 or equivalent.


Note 15: Differential propagation delays are calculated from single-ended propagation delays measured from driver input to the 20% and 80% levels on the driver outputs (See Figure 8).


Typical Performance Characteristics




Driver Differential Propagation

www.national.com

