$32 \mathrm{~K} \times 16$ Static RAM

Features

- 3.3V operation (3.0V-3.6V)
- High speed
$-\mathrm{t}_{\mathrm{AA}}=10 \mathrm{~ns}$
- Low active power
— 540 mW (max., 12 ns)
- Very Low standby power
— $330 \mu \mathrm{~W}$ (max., "L" version)
- Automatic power-down when deselected
- Independent Control of Upper and Lower bytes
- Available in 44-pin TSOP II and 400-mil SOJ

Functional Description

The CY7C1020V is a high-performance CMOS static RAM organized as 32,768 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{C E}$) and write enable ($\overline{W E}$) inputs LOW. If byte low enable
(BLE) is LOW, then data from I/O pins $\left(1 / O_{1}\right.$ through $\left.I / O_{8}\right)$, is written into the location specified on the address pins (A_{0} through A_{14}). If byte high enable ($\overline{\mathrm{BHE})}$ is LOW, then data from I / O pins $\left(\mathrm{I} / \mathrm{O}_{9}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{16}\right)$ is written into the location specified on the address pins (A_{0} through A_{14}).
Reading from the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable ($\overline{\mathrm{OE})}$ LOW while forcing the write enable (WE) HIGH. If byte low enable ($\overline{\mathrm{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on $\mathrm{I} / \mathrm{O}_{1}$ to $\mathrm{I} / \mathrm{O}_{8}$. If byte high enable ($\left.\overline{\mathrm{BHE}}\right)$ is LOW , then data from memory will appear on $\mathrm{I} / \mathrm{O}_{9}$ to $\mathrm{I} / \mathrm{O}_{16}$. See the truth table at the back of this datasheet for a complete description of read and write modes.
The input/output pins (I / O_{1} through $\mathrm{I} / \mathrm{O}_{16}$) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}$ HIGH), the outputs are disabled ($\overline{O E}$ HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).
The CY7C1020V is available in standard 44-pin TSOP type II and 400-mil-wide SOJ packages.

Selection Guide

		7C1020V-10	7C1020V-12	7C1020V-15	7C1020V-20
Maximum Access Time (ns)	10	12	15	20	
Maximum Operating Current (mA)		130	120	110	100
	L	100	90	80	70
Maximum CMOS Standby Current (mA)		1	1	1	1
	L	0.1	0.1	0.1	0.1

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad .$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[1]} \ldots .-0.5 \mathrm{~V}$ to +4.6 V DC Voltage Applied to Outputs in High Z State ${ }^{[1]}$ -0.5 V to $\mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$ \qquad

$$
.-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{Cc}}+0.5 \mathrm{~V}
$$

Current into Outputs (LOW)... 20 mA
Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015) Latch-Up Current \qquad >200 mA

Operating Range

| Range | Ambient
 Temperature${ }^{[2]}$ |
| :--- | :---: | :---: |\quad V $_{\text {CC }}$.

Electrical Characteristics Over the Operating Range

Notes:

1. V_{IL} (min.) $=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions		7C1020V-15		7C1020V-20		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4$.		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.0	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \mathrm{~V} \end{gathered}$	2.0	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.5	0.8	-0.5	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-2	+2	-2	+2	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$			110		100	mA
			L		80		70	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} & \text { Max. } V_{\text {CC }}, C E \geq V_{\text {IH }} \\ & V_{\text {IN }} \geq V_{\text {IH }} \text { or } \\ & V_{\text {IN }} \leq V_{\text {IL }}, f=f_{\text {MAX }} \end{aligned}$			15		15	mA
			L		7		7	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \\ & C E \geq V_{C C}-0.3 V, \\ & V_{I N} \geq V_{C C}-0.3 V, \\ & \text { or } V_{I N} \leq 0.3 V, f=0 \end{aligned}$			1		1	mA
			L		100		100	$\mu \mathrm{A}$

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	8	pF

Notes:
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics ${ }^{[4]}$ Over the Operating Range

Parameter	Description	7C1020V-10		7C1020V-12		7C1020V-15		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	10		12		15		ns
t_{AA}	Address to Data Valid		10		12		15	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	CE LOW to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		5		6		7	ns
t LZOE	OE LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE HIGH to High } Z^{[5, ~ 6] ~}}$		5		6		7	ns
tlzce	CE LOW to Low ${ }^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	CE HIGH to High $\mathbf{Z}^{[5,6]}$		5		6		7	ns
$\mathrm{t}_{\text {PU }}$	CE LOW to Power-Up	0		0		0		ns
$t_{\text {PD }}$	CE HIGH to Power-Down		12		12		15	ns
$\mathrm{t}_{\text {Dbe }}$	Byte enable to Data Valid		5		6		7	ns
$\mathrm{t}_{\text {LZBE }}$	Byte enable to Low Z	0		0		0		ns
$t_{\text {HZBE }}$	Byte disable to High Z		5		6		7	ns
WRITE CYCLE ${ }^{[7]}$								
t_{wc}	Write Cycle Time	10		12		15		ns
$\mathrm{t}_{\text {SCE }}$	CE LOW to Write End	8		9		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	7		8		10		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$t_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$t_{\text {PWE }}$	WE Pulse Width	7		8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		6		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
tlzwe	WE HIGH to Low ${ }^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	WE LOW to High $\mathrm{Z}^{[5,6]}$		5		6		7	ns
t_{BW}	Byte enable to end of write	7		8		9		ns

Notes:

4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{l}_{\mathrm{OH}}$ and 30-pF load capacitance.
5. $t_{H Z O E}, t_{H Z B E}, t_{H Z C E}$, and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
6. At any given temperature and voltage condition, $t_{H Z C E}$ is less than $t_{\text {LZCE }}, t_{H Z O E}$ is less than $t_{L Z O E}$, and $t_{H Z W E}$ is less than $t_{Z Z W E}$ for any given device.
7. The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE / BLE LOW. CE, WE and BHE / BLE must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Switching Characteristics ${ }^{[4]}$ Over the Operating Range (continued)

Parameter	Description	7C1020V-20		Unit
		Min.	Max.	
READ CYCLE				
t_{RC}	Read Cycle Time	20		ns
t_{AA}	Address to Data Valid		20	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		20	ns
$\mathrm{t}_{\text {DOE }}$	OE LOW to Data Valid		9	ns
tlzoe	OE LOW to Low Z	0		ns
t LZCE	$\overline{\text { CE LOW }}$ to Low ${ }^{[6]}$	3		ns
$\mathrm{t}_{\text {HZCE }}$	CE HIGH to High ${ }^{[5,6]}$		9	ns
$\mathrm{t}_{\text {PU }}$	CE LOW to Power-Up	0		ns
t_{PD}	$\overline{\text { CE HIGH to Power-Down }}$		20	ns
$\mathrm{t}_{\text {DBE }}$	Byte enable to Data Valid		9	ns
tlzbe	Byte enable to Low Z	0		ns
$t_{\text {HZBE }}$	Byte disable to High Z		9	ns

WRITE CYCLE ${ }^{[7]}$

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	20	ns	
$\mathrm{t}_{\text {SCE }}$	CE LOW to Write End	12		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		ns
$\mathrm{t}_{\text {HA }}$	Address Hold from Write End	0	ns	
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0	ns	
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	12		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0	ns	
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z $^{[6]}$	3	ns	
$\mathrm{t}_{\text {HZWE }}$	WE LOW to High Z ${ }^{[5,6]}$		ns	
$\mathrm{t}_{\text {BW }}$	Byte enable to end of write		ns	

Switching Waveforms

Read Cycle No. $1^{[8,9]}$

Notes:

8. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}, \overline{\mathrm{BHE}}$, and/or $\overline{\mathrm{BHE}}=\mathrm{V}_{\mathrm{IL}}$
9. WE is HIGH for read cycle.

Switching Waveforms (continued)
Read Cycle No. 2 (OE Controlled) ${ }^{[9,10]}$

Write Cycle No. 1 (CE Controlled) ${ }^{[11,12]}$

Notes:

10. Address valid prior to or coincident with CE transition LOW.
11. Data I / O is high impedance if OE or BHE and/or $\mathrm{BLE}=\mathrm{V}_{I H}$.
12. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 (BLE or BHE Controlled)

Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	BHE	$\mathrm{l} / \mathrm{O}_{1}-1 / \mathrm{O}_{8}$	$\mathrm{l} / \mathrm{O}_{9}-\mathrm{l} / \mathrm{O}_{16}$	Mode	Power
H	X	X	X	X	High Z	High Z	Power-Down	Standby ($\mathrm{ISB}^{\text {) }}$
L	L	H	L	L	Data Out	Data Out	Read - All bits	Active (ICC)
			L	H	Data Out	High Z	Read - Lower bits only	Active (ICC)
			H	L	High Z	Data Out	Read - Upper bits only	Active (ICC)
L	X	L	L	L	Data In	Data In	Write - All bits	Active (ICC)
			L	H	Data In	High Z	Write - Lower bits only	Active (ICC)
			H	L	High Z	Data In	Write - Upper bits only	Active (ICC)
L	H	H	X	X	High Z	High Z	Selected, Outputs Disabled	Active (ICC)
L	X	X	H	H	High Z	High Z	Selected, Outputs Disabled	Active (ICC)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1020V33-10VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1020V33L-10VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1020V33-10ZC	Z44	44-Lead TSOP Type II	Commercial
	CY7C1020V33L-10ZC	Z44	44-Lead TSOP Type II	Commercial
	CY7C1020V33-12VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1020V33L-12VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1020V33-12ZC	Z44	44-Lead TSOP Type II	Commercial
	CY7C1020V33L-12ZC	Z44	44-Lead TSOP Type II	Commercial
	CY7C1020V33-15VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1020V33L-15VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1020V33-15ZC	Z44	44-Lead TSOP Type II	Commercial
	CY7C1020V33L-15ZC	Z44	44-Lead TSOP Type II	Commercial
	CY7C1020V33-15ZI	Z44	44-Lead TSOP Type II	Industrial
20	CY7C1020V33L-20ZC	Z44	44-Lead TSOP Type II	Commercial

Document \#: 38-00543-B

Package Diagrams

44-Lead (400-Mil) Molded SOJ V34

44-Pin TSOP II Z44

DIMENSIDN [N MM (INCH)
$\frac{\text { MAX }}{\text { MIN }}$
LEAD CIPLANARITY 0,004 [NCHES

