LMV331 Single / LMV393 Dual / LMV339 Quad General Purpose, Low Voltage, Tiny Pack Comparators

General Description

The LMV393 and LMV339 are low voltage (2.7-5V) versions of the dual and quad comparators, LM393/339, which are specified at $5-30 \mathrm{~V}$. The LMV331 is the single version, which is available in space saving 5 -pin SC70 and 5 -pin SOT23 packages. The 5 -pin SC70 is approximately half the size of the 5 -pin SOT23.
The LMV393 is available in 8 -pin SOIC and MSOP. The LMV339 is available in 14-pin SOIC and TSSOP.
The LMV331/393/339 is the most cost-effective solution where space, low voltage, low power and price are the primary specification in circuit design for portable consumer products. They offer specifications that meet or exceed the familiar LM393/339 at a fraction of the supply current.
The chips are built with National's advanced Submicron Sili-con-Gate BiCMOS process. The LMV331/393/339 have bipolar input and output stages for improved noise performance.

Features

(For 5V supply, typical unless otherwise noted)

- Guaranteed 2.7 V and 5 V performance
- Industrial temperature range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Low supply current $60 \mu \mathrm{~A} /$ Channel
- Input common mode voltage range includes ground
- Low output saturation voltage

200 mV

- Propagation delay

200 ns

- Space saving 5-pin SC70 and 5-Pin SOT23 packages

Applications

- Mobile communications
- Notebooks and PDA's
- Battery powered electronics
- General purpose portable device
- General purpose low voltage applications

Typical Applications

Positive Peak Detector

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Human Body Model	
LMV331/393/339	800 V
Machine Model	120 V
LMV331/339/393	\pm Supply Voltage
Differential Input Voltage	5.5 V
Voltage on any pin	
(referred to V- pin)	
Soldering Information	$235^{\circ} \mathrm{C}$
\quad Infrared or Convection (20 sec)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temp. Range	$150^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Supply Voltage	2.7 V to 5.0 V
Temperature Range (Note 3)	
LMV393. LMV339, LMV331	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{J A}\right)$	
5-Pin SC70	$478^{\circ} \mathrm{C} / \mathrm{W}$
5-Pin SOT23	$265^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SOIC	$190^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin MSOP	$235^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SOIC	$145^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin TSSOP	$155^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ \text { (Note 5) } \end{gathered}$	$\begin{aligned} & \text { Typ } \\ & \text { (Note 4) } \end{aligned}$	$\begin{gathered} \text { Max } \\ \text { (Note 5) } \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1.7	7	mV
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			10	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	nA
l_{OS}	Input Offset Current			5	$\begin{gathered} 50 \\ 150 \end{gathered}$	nA
$\overline{V_{C M}}$	Input Voltage Range			-0.1		V
				2.0		V
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {SINK }} \leq 1 \mathrm{~mA}$		120		mV
I_{0}	Output Sink Current	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$	5	23		mA
I_{s}	Supply Current	LMV331		40	100	$\mu \mathrm{A}$
		LMV393 Both Comparators		70	140	$\mu \mathrm{A}$
		LMV339 All four Comparators		140	200	$\mu \mathrm{A}$
	Output Leakage Current			. 003	1	$\mu \mathrm{A}$

2.7V AC Electrical Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}-=0 \mathrm{~V}$.

Symbol	Parameter	Conditions	Min (Note 5)	Typ $($ Note 4)	Max (Note 5)	Units
$\mathrm{t}_{\text {PHL }}$	Propagation Delay (High to Low)	Input Overdrive $=10 \mathrm{mV}$		1000		ns
		Input Overdrive $=100 \mathrm{mV}$		350	ns	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay (Low to High)	Input Overdrive $=10 \mathrm{mV}$		500	ns	
		Input Overdrive $=100 \mathrm{mV}$		400	ns	

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ \text { (Note 5) } \end{gathered}$	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	$\begin{gathered} \max \\ (\text { Note 5) } \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			1.7	$\begin{aligned} & \hline 7 \\ & 9 \end{aligned}$	mV
$\mathrm{TCV}_{\text {OS }}$	Input Offset Voltage Average Drift			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current			25	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	nA
I_{OS}	Input Offset Current			2	$\begin{gathered} 50 \\ 150 \end{gathered}$	nA
V_{CM}	Input Voltage Range			-0.1		V
				4.2		V
A_{V}	Voltage Gain		20	50		V/mV
$\mathrm{V}_{\text {sat }}$	Saturation Voltage	$\mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}$		200	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	mV
I_{0}	Output Sink Current	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$		84	10	mA
$\mathrm{I}_{\text {S }}$	Supply Current	LMV331		60	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	$\mu \mathrm{A}$
		LMV393 Both Comparators		100	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$
		LMV339 All four Comparators		170	$\begin{aligned} & 300 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$
	Output Leakage Current			. 003	1	$\mu \mathrm{A}$

5V AC Electrical Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}^{-}=0 \mathrm{~V}$.

Symbol	Parameter	Conditions	Min $($ Note 5)	Typ $($ Note 4)	Max $($ Note 5 $)$	Units
$\mathrm{t}_{\text {PHL }}$	Propagation Delay (High to Low)	Input Overdrive $=10 \mathrm{mV}$		600		ns
		Input Overdrive $=100 \mathrm{mV}$		200		ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay (Low to High)	Input Overdrive $=10 \mathrm{mV}$		450	ns	
		Input Overdrive $=100 \mathrm{mV}$		300	ns	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical characteristics.
Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)
Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).
Note 3: The maximum power dissipation is a function of $T_{J M A X}, \theta_{J A}$. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly onto a PC board.
Note 4: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

Note 5: All limits are guaranteed by testing or statistical analysis.

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Supply Current vs. Supply Voltage Output High (LMV331)

Output Voltage vs. Output Current at 5V Supply

Input Bias Current vs. Supply Voltage

Supply Current vs. Supply Voltage Output Low (LMV331)

10008033

Output Voltage vs. Output Current at 2.7 Supply

10008038
Response Time vs. Input Overdrives Negative Transition

Response Time for Input Overdrive Positive Transition

10008043

Response Time for Input Overdrive Positive Transition

Response Time vs. Input Overdrives Negative Transition

Simplified Schematic

10008047

Application Circuits

BASIC COMPARATOR

A basic comparator circuit is used for converting analog signals to a digital output. The LMV331/393/339 have an opencollector output stage, which requires a pull-up resistor to a positive supply voltage for the output to switch properly. When the internal output transistor is off, the output voltage will be pulled up to the external positive voltage.
The output pull-up resistor should be chosen high enough so as to avoid excessive power dissipation yet low enough to supply enough drive to switch whatever load circuitry is used on the comparator output. On the LMV331/393/339 the pullup resistor should range between 1 k to $10 \mathrm{k} \Omega$.
The comparator compares the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at the noninverting pin to the reference voltage ($\mathrm{V}_{\mathrm{REF}}$) at the inverting pin. If $\mathrm{V}_{\text {IN }}$ is less than $\mathrm{V}_{\text {REF }}$, the output voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ is at the saturation voltage. On the other hand, if V_{IN} is greater than $\mathrm{V}_{\mathrm{REF}}$, the output voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ is at V_{CC}.

FIGURE 1. Basic Comparator

COMPARATOR WITH HYSTERESIS

The basic comparator configuration may oscillate or produce a noisy output if the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresis or positive feedback.

INVERTING COMPARATOR WITH HYSTERESIS

The inverting comparator with hysteresis requires a three resistor network that are referenced to the supply voltage V_{CC} of the comparator. When $\mathrm{V}_{\text {in }}$ at the inverting input is less than V_{a}, the voltage at the non-inverting node of the comparator ($\mathrm{V}_{\text {in }}<\mathrm{V}_{\mathrm{a}}$), the output voltage is high (for simplicity assume V_{O} switches as high as V_{CC}). The three network resistors can be represented as $R_{1} / / R_{3}$ in series with R_{2}. The lower input trip voltage $\mathrm{V}_{\mathrm{a} 1}$ is defined as

$$
v_{a_{1}}=\frac{V_{C C} R_{2}}{\left(R_{1} \| R_{3}\right)+R_{2}}
$$

When $\mathrm{V}_{\text {in }}$ is greater than $\mathrm{V}_{\mathrm{a}}\left(\mathrm{V}_{\text {in }}>\mathrm{V}_{\mathrm{a}}\right)$, the output voltage is low very close to ground. In this case the three network resistors can be presented as $R_{2} / / R_{3}$ in series with R_{1}. The upper trip voltage $\mathrm{V}_{\mathrm{a} 2}$ is defined as

$$
V_{a 2}=\frac{V_{C C}\left(R_{2} / / R_{3}\right)}{R_{1}+\left(R_{2} / / R_{3}\right)}
$$

The total hysteresis provided by the network is defined as

$$
\Delta V_{a}=V_{a 1}-V_{a 2}
$$

To assure that the comparator will always switch fully to V_{CC} and not be pulled down by the load the resistors values should be chosen as follow:

$$
\begin{aligned}
& R_{\text {PULL-UP }} \ll R_{\text {LOAD }} \\
& \text { and } R_{1}>R_{\text {PULL-UP }} .
\end{aligned}
$$

FIGURE 2. Inverting Comparator with Hysteresis

NON-INVERTING COMPARATOR WITH HYSTERESIS

Non inverting comparator with hysteresis requires a two resistor network, and a voltage reference $\left(\mathrm{V}_{\text {ref }}\right)$ at the inverting input. When $\mathrm{V}_{\text {in }}$ is low, the output is also low. For the output to switch from low to high, $\mathrm{V}_{\text {in }}$ must rise up to $\mathrm{V}_{\mathrm{in} 1}$ where $\mathrm{V}_{\mathrm{in} 1}$ is calculated by

$$
v_{\mathrm{in} 1}=\frac{v_{\mathrm{ref}}\left(R_{1}+R_{2}\right)}{R_{2}}
$$

When $\mathrm{V}_{\text {in }}$ is high, the output is also high, to make the comparator switch back to it's low state, $\mathrm{V}_{\text {in }}$ must equal $\mathrm{V}_{\text {ref }}$ before V_{A} will again equal $\mathrm{V}_{\text {ref }}$. $\mathrm{V}_{\text {in }}$ can be calculated by:

$$
v_{\mathrm{in} 2}=\frac{v_{\text {ref }}\left(R_{1}+R_{2}\right)-v_{C C} R_{1}}{R_{2}}
$$

10008022
FIGURE 3.

The hysteresis of this circuit is the difference between $\mathrm{V}_{\text {in } 1}$ and $V_{\text {in2 }}$.

$$
\Delta V_{\text {in }}=V_{C C} R_{1} / R_{2}
$$

FIGURE 4.

SQUAREWAVE OSCILLATOR

Comparators are ideal for oscillator applications. This square wave generator uses the minimum number of components. The output frequency is set by the RC time constant of the capacitor C_{1} and the resistor in the negative feedback R_{4}. The maximum frequency is limited only by the large signal propagation delay of the comparator in addition to any capacitive loading at the output, which would degrade the output slew rate.

10008024
FIGURE 5. Squarewave Oscillator

To analyze the circuit, assume that the output is initially high. For this to be true, the voltage at the inverting input V_{c} has to be less than the voltage at the non-inverting input V_{a}. For V_{c} to be low, the capacitor C_{1} has to be discharged and will charge up through the negative feedback resistor R_{4}. When it has charged up to value equal to the voltage at the positive input $\mathrm{V}_{\mathrm{a} 1}$, the comparator output will switch.
$V_{a 1}$ will be given by:

$$
V_{a 1}=\frac{V_{C C} R_{2}}{R_{2}+\left(R_{1} / / R_{2}\right)}
$$

If:

$$
R_{1}=R_{2}=R_{3}
$$

Then:

$$
\mathrm{V}_{\mathrm{a} 1}=2 \mathrm{~V}_{\mathrm{Cc}} / 3
$$

When the output switches to ground, the value of V_{a} is reduced by the hysteresis network to a value given by:

$$
\mathrm{V}_{\mathrm{a} 2}=\mathrm{V}_{\mathrm{cc}} / 3
$$

Capacitor C_{1} must now discharge through R_{4} towards ground. The output will return to its high state when the voltage across the capacitor has discharged to a value equal to $\mathrm{V}_{\mathrm{a} 2}$.
For the circuit shown, the period for one cycle of oscillation will be twice the time it takes for a single RC circuit to charge up to one half of its final value. The time to charge the capacitor can be calculated from

$$
V_{C}=V_{\max } e^{\frac{-t}{R C}}
$$

Where $\mathrm{V}_{\text {max }}$ is the max applied potential across the capacitor $=\left(2 \mathrm{~V}_{\mathrm{CC}} / 3\right)$
and $\mathrm{V}_{\mathrm{C}}=\mathrm{Vmax} / 2=\mathrm{V}_{\mathrm{CC}} / 3$
One period will be given by:

$$
1 / \text { freq }=2 \mathrm{t}
$$

or calculating the exponential gives:

$$
1 / \text { freq }=2(0.694) R_{4} C_{1}
$$

Resistors R_{3} and R_{4} must be at least two times larger than R_{5} to insure that V_{0} will go all the way up to $V_{C C}$ in the high state. The frequency stability of this circuit should strictly be a function of the external components.

FREE RUNNING MULTIVIBRATOR

A simple yet very stable oscillator that generates a clock for slower digital systems can be obtained by using a resonator as the feedback element. It is similar to the free running multivibrator, except that the positive feedback is obtained through a quartz crystal. The circuit oscillates when the transmission through the crystal is at a maximum, so the crystal in its series-resonant mode.
The value of R_{1} and R_{2} are equal so that the comparator will switch symmetrically about $+\mathrm{V}_{\mathrm{CC}} / 2$. The RC constant of R_{3} and C_{1} is set to be several times greater than the period of the oscillating frequency, insuring a 50% duty cycle by maintaining a DC voltage at the inverting input equal to the absolute average of the output waveform.
When specifying the crystal, be sure to order series resonant with the desired temperature coefficient

10008007
FIGURE 6. Crystal controlled Oscillator
PULSE GENERATOR WITH VARIABLE DUTY CYCLE
The pulse generator with variable duty cycle is just a minor modification of the basic square wave generator. Providing a separate charge and discharge path for capacitor C_{1} generates a variable duty cycle. One path, through R_{2} and D_{2} will charge the capacitor and set the pulse width $\left(\mathrm{t}_{1}\right)$. The other path, R_{1} and D_{1} will discharge the capacitor and set the time between pulses (t_{2}).
By varying resistor R_{1}, the time between pulses of the generator can be changed without changing the pulse width. Similarly, by varying R_{2}, the pulse width will be altered without affecting the time between pulses. Both controls will change the frequency of the generator. The pulse width and time between pulses can be found from:

10008009

$$
\begin{aligned}
& V_{1}=V_{\max }\left(1-e^{-t_{1} / R_{4} C_{1}}\right) \text { rise time } \\
& V_{1}=V_{\max } e^{-t_{2} / R_{5} C_{1}} \quad \text { fall time }
\end{aligned}
$$

Where

$$
V_{\text {max }}=\frac{2 V_{c c}}{3}
$$

and

$$
V_{1}=\frac{V_{\max }}{3}=\frac{V_{C C}}{3}
$$

Which gives

$$
\frac{1}{2}=e^{-t_{1} / R_{4} c_{1}}
$$

t_{2} is then given by:

$$
\frac{1}{2}=e^{-t_{2} / R_{5} C_{1}}
$$

Solving these equations for t_{1} and t_{2}

$$
\begin{aligned}
& \mathrm{t}_{1}=\mathrm{R}_{4} \mathrm{C}_{1} \ln 2 \\
& \mathrm{t}_{2}=\mathrm{R}_{5} \mathrm{C}_{1} \ln 2
\end{aligned}
$$

These terms will have a slight error due to the fact that $\mathrm{V}_{\text {max }}$ is not exactly equal to $2 / 3 \mathrm{~V}_{\mathrm{CC}}$ but is actually reduced by the diode drop to:

$$
\begin{aligned}
& V_{\max }=\frac{2}{3}\left(V_{C C}-V_{B E}\right) \\
& \frac{1}{2\left(1-V_{B E}\right)}=e^{-t_{1} / R_{4} C_{1}} \\
& \frac{1}{2\left(1-V_{B E}\right)}=e^{-t_{2} / R_{5} C_{1}}
\end{aligned}
$$

POSITIVE PEAK DETECTOR

Positive peak detector is basically the comparator operated as a unit gain follower with a large holding capacitor from the output to ground. Additional transistor is added to the output to provide a low impedance current source. When the output of the comparator goes high, current is passed through the transistor to charge up the capacitor. The only discharge path will be the $1 \mathrm{M} \Omega$ resistor shunting C 1 and any load that is connected to the output. The decay time can be altered simply by changing the $1 \mathrm{M} \Omega$ resistor. The output should be used through a high impedance follower to a avoid loading the output of the peak detector.

10008017
FIGURE 8. Positive Peak Detector

NEGATIVE PEAK DETECTOR

For the negative detector, the output transistor of the comparator acts as a low impedance current sink. The only discharge path will be the $1 \mathrm{M} \Omega$ resistor and any load impedance used. Decay time is changed by varying the $1 \mathrm{M} \Omega$ resistor

FIGURE 9. Negative Peak Detector

DRIVING CMOS AND TTL

The comparator's output is capable of driving CMOS and TTL Logic circuits.

10008005

10008006
FIGURE 11. Driving TTL

AND GATES

The comparator can be used as three input AND gate. The operation of the gate is as follow:
The resistor divider at the inverting input establishes a reference voltage at that node. The non-inverting input is the sum of the voltages at the inputs divided by the voltage dividers. The output will go high only when all three inputs are high, casing the voltage at the non-inverting input to go above that at inverting input. The circuit values shown work for a "0" equal to ground and a "1" equal to 5 V .
The resistor values can be altered if different logic levels are desired. If more inputs are required, diodes are recommended to improve the voltage margin when all but one of the inputs are high.

FIGURE 12. AND Gate

OR GATES

A three input OR gate is achieved from the basic AND gate simply by increasing the resistor value connected from the inverting input to V_{c}, thereby reducing the reference voltage. A logic "1" at any of the inputs will produce a logic "1" at the output.

By the inherit nature of an open collector comparator, the outputs of several comparators can be tied together with a pull up resistor to V_{CC}. If one or more of the comparators outputs goes low, the output V_{O} will go low.

10008012
FIGURE 14. ORing the Outputs

Connection Diagrams

8-Pin SOIC/MSOP

Top View

Ordering Information

Package	Temperature Range	Packaging Marking	Transport Media	NSC Drawing
	$\begin{gathered} \text { Industrial } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			
5-Pin SC70	LMV331M7	C13	1k Units Tape and Reel	MAA05A
	LMV331M7X	C13	3k Units Tape and Reel	
5-Pin SOT23	LMV331M5	C12	1k Units Tape and Reel	MF05A
	LMV331M5X	C12	3k Units Tape and Reel	
8-Pin SOIC	LMV393M	LMV393M	Rails	M08A
	LMV393MX	LMV393M	2.5k Units Tape and Reel	
8-Pin MSOP	LMV393MM	V393	1k Units Tape and Reel	MUA08A
	LMV393MMX	V393	3.5k Units Tape and Reel	
14-Pin SOIC	LMV339M	LMV339M	Rails	M14A
	LMV339MX	LMV339M	2.5k Units Tape and Reel	
14-Pin TSSOP	LMV339MT	LMV339MT	Rails	MTC14
	LMV339MTX	LMV339MT	2.5k Units Tape and Reel	

SC70-5 Tape and Reel Specification

SOT-23-5 Tape and Reel Specification

TAPE FORMAT

Tape Section	\# Cavities	Cavity Status	Cover Tape Status
Leader Start End)	$0(\mathrm{~min})$	Empty	Sealed
	$75(\mathrm{~min})$	Empty	Sealed
Carrier	3000	Filled	Sealed
	250	Filled	Sealed
Trailer	$125(\mathrm{~min})$	Empty	Sealed
(Hub End)	$0(\mathrm{~min})$	Empty	Sealed

TAPE DIMENSIONS

$\mathbf{8} \mathbf{~ m m}$	$\mathbf{0 . 1 3 0}$	$\mathbf{0 . 1 2 4}$	$\mathbf{0 . 1 3 0}$	$\mathbf{0 . 1 2 6}$	$\mathbf{0 . 1 3 8} \pm \mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 5 5} \pm \mathbf{0 . 0 0 4}$	$\mathbf{0 . 1 5 7}$	$\mathbf{0 . 3 1 5} \pm \mathbf{0 . 0 1 2}$
	$\mathbf{(3 . 3)}$	$\mathbf{(3 . 1 5)}$	$\mathbf{(3 . 3)}$	$\mathbf{(3 . 2)}$	$\mathbf{(3 . 5} \pm \mathbf{0 . 0 5)}$	$\mathbf{(1 . 4} \pm \mathbf{0 . 1 1)}$	$\mathbf{(4)}$	(8 ± 0.3)
Tape Size	DIM A	DIM Ao	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W

8 mm	$\mathbf{7 . 0 0}$	0.059	0.512	0.795	2.165	$0.331+\mathbf{0 . 0 5 9 / - 0 . 0 0 0}$	0.567	$\mathrm{~W} 1+0.078 /-0.039$
	330.00	1.50	13.00	20.20	55.00	$8.40+1.50 /-\mathbf{0 . 0 0}$	14.40	$\mathrm{~W} 1+2.00 /-1.00$
Tape Size	A	B	C	D	N	W 1	W 2	W 3

Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMMENDATION

CONTROLLING DIMENSION IS INCH
VALUES IN [] ARE MILLIMETERS
DIMENSIONS IN

5-Pin SOT23
NS Package Number MF05A

MTC14 (Rev D)
14-Pin TSSOP
NS Package Number MTC14
sıopeseduob

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
testing and other quality controls are used to the extent national deems necessary to support NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2007 National Semiconductor Corporation
For the most current product information visit us at www.national.com

National Semiconductor	National Semiconductor Europe
Americas Customer	Customer Support Center
Support Center	Fax: +49 (0) 180-530-85-86
Email:	Email: europe.support@ @sc.com
new.feedback@ nsc.com	Deutsch Tel: +49 (0) 69 95086208
Tel: 1-800-272-9959	English Tel: $+49(0) 8702402171$
	Français Tel: $+33(0) 141918790$

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com

