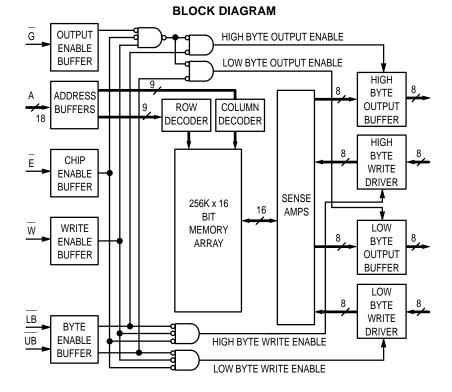
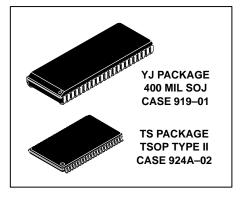
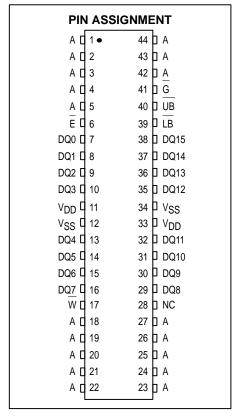
Product Preview


256K x 16 Bit 3.3 V Asynchronous Fast Static RAM

The MCM6343 is a 4,194,304—bit static random access memory organized as 262,144 words of 16 bits. Static design eliminates the need for external clocks or timing strobes.


The MCM6343 is equipped with chip enable (E), write enable (W), and output enable (G) pins, allowing for greater system flexibility and eliminating bus contention problems. Separate byte enable controls (LB and UB) allow individual bytes to be written and read. LB controls the lower bits DQ0 to DQ7, while UB controls the upper bits DQ8 to DQ15.


The MCM6343 is available in a 400 mil, 44–lead small–outline SOJ package and a 44–lead TSOP Type II package.

- Single 3.3 V ± 0.3 V Power Supply
- Fast Access Time: 12/15 ns
- Equal Address and Chip Enable Access Time
- · All Inputs and Outputs are TTL Compatible
- Data Byte Control
- Fully Static Operation
- Power Operation: 250/240/230 mA Maximum, Active AC
- Commercial and Standard Industrial Temperature Option: 40 to + 85°C

MCM6343

PIN NAMES
<u>A</u> 0 – A17 Address Input <u>E</u> Chip Enable
W Write Enable
G Output Enable
UB Upper Byte
LB Lower Byte
DQ0 – DQ15 Data Input/Output
VDD + 3.3 V Power Supply
VSS Ground NC No Connection
NO No Connection

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

REV 2 2/10/98

TRUTH TABLE (X = Don't Care)

E	G	w	LB	UB	Mode	V _{DD} Current	DQ0 – DQ7	DQ8 – DQ15
Н	Х	Х	Х	Х	Not Selected	I _{SB1} , I _{SB2}	High-Z	High–Z
L	Н	Н	Х	Х	Output Disabled	I _{DDA}	I _{DDA} High–Z	
L	Х	Х	Н	Н	Output Disabled	I _{DDA}	High-Z	High–Z
L	L	Н	L	Н	Low Byte Read	I _{DDA}	D _{out}	High-Z
L	L	Н	Н	L	High Byte Read	I _{DDA}	High-Z	D _{out}
L	L	Н	L	L	Word Read	I _{DDA}	D _{out}	D _{out}
L	Х	L	L	Н	Low Byte Write	I _{DDA}	D _{in}	High–Z
L	Х	L	Н	L	High Byte Write	I _{DDA}	High-Z	D _{in}
L	Х	L	L	L	Word Write	I _{DDA}	D _{in}	D _{in}

ABSOLUTE MAXIMUM RATINGS (See Notes)

Rating		Symbol	Value	Unit
Supply Voltage		V_{DD}	- 0.5 to + 4.6	V
Voltage on Any Pin		V _{in}	- 0.5 to V _{DD} + 0.5	V
Output Current per Pin		l _{out}	± 20	mA
Package Power Dissipation	n	PD	TBD	W
Temperature Under Bias	Commercial Industrial	T _{bias}	– 10 to + 85 – 45 to + 90	°C
Operating Temperature	Commercial Industrial	T _A	0 to + 70 - 45 to + 85	°C
Storage Temperature		T _{stg}	- 55 to + 150	°C

NOTES:

- Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.
- 2. All voltages are referenced to VSS.
- 3. Power dissipation capability will be dependent upon package characteristics and use environment.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high–impedance circuits.

This CMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{DD} = 3.3 V \pm 0.3 V, T_A = 0 to 70°C, Unless Otherwise Noted) (T_A = -40 to +85°C for Industrial Temperature Offering)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	V_{DD}	3.0	3.3	3.6	V
Input High Voltage	V _{IH}	2.2	_	V _{DD} + 0.3**	V
Input Low Voltage	V _{IL}	- 0.5*	_	0.8	V

^{*} V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width ≤ 20 ns) for $I \leq 20.0$ mA.

DC CHARACTERISTICS

Parameter		Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{DD})		l _{lkg(l)}	_	± 1.0	μΑ
Output Leakage Current (E = V _{IH} , V _{out} = 0 to V _{DD})		llkg(O)	_	± 1.0	μΑ
Output Low Voltage	$(I_{OL} = + 4.0 \text{ mA})$ $(I_{OL} = + 100 \mu\text{A})$	VOL	_	0.4 V _{SS} + 0.2	V
Output High Voltage	$(I_{OH} = -4.0 \text{ mA})$ $(I_{OH} = -100 \mu\text{A})$	VOH	2.4 V _{DD} – 0.2		V

POWER SUPPLY CURRENTS

Parameter		Symbol	0 to 70°C	– 40 to + 85°C	Unit
AC Active Supply Current (Iout = 0 mA, V _{CC} = max)	MCM6343–12: $t_{AVAV} = 12 \text{ ns}$ MCM6343–15: $t_{AVAV} = 15 \text{ ns}$	Icc	240 230	240	mA
AC Standby Current (V _{CC} = max, E = V _{IH} , No other restrictions on other inputs)	MCM6343–12: $t_{AVAV} = 12 \text{ ns}$ MCM6343–15: $t_{AVAV} = 15 \text{ ns}$	ISB1	50 45	55 50	mA
CMOS Standby Current (E \geq V _{CC} - 0.2 V, V _{in} \leq (V _{CC} = max, f = 0 MHz)	$V_{SS} + 0.2 \text{ V or } \ge V_{CC} - 0.2 \text{ V}$	I _{SB2}	5	5	mA

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, $T_A = 25$ °C, Periodically Sampled Rather Than 100% Tested)

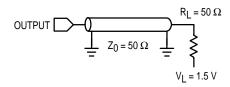
Parameter	Symbol	Тур	Max	Unit
Address Input Capacitance	C _{in}	_	6	pF
Control Input Capacitance	C _{in}	_	6	pF
Input/Output Capacitance	C _{I/O}	_	8	pF

MOTOROLA FAST SRAM MCM6343

^{**} V_{IH} (max) = V_{DD} + 0.3 V dc; V_{IH} (max) = V_{DD} + 2.0 V ac (pulse width \leq 20 ns) for I \leq 20.0 mA.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(V_{CC} = 3.3 V \pm 0.3 V, T_A = 0 to + 70° C, Unless Otherwise Noted) (T_A = -40 to + 85° C for Industrial Temperature Offering)

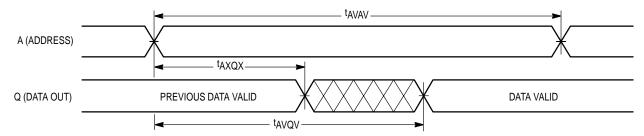

Logic Input Timing Measurement Reference Level 1.50 V	Output Timing Reference Level 1.50 V
Logic Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1
Input Rise/Fall Time	

READ CYCLE TIMING (See Notes 1, 2, and 3)

		MCM6343-12		MCM6343-15			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	12	_	15	_	ns	4
Address Access Time	t _{AVQV}	_	12	_	15	ns	
Enable Access Time	^t ELQV	_	12	_	15	ns	5
Output Enable Access Time	^t GLQV	_	6	_	7	ns	
Output Hold from Address Change	tAXQX	3	_	3	_	ns	
Enable Low to Output Active	^t ELQX	3	_	3	_	ns	6, 7, 8
Output Enable Low to Output Active	^t GLQX	0	_	0	_	ns	6, 7, 8
Enable High to Output High–Z	^t EHQZ	0	6	0	7	ns	6, 7, 8
Output Enable High to Output High–Z	^t GHQZ	0	6	0	7	ns	6, 7, 8
Byte Enable Access Time	^t BLQV	_	6	_	7	ns	
Byte Enable Low to Output Active	^t BLQX	0	_	0	_	ns	6, 7, 8
Byte High to Output High–Z	^t BHQZ	0	6	0	7	ns	6, 7, 8

NOTES:

- 1. W is high for read cycle.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. Device is continuously selected (E \leq V_{IL}, G \leq V_{IL}).
- 4. All read cycle timings are referenced from the last valid address to the first transitioning address.
- 5. Addresses valid prior to or coincident with E going low.
- 6. At any given voltage and temperature, t_{EHQZ} max < t_{ELQX} min, and t_{GHQZ} max < t_{GLQX} min, both for a given device and from device to device.
- 7. This parameter is sampled and not 100% tested.
- 8. Transition is measured \pm 200 mV from steady–state voltage.



TIMING LIMITS

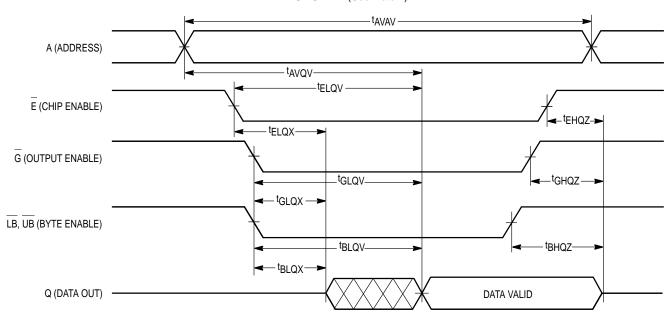

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time. On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

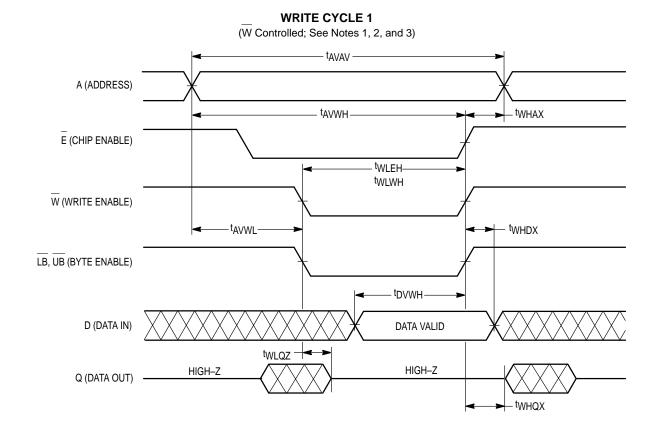
Figure 1. AC Test Load

READ CYCLE 1 (See Note 8)

READ CYCLE 2 (See Note 4)

MOTOROLA FAST SRAM

MCM6343

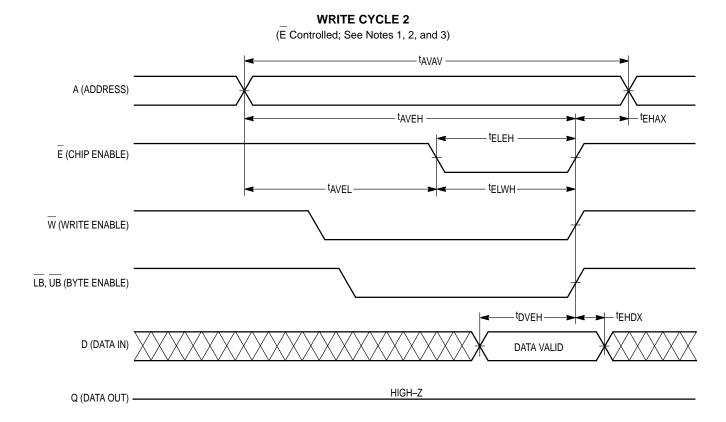

5

WRITE CYCLE 1 (W Controlled; See Notes 1, 2, and 3)

		MCM6343-12		MCM6343-15			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	12	_	15	_	ns	4
Address Setup Time	tAVWL	0	_	0	_	ns	
Address Valid to End of Write	t _{AVWH}	10	_	12	_	ns	
Address Valid to End of Write (G High)	t _{AVWH}	9	_	10	_	ns	
Write Pulse Width	tWLWH tWLEH	10	_	12	_	ns	
Write Pulse Width (G High)	tWLWH tWLEH	9	_	10	_	ns	
Data Valid to End of Write	tDVWH	6	_	7	_	ns	
Data Hold Time	tWHDX	0	_	0	_	ns	
Write Low to Data High–Z	tWLQZ	0	6	0	7	ns	5, 6, 7
Write High to Output Active	tWHQX	3	_	3	_	ns	5, 6, 7
Write Recovery Time	tWHAX	0	_	0	_	ns	

NOTES:

- 1. A write occurs during the overlap of E low and W low.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.
- 4. All write cycle timings are referenced from the last valid address to the first transitioning address.
- 5. This parameter is sampled and not 100% tested.
- 6. Transition is measured $\pm\,200$ mV from steady–state voltage.
- 7. At any given voltage and temperature, t_{WLOZ} max < t_{WHOX} min both for a given device and from device to device.



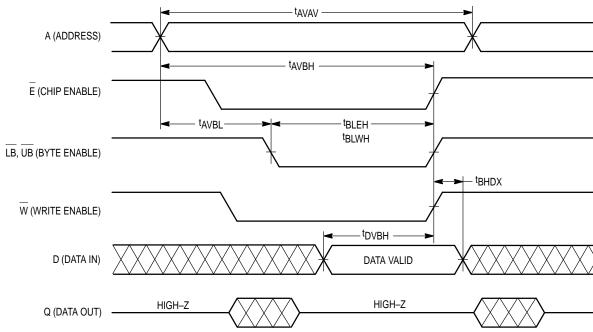
WRITE CYCLE 2 (E Controlled; See Notes 1, 2, and 3)

		MCM6343-12		MCM6343-15			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	^t AVAV	12	_	15	_	ns	4
Address Setup Time	^t AVEL	0	_	0	_	ns	
Address Valid to End of Write	^t AVEH	10	_	12	_	ns	
Address Valid to End of Write (G High)	^t AVEH	9	_	10	_	ns	
Enable to End of Write	tELEH, tELWH	10	_	12	_	ns	5, 6
Enable to End of Write (G High)	tELEH, tELWH	9	_	10	_	ns	5, 6
Data Valid to End of Write	^t DVEH	6	_	7	_	ns	
Data Hold Time	tEHDX	0	_	0	_	ns	
Write Recovery Time	^t EHAX	0		0	_	ns	

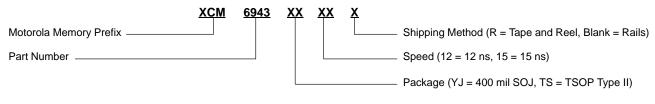
NOTES:

- 1. A write occurs during the overlap of E low and \overline{W} low.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.
- 4. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 5. If $\underline{\underline{E}}$ goes low coincident with or after W $\underline{\underline{go}}$ es low, the output will remain in a high-impedance condition.
- 6. If E goes high coincident with or before W goes high, the output will remain in a high-impedance condition.

MOTOROLA FAST SRAM MCM6343


WRITE CYCLE 3 (E Controlled; See Notes 1, 2, and 3)

		MCM6343-12 MCM6343-15		343–15			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tAVAV	12	_	15	_	ns	4
Address Setup Time	^t AVBL	0	_	0	_	ns	
Address Valid to End of Write	^t AVBH	10	_	12	_	ns	
Address Valid to End of Write (G High)	^t AVBH	9	_	10	_	ns	
Byte Pulse Width	^t BLWH ^t BLEH	10	_	12	_	ns	
Byte Pulse Width (G High)	^t BLWH ^t BLEH	9	_	10	_	ns	
Data Valid to End of Write	^t DVBH	6	_	7	_	ns	
Data Hold Time	^t BHDX	0	_	0	_	ns	

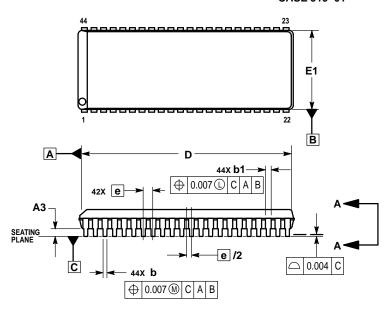

NOTES:

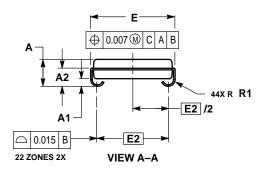
- 1. A write occurs during the overlap of $\overline{\mathsf{E}}$ low and $\overline{\mathsf{W}}$ low.
- 2. Product sensitivities to noise require proper grounding and decoupling of power supplies as well as minimization or elimination of bus contention conditions during read and write cycles.
- 3. If G goes low coincident with or after W goes low, the output will remain in a high-impedance state.
- 4. All write cycle timings are referenced from the last valid address to the first transitioning address.

____WRITE CYCLE 3 (E Controlled; See Notes 1, 2, and 3)

ORDERING INFORMATION (Order by Full Part Number)

Full Commercial Part Numbers — MCM6343YJ12 MCM6343YJ15


MCM6343YJ12R MCM6343TS12 MCM6343YJ15R MCM6343TS15

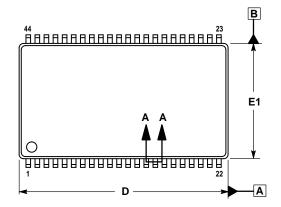

Full Industrial Part Numbers — SCM6343YJ12A SCM6343YJ15A

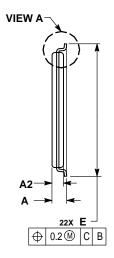
SCM6343TS12A* SCM6343YJ12AR SCM6343YJ15AR SCM6343TS15A*

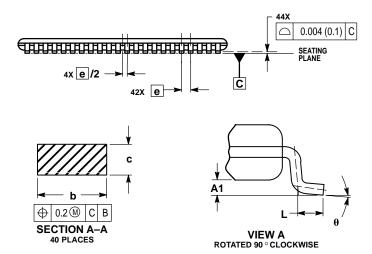
PACKAGE DIMENSIONS

YJ PACKAGE 44-LEAD 400 MIL SOJ CASE 919-01

NOTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCH.
- DIMENSION D DOES NOT INCLUDE MOLD FLASH, TIE BAR BURRS AND GATE BURRS. MOLD FLASH, TIE BAR BURRS AND GATE BURRS SHALL NOT EXCEED 0.006 PER END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010 PER SIDE.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. DIMENSIONS D AND E1 AND, HENCE, DATUMS A AND B, ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- DIMENSION b1 DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE SHOULDER WIDTH TO EXCEED 51 MAX BY MORE THAN 0.005. THE DAMBAR INTRUSION(S) SHALL NOT REDUCE THE SHOULDER WIDTH TO LESS THAN 0.001 BELOW b1 MIN.


	INCHES	
DIM	MIN	MAX
Α	0.128	0.148
A1	0.025	
A2	0.082	
A3	0.035	0.045
b	0.015	0.020
b1	0.026	0.032
D	1.120	1.130
Е	0.435	0.445
E1	0.395	0.405
E2	0.370 BSC	
е	0.050 BSC	
R1	0.030	0.040


MOTOROLA FAST SRAM MCM6343

^{*} Not available in Tape and Reel.

TS PACKAGE 44-LEAD TSOP TYPE II CASE 924A-02

NOTES:

- DIMENSIONINS AND TOLERANCING PER ASME
 V14 FM 1004
- Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETER.
- DIMENSION D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.15 PER SIDE
- IS 0.15 PER SIDE.

 4. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSIONS. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.58.

	MILLIMETERS	
DIM	MIN	MAX
Α	-	1.20
A1	0.05	0.15
A2	0.95	1.05
b	0.30	0.45
С	0.12	0.21
D	18.28	18.54
е	0.80 BSC	
E	11.56	11.96
E1	10.03	10.29
L	0.40	0.60
Δ.	n٥	50

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 Motorola Fax Back System - US & Canada ONLY 1-800-774-1848

– http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

CUSTOMER FOCUS CENTER: 1-800-521-6274

MCM6343/D