

Absolute Maximum Ratings(Note 3)

Supply Voltage	7 V
Input Voltage	
\quad Clear	7 V
A or B	5.5 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.75	5	5.25	V
V_{IH}	HIGH Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage				0.8	V
I_{OH}	HIGH Level Output Current				-0.4	mA
IOL	LOW Level Output Current				8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 4)	A to Q_{A}	0		25	MHz
		B to Q_{B}	0		20	
${ }_{\text {f CLK }}$	Clock Frequency (Note 5)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		15	
t_{W}	Pulse Width (Note 4)	A	20			ns
		B	25			
		Clear HIGH	20			
$\overline{t_{\text {REL }}}$	Clear Release Time (Note 6)(Note 7)		25 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		0		70	${ }^{\circ} \mathrm{C}$
Note 4: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Note 5: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Note 6: The symbol (\downarrow) indicates the falling edge of the clear pulse is used for reference. Note 7: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.						

Electrical Characteristics

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 8) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
T	Input Current @ Max Input Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}=7 \mathrm{~V} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V} \end{aligned}$	Clear			0.1	
			A			0.2	mA
			B			0.4	
$\overline{I_{\mathrm{IH}}}$	HIGH Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	Clear			20	$\mu \mathrm{A}$
			A			40	
			B			80	
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Clear			-0.4	mA
			A			-1.6	
			B			-2.4	
Ios	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 9)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 10)			15	26	mA

Note 8: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 10: I_{CC} is measured with all outputs OPEN, both CLEAR inputs grounded following momentary connection to 4.5 and all other inputs grounded.

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock	A to Q_{A}	25		20		MHz
	Frequency	B to Q_{B}	20		15		z
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	A to Q_{A}		20		24	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	A to Q_{A}		20		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	A to Q_{C}		60		81	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	A to Q_{C}		60		81	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	B to Q_{B}		21		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	B to Q_{B}		21		33	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	B to Q_{C}		39		51	ns
$\overline{\mathrm{t}_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	B to Q_{C}		39		54	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	B to Q_{D}		21		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	B to Q_{D}		21		33	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Any Q		39		45	ns

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
Package Number M16A

