Transmissive Optical Sensor

Description

This device has a compact construction where the emitting-light sources and the detectors are located face to face on the same optical axes.
The operating wavelength is 950 nm . The detector consists of a photologic-IC with Schmitt trigger and open collector output.

Applications

- Detection of opaque material, documents etc.
- Paper position sensor in copy machines

- Position sensor for shaft encoder

Features

- Output:
'LOW' when infrared beam is not interrupted
- Inverter-open collector
- TTL compatible
- Built-in voltage regulator
- Plastic polycarbonate case, protected against ambient light
- No adjustment necessary
- Two package variations

Top view

Handling Precautions

Connect a capacitor C of more than 100 nF between $\mathrm{V}_{\mathrm{S} 1}$ and ground in order to stabilize power supply voltage!

Order Instruction

Ordering Code	Resolution (mm) / Aperture (mm)		Remarks	
TCSS1100)	0.6	$/$	1.0
No mounting flags				
TCSS2100				

TCSS1100/ TCSS2100

Vishay Telefunken

Absolute Maximum Ratings

Input (Emitter)

Parameter	Test Conditions	Symbol	Value	Unit
Reverse voltage		V_{R}	6	V
Forward current		I_{F}	60	mA
Forward surge current	$\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$	$\mathrm{I}_{\mathrm{FSM}}$	3	A
Power dissipation	$\mathrm{T}_{\mathrm{amb}} \leq 25^{\circ} \mathrm{C}$	P_{V}	100	mW
Junction temperature		T_{j}	100	${ }^{\circ} \mathrm{C}$

Output (Detector)

Parameter	Test Conditions	Symbol	Value	Unit
Supply voltages		$\mathrm{V}_{\mathrm{S} 1}$	6.5	V
		$\mathrm{~V}_{\mathrm{S} 2}$	18	V
Output current		I_{O}	20	mA
Power dissipation	$\mathrm{T}_{\mathrm{amb}} \leq 25^{\circ} \mathrm{C}$	P_{V}	250	mW
Junction temperature		T_{j}	100	${ }^{\circ} \mathrm{C}$

Coupler

Parameter	Test Conditions	Symbol	Value	Unit
Total power dissipation	$\mathrm{T}_{\mathrm{amb}} \leq 25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	250	mW
Ambient temperature range		$\mathrm{T}_{\mathrm{amb}}$	-25 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Soldering temperature	2 mm from case, $\mathrm{t} \leq 5 \mathrm{~s}$	$\mathrm{~T}_{\text {sd }}$	260	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)
Input (Emitter)

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Forward voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$		1.25	1.6	V
Junction capacitance	$\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1 \mathrm{MHz}$	C_{j}		50		pF

Output (Detector)

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Supply voltage range		$\mathrm{V}_{\mathrm{S} 1}$	4.75		5.25	V
	$\mathrm{~V}_{\mathrm{S} 2}$	4.0		16	V	

Coupler

Parameter	Test Conditions	Symbol	Min.	Typ.	Max.	Unit
Supply current	$\mathrm{V}_{\mathrm{S} 1}=16 \mathrm{~V}$	$\mathrm{I}_{\mathrm{S} 1}$		3	5	mA
Output current	$\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	I_{OH}			1	$\mu \mathrm{~A}$
Input threshold current	$\mathrm{V}_{\mathrm{S} 1}=5 \mathrm{~V}$	I_{FT}		5	10	mA
Hysteresis	$\mathrm{V}_{\mathrm{S} 1}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{Foff}} \mathrm{I}_{\mathrm{Fon}}$		80		$\%$
Output voltage	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}} \geq \mathrm{I}_{\mathrm{TF}}, \mathrm{V}_{\mathrm{S} 1}=5 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}$		0.15	0.4	V
Switching frequency	$\mathrm{I}_{\mathrm{F}} 3 \times \mathrm{I}_{\mathrm{FT}}, \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=5 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	f_{Sw}		200		kHz

TCSS1100/ TCSS2100
Vishay Telefunken

Switching Characteristics

Parameter	Test Conditions	Symbol	Typ.	Unit
Rise time	$\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=3 \times \mathrm{I}_{\mathrm{FT}}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ (see figure 1)	t_{r}	50.0	ns
Turn-on time		$\mathrm{t}_{\text {on }}$	1.0	us
Fall time		t_{f}	20.0	ns
Turn-off time		$\mathrm{t}_{\text {off }}$	3.0	$\mu \mathrm{s}$

Figure 1. Test circuit for: $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{off}}$

Figure 2. Pulse diagram

Figure 3. Hysteresis

Vishay Telefunken

Typical Characteristics ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Figure 4. Total Power Dissipation vs. Ambient Temperature

Figure 5. Forward Current vs. Forward Voltage

Figure 6. Relative Threshold Forward Current vs. Ambient Temperature

Figure 7. Relative Supply Current vs. Ambient Temperature

Figure 8. High Level Output Current vs. Ambient Temperature

TCSS1100/ TCSS2100
Vishay Telefunken

Dimensions of TCSS1100 in mm

9612096

Vishay Telefunken
Dimensions of TCSS2100 in mm

weight: ca. 0.90 g
9612097

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0) 713167 2831, Fax number: 49 (0)7131 672423

