

October 1987 Revised January 1999

MM74C914

Hex Schmitt Trigger with Extended Input Voltage

General Description

The MM74C914 is a monolithic CMOS Hex Schmitt trigger with special input protection scheme. This scheme allows the input voltage levels to exceed V_{CC} or ground by at least 10V (V_{CC} –25V to GND + 25V), and is valuable for applications involving voltage level shifting or mismatched power supplies.

The positive and negative-going threshold voltages, V_{T+} and V_{T-} , show low variation with respect to temperature

(typ 0.0005V/°C at V_{CC} = 10V). And the hysteresis, V_{T+} – $V_{T-} \ge 0.2 \, V_{CC}$ is guaranteed.

Features

 \blacksquare Hysteresis: 0.45 $\rm V_{CC}$ (typ.) 0.2 $\rm V_{CC}guaranteed$

■ Special input protection: Extended Input Voltage

Range

■ Wide supply voltage range: 3V to 15V■ High noise immunity: 0.7 V_{CC} (typ.)

■ Low power TTL compatibility: Fan out of 2 driving 74L

Ordering Code:

Order Number	Package Number	Package Description
MM74C914M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74C914N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagrams

Pin Assignments for DIP

Voc

14 13 12 11 10 9 8

Top View

Special Input Protection Voc INPUT 10 GATE 8V ≈ 25V

for the diodes.

© 1999 Fairchild Semiconductor Corporation

DS005917.prf

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Power Dissipation

Dual-In-Line 700 mW Small Outline 500mW

 $\begin{array}{lll} \mbox{Operating V}_{CC} \mbox{ Range} & 3V \mbox{ to 15V} \\ \mbox{Absolute Maximum (V}_{CC)} & 18V \\ \mbox{Lead Temperature (T}_{L)} \\ \mbox{(Soldering, 10 seconds)} & 300^{\circ} \mbox{C} \end{array}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

DC Electrical Characteristics

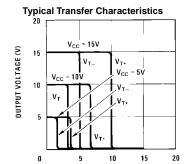
Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO C	MOS	1	ı		<u> </u>	L
V_{T+}	Positive Going Threshold Voltage	V _{CC} = 5V	3.0	3.6	4.3	V
		V _{CC} = 10V	6.0	6.8	8.6	V
		V _{CC} = 15V	9.0	10	12.9	
V_{T-}	Negative Going Threshold Voltage	V _{CC} = 5V	0.7	1.4	2.0	V
		V _{CC} = 10V	1.4	3.2	4.0	V
		V _{CC} = 15V	2.1	5	6.0	
$V_{T+} - V_{T-}$	Hysteresis	V _{CC} = 5V	1.0	2.2	3.6	V
		V _{CC} = 10V	2.0	3.6	7.2	V
		V _{CC} = 15V	3.0	5	10.8	V
V _{OUT(1)}	Logical"1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC}=10V,I_{O}=-10~\mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$, $I_{O} = +10 \mu A$			0.5	V
		$V_{CC} = 10V$, $I_{O} = +10 \mu A$			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 25V		0.005	5.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = -10V$	-100	-0.005		μΑ
I _{CC}	Supply Current	$V_{CC} = 15V, V_{IN} = -10V/25V$		0.05	300	μΑ
		$V_{CC} = 5V$, $V_{IN} = -2.5V$ (Note 2)		20		μΑ
		$V_{CC} = 10V, V_{IN} = 5V \text{ (Note 2)}$		200		μΑ
		$V_{CC} = 15V, V_{IN} = 7.5V \text{ (Note 2)}$		600		μΑ
CMOS/LPTT	'L INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	4.3			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			0.7	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V, I_O = 360 \mu A$			0.4	V
OUTPUT DR	RIVE (See Family Characteristics Data St	,,				
I _{SOURCE}	Output Source Current	$V_{CC} = 5V$, $V_{OUT} = 0V$, $T_A = 25$ °C	-1.75	-3.3		mA
	(P-Channel)					
I _{SOURCE}	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V, T_A = 25^{\circ}C$	-8.0	-15		mA
	(P-Channel)					
I _{SINK}	Output Sink Current	$V_{CC} = 5V$, $V_{OUT} = V_{CC}$, $T_A = 25$ °C	1.75	3.6		mA
	(N-Channel)					
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{OUT} = V_{CC}, T_A = 25^{\circ}C$	8.0	16		mA
	(N-Channel)					l

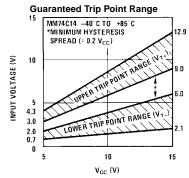
Note 2: Only one input is at $\frac{1}{2}$ V_{CC}, the others are either at V_{CC} or GND.

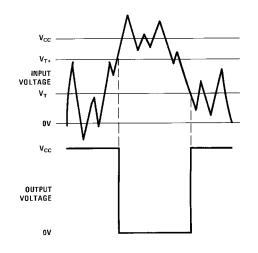
AC Electrical Characteristics (Note 3)

 $T_A = 25$ °C, $C_L = 50$ pF, unless otherwise specified

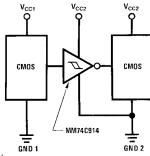

	· • • · · · · · · · · · · · · · · · · ·								
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
t _{PHL}	Propagation Delay from Input to Output	V _{CC} = 5V		220	400	ns			
t _{PLH}		V _{CC} = 10V		80	200	ns			
C _{IN}	Input Capacitance	Any Input (Note 4)		5		pF			
C _{PD}	Power Dissipation Capacitance	Per Gate (Note 5)		20		pF			

Note 3: AC Parameters are guaranteed by DC correlated testing.

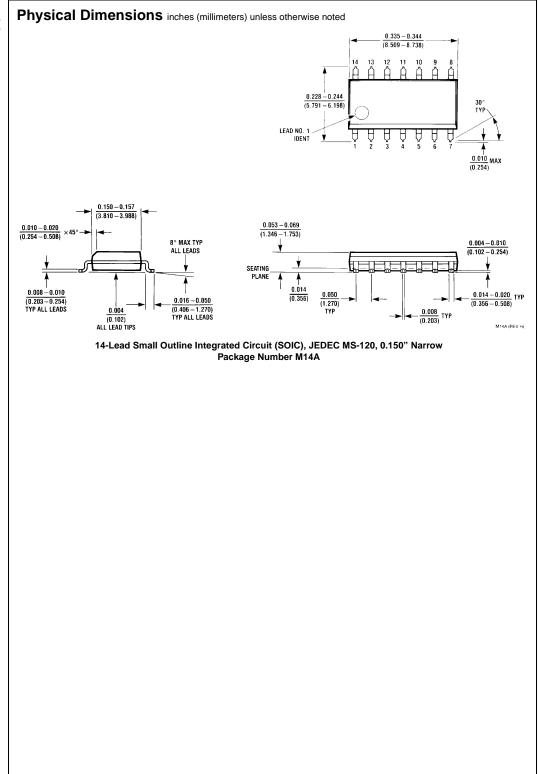

Note 4: Capacitance is guaranteed by periodic testing.

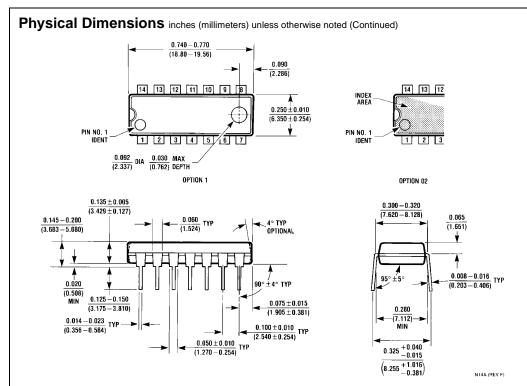

Note 5: CpD determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note,

Typical Performance Characteristics



INPUT VOLTAGE (V)




Typical Application

Note: $V_{CC1} = V_{CC2}$ GND1 = GND2

www.fairchildsemi.com

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.