Order Number	Package Number	Package Description
MM74HC4316M	M16A	16-Lead Small Outline Integrated Package (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC4316SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC4316MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-1536, 4.4mm Wide
MM74HC4316N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Logic Diagram		
LOMnection Diagram		

and outputs and digital inputs are protected from electrostatic damage by diodes to V_{CC} and ground.

Features

- Typical switch enable time: 20 ns
- Wide analog input voltage range: $\pm 6 \mathrm{~V}$
- Low "ON" resistance:

50 typ. $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}\right) 30$ typ. $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9 \mathrm{~V}\right)$
■ Low quiescent current: $80 \mu \mathrm{~A}$ maximum (74 HC)

- Matched switch characteristics

■ Individual switch controls plus a common enable

Ordering Code:

Pin Assignments for DIP, SOIC, SOP and TSSOP

Truth Table

Inputs		Switch
$\overline{\mathrm{En}}$	CTL	I/O-O/I
H	X	"OFF"
L	L	"OFF"
L	H	"ON"

Absolute Maximum Ratings(Note 1)

 (Note 2)-0.5 to +7.5 V
+0.5 to -7.5 V
-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	6	V
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	0	-6	V
DC Input or Output Voltage			
$\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}\right)$			

Note 1: Absolute Maximum Ratings are those values beyond which dam$260^{\circ} \mathrm{C}$

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating - plastic " N " package: $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{EE}	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	
					Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
R_{ON}	Minimum "ON" Resistance (Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \end{aligned}$ (Figure 1)	$\begin{gathered} \hline \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 100 \\ 40 \\ 30 \end{gathered}$	$\begin{gathered} \hline 170 \\ 85 \\ 70 \end{gathered}$	$\begin{gathered} 200 \\ 105 \\ 85 \end{gathered}$	$\begin{gathered} 220 \\ 110 \\ 90 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \text { (Figure 1) } \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 100 \\ 40 \\ 50 \\ 20 \end{gathered}$	$\begin{gathered} \hline 180 \\ 80 \\ 60 \\ 40 \end{gathered}$	$\begin{gathered} \hline 215 \\ 100 \\ 75 \\ 60 \end{gathered}$	$\begin{gathered} 240 \\ 120 \\ 80 \\ 70 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
R_{ON}	Maximum "ON" Resistance Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
I_{IN}	Maximum Control Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
IIZ	Maximum Switch "OFF" Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}} \text { (Figure 2) } \end{aligned}$	$\begin{aligned} & \mathrm{GND} \\ & -6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 60 \\ \pm 100 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 1000 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 1000 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$I_{I Z}$	Maximum Switch "ON" Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{OS}}=\mathrm{OPEN} \end{aligned}$ (Figure 3)	$\begin{aligned} & \hline \text { GND } \\ & -6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 40 \\ & \pm 60 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
${ }^{\text {CCC }}$	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{gathered} \hline 40 \\ 160 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistances (R_{ON}) occurs for HC at 4.5 V . Thus the 4.5 V values should be used when designing
with this supply. Worst case $\mathrm{V}_{I H}$ and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5 V values should be used
Note 5: At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}-6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V_{EE}	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Units
					Typ	Guaranteed Limits			
${ }_{\text {tphL }}$,	Maximum Propagation		GND	2.0 V	25	50	63	75	ns
tpLH	Delay Switch		GND	4.5 V	5	10	13	15	ns
	In to Out		-4.5V	4.5 V	4	8	12	14	ns
			-6.0V	6.0 V	3	7	11	13	ns
$\begin{array}{\|l\|} \hline t_{\text {tZL }}, \\ t_{\text {PZH }} \end{array}$	Maximum Switch	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	GND	2.0 V	30	165	206	250	ns
	Turn "ON" Delay		GND	4.5 V	20	35	43	53	ns
	(Control)		-4.5V	4.5 V	15	32	39	48	ns
			-6.0V	6.0 V	14	30	37	45	ns
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{PHZ}}, \\ \mathrm{t}_{\mathrm{PLLZ}} \end{array}$	Maximum Switch	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	GND	2.0 V	45	250	312	375	ns
	Turn "OFF" Delay		GND	4.5 V	25	50	63	75	ns
	(Control)		-4.5V	4.5 V	20	44	55	66	ns
			-6.0V	6.0 V	20	44	55	66	
$\begin{array}{\|l} \hline \mathrm{t}_{\text {PZL }}, \\ \mathrm{t}_{\text {PZH }} \end{array}$	Maximum Switch		GND	2.0 V	35	205	256	308	ns
	Turn "ON" Delay		GND	4.5 V	20	41	52	62	ns
	(Enable)		-4.5V	4.5 V	19	38	48	57	ns
			-6.0V	6.0 V	18	36	45	54	ns
$\begin{array}{\|l} \mathrm{t}_{\mathrm{PLZ}}, \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Maximum Switch		GND	2.0 V	58	265	330	400	ns
	Turn "OFF" Delay		GND	4.5 V	28	53	67	79	ns
	(Enable)		-4.5V	4.5 V	23	47	59	70	ns
			-6.0V	6.0 V	21	47	59	70	ns
${ }^{\text {m MAX }}$	Minimum Frequency Response (Figure 7) $20 \log \left(V_{\text {OS }} / V_{\text {IS }}\right)=-3 \mathrm{~dB}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \text { at }\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} / 2\right) \\ & \text { (Note 6) (Note 7) } \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{array}$	$\begin{gathered} 4.5 \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 40 \\ 100 \end{gathered}$				$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Control to Switch Feedthrough Noise (Figure 8)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Note 7) (Note 8) } \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{array}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 250 \end{aligned}$				$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Crosstalk Between any Two Switches (Figure 9)	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz}$	$\begin{gathered} 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{gathered}$	$\left\|\begin{array}{c} 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & -52 \\ & -50 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Switch OFF Signal Feedthrough Isolation (Figure 10)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}}, \\ & (\text { Note } 7) \text { (Note 8) } \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{gathered}$	$\left\|\begin{array}{c} 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & -42 \\ & -44 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
THD	Sinewave Harmonic Distortion (Figure 11)	$\begin{array}{ll} \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{~F}=1 \mathrm{KHz} \\ & \\ & \mathrm{~V}_{\mathrm{IS}}=4 \mathrm{~V}_{\mathrm{PP}} \\ \mathrm{~V}_{\mathrm{IS}}=8 \mathrm{~V}_{\mathrm{PP}} \end{array}$	$\begin{gathered} 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.008 \end{aligned}$				$\begin{aligned} & \text { \% } \\ & \% \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Maximum Control Input Capacitance				5				pF
$\mathrm{C}_{\text {IN }}$	Maximum Switch Input Capacitance				35				pF
$\mathrm{C}_{\text {IN }}$	Maximum Feedthrough Capacitance	$\mathrm{V}_{\text {CTL }}=\mathrm{GND}$			0.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance				15				pF
Note 6: Adjust 0 dBm for $\mathrm{F}=1 \mathrm{KHz}$ (Null R $\mathrm{R}_{\mathrm{L}} /$ Ron Attenuation). Note 7: $\mathrm{V}_{\text {IS }}$ is centered at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} / 2$. Note 8: Adjust for 0 dBm .									

www.fairchildsemi.com

AC Test Circuits and Switching Time Waveforms (Continued)

$V_{I S(1)}$

FIGURE 9. : Crosstalk Between Any Two Switches

FIGURE 10. Switch OFF Signal Feedthrough Isolation

FIGURE 11. Sinewave Distortion

Typical Performance Characteristics

Typical "ON" Resistance

Typical Crosstaik Between Any Two Switches

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into
the analog switch input pins, the voltage drop across the switch must not exceed 0.6 V (calculated from the ON resis tance).

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
