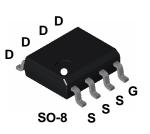
FAIRCHILD SEMICONDUCTOR

FDS6676S


30V N-Channel PowerTrench[®] SyncFET[™]

General Description

The FDS6676S is designed to replace a single SO-8 MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDS6676S includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology.

Applications

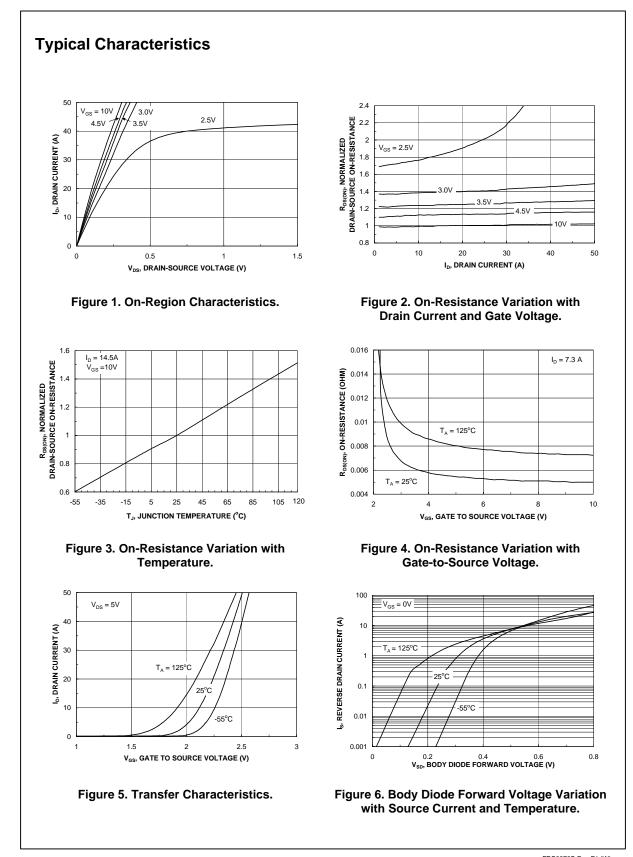
- DC/DC converter
- Motor drives

Features

- 14.5 A, 30 V. $R_{DS(ON)}$ 7.5 m Ω @ V_{GS} = 10 V $R_{DS(ON)}$ 9.0 m Ω @ V_{GS} = 4.5 V
- Includes SyncFET Schottky body diode
- Low gate charge (43nC typical)
- High performance trench technology for extremely low $R_{\text{DS(ON)}}$ and fast switching
- High power and current handling capability

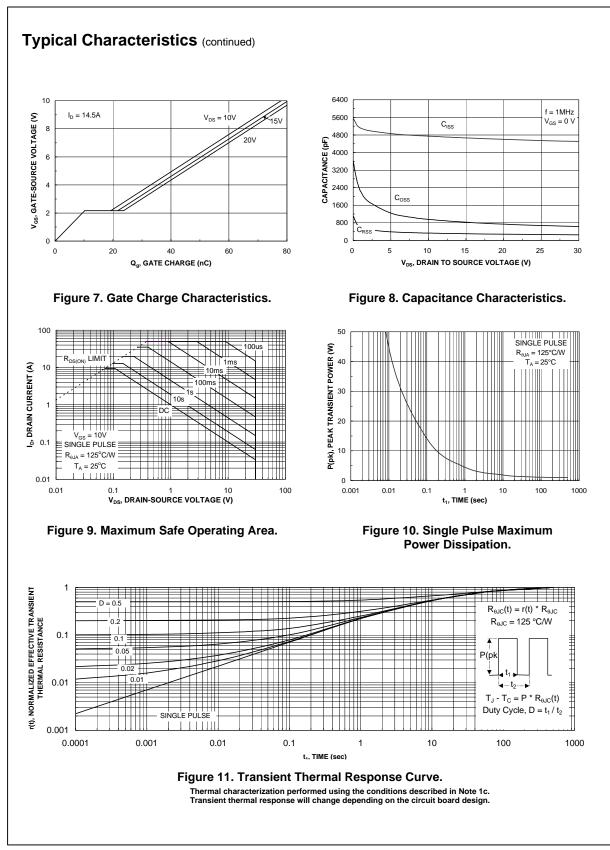
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain-Source Voltage			30		
V _{GSS}	Gate-Source Voltage			±16	V	
I _D	Drain Curre	ent – Continuous	(Note 1a)	14.5	A	
		– Pulsed		50		
P _D	Power Diss	ipation for Single Operation	DN (Note 1a)	2.5	W	
			(Note 1b)	1.2		
			(Note 1c)	1		
T _J , T _{STG}	Operating a	and Storage Junction Tem	perature Range	-55 to +150	°C	
			hight and a	50	°C/W	
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		、 ,			
R _{eJC}	Thermal Re	esistance, Junction-to-Cas	Se (Note 1)	25		
Packag	e Markin	g and Ordering	Information			
Device Marking		Device	Reel Size	Tape width	Quantity	
	676S	FDS6676S	13"	12mm	2500 units	


©2004 Fairchild Semiconductor Corporation

FDS6676S Rev F1 (W)

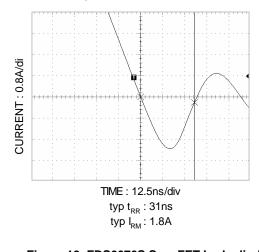
FDS6676S


Cteristics Drain–Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate–Body Leakage, Forward Gate–Body Leakage, Reverse Cteristics (Note 2)	$\begin{array}{l} V_{GS} = 0 \ V, \qquad I_D = 1 \ mA \\ \\ I_D = 1 \ mA, \ Referenced \ to \ 25^\circ C \\ \\ V_{DS} = 24 \ V, \qquad V_{GS} = 0 \ V \\ \\ V_{GS} = 16 \ V, \qquad V_{DS} = 0 \ V \\ \\ V_{GS} = -16 \ V, \qquad V_{DS} = 0 \ V \end{array}$	30	21		
Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate–Body Leakage, Forward Gate–Body Leakage, Reverse	$\label{eq:ID} \begin{array}{l} I_{D} = 1 \mbox{ mA}, \mbox{ Referenced to } 25^{\circ}\mbox{C} \\ \hline V_{DS} = 24 \mbox{ V}, \qquad V_{GS} = 0 \mbox{ V} \\ \hline V_{GS} = 16 \mbox{ V}, \qquad V_{DS} = 0 \mbox{ V} \end{array}$	30	21		
Coefficient Zero Gate Voltage Drain Current Gate–Body Leakage, Forward Gate–Body Leakage, Reverse	$V_{DS} = 24 \text{ V}, \qquad V_{GS} = 0 \text{ V}$ $V_{GS} = 16 \text{ V}, \qquad V_{DS} = 0 \text{ V}$		21		V
Gate–Body Leakage, Forward Gate–Body Leakage, Reverse	$V_{GS} = 16 \text{ V}, \qquad V_{DS} = 0 \text{ V}$		21		mV/°0
Gate–Body Leakage, Reverse				500	μA
	$V_{GS} = -16 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
teristics (Note 2)				-100	nA
Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 1 \text{ mA}$	1	1.4	3	V
Gate Threshold Voltage Temperature Coefficient	$I_D = 1$ mA, Referenced to 25°C		-3.8		mV/°0
Static Drain–Source	$V_{GS} = 10 \text{ V}, \qquad I_D = 14.5 \text{ A}$		5.25	7.5	mΩ
Un-Resistance					
On State Ducin Current		50	0.0	12	^
		50	00		A S
	$v_{DS} = 10 v$, $i_D = 14.3 A$		00		3
1 1	/ /				pF
	f = 1.0 MHz				pF
					pF
	$V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$		1.4		Ω
Characteristics (Note 2)			I		
,	$V_{DD} = 15 V, I_D = 1 A,$		11	20	ns
Turn–On Rise Time	$V_{GS} = 10 V, R_{GEN} = 6 \Omega$		10	20	ns
Turn–Off Delay Time	_		82		ns
			30	48	ns
*	$V_{DS} = 15 V,$ $I_{D} = 14.5 A,$		-	60	nC
	$V_{GS} = 5 V$				nC
Gate–Drain Charge			11		nC
urce Diode Characteristics a					
Irce Diode Characteristics a Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_{S} = 3.5 A$ (Note 2)		390 490	700	mV
Drain–Source Diode Forward				700	mV nS
Drain–Source Diode Forward Voltage	$ \begin{array}{ll} V_{GS} = 0 \ V, & I_S = 3.5 \ A & (\text{Note 2}) \\ V_{GS} = 0 \ V, & I_S = 7 \ A & (\text{Note 2}) \end{array} $		490	700	
	Temperature Coefficient Static Drain–Source On–Resistance On–State Drain Current Forward Transconductance Characteristics Input Capacitance Output Capacitance Output Capacitance Gate Resistance Characteristics (Note 2) Turn–On Delay Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge	Temperature CoefficientStatic Drain–Source On–Resistance $V_{GS} = 10 \text{ V}, I_D = 14.5 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 13.2 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 14.5 \text{ A}, \text{ T}_J = 125°COn–State Drain CurrentV_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}Forward TransconductanceV_{DS} = 10 \text{ V}, V_{DS} = 5 \text{ V}Forward TransconductanceV_{DS} = 10 \text{ V}, I_D = 14.5 \text{ A}CharacteristicsInput CapacitanceInput CapacitanceV_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}Reverse Transfer CapacitanceV_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}Gate ResistanceV_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}Turn–On Delay TimeV_{DD} = 15 \text{ V}, I_D = 1 \text{ A}, V_{GS} = 10 \text{ V}, R_{GEN} = 6 \OmegaTurn–Off Delay TimeV_{DS} = 15 \text{ V}, I_D = 14.5 \text{ A}, V_{GS} = 5 \text{ V}$	Temperature CoefficientVGS = 10 V, ID = 14.5 AStatic Drain-Source $V_{GS} = 10 V, ID = 14.5 A$ On-Resistance $V_{GS} = 4.5 V, ID = 13.2 A$ VGS = 10 V, ID = 14.5A, TJ = 125°CVGS = 10 V, VDS = 5 VOn-State Drain Current $V_{GS} = 10 V, V_{DS} = 5 V$ Forward Transconductance $V_{DS} = 10 V, ID = 14.5 A$ Input Capacitance $V_{DS} = 15 V, V_{GS} = 0 V, ID = 14.5 A$ CharacteristicsInput CapacitanceInput Capacitance $V_{DS} = 15 V, V_{GS} = 0 V, ID = 14.5 A$ Gate Resistance $V_{GS} = 15 mV, ID = 14.5 R, V_{GS} = 15 mV, ID = 14.5 R, V_{GS} = 10 V, ID = 15 V, ID = 14.5 R, V_{GS} = 10 V, ID = 14.5 R, V_{GS} = 10 V, ID = 14.5 R, V_{GS} = 5 V$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

FDS6676S Rev F1 (W)

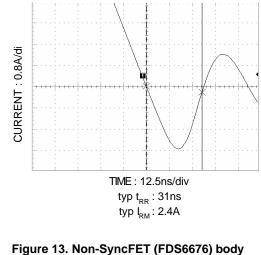
FDS6676S Rev F1 (W)

FDS6676S


FDS6676S Rev F1 (W)

FDS6676S

Typical Characteristics (continued)


SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDS6676S.

Figure 12. FDS6676S SyncFET body diode reverse recovery characteristic.

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDS6676).

diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

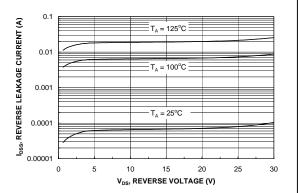


Figure 14. SyncFET body diode reverse leakage versus drain-source voltage and temperature.

FDS6676S Rev F1 (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTMFACT Quiet SeriesTMActiveArrayTMFAST®BottomlessTMFASTrTMCoolFETTMFRFETTM $CROSSVOLT$ MGlobalOptoisolatorTMDOMETMGTOTMEcoSPARKTMHiSeCTME²CMOSTMP²CTMEnSignaTMImpliedDisconnectTMFACTTMISOPLANARTMAcross the board. Around the world.TMThe Power FranchiseTMProgrammable Active DroopTM	LittleFET TM MICROCOUPLER TM MicroFET TM MicroPak TM MICROWIRE TM MSX TM MSXPro TM OCX TM OCXPro TM OCXPro TM OPTOLOGIC [®] OPTOPLANAR TM PACMAN TM POP TM	Power247 TM PowerTrench [®] QFET [®] QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM RapidConnect TM SILENT SWITCHER [®] SMART START TM SPM TM Stealth TM SuperFET TM	SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM UHC TM UltraFET [®] VCX TM
---	---	--	--

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production