

128K x 24 Three Megabit 3.3V CMOS Static RAM

Description

for ultra dense systems.

times for ease of use.

Features

- High density 3 megabit 3.3V static RAM
- Low profile 119 lead, 14mm x 22mm BGA (Ball Grid Array)
- Fast RAM access times: 10,12,15ns
- Single 3.3V power supply
- Multiple Vcc & GND pins for maximum noise immunity
- Inputs/outputs directly LVTTL compatible
- Commercial (0° C to +70° C) Industrial (-40° C to +85° C) temperature options
 - Commercial: 10/12/15 ns
 - Industrial: 12/15 ns

Pin Names

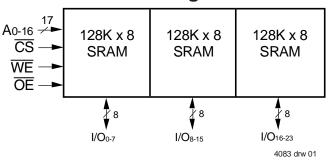
I/O0 - 23	Data Inputs/Outputs
A0 - 16	Addresses
CS	Chip Select
WE	Write Enable
ŌĒ	Output Enable
Vcc	Power
GND	Ground
NC	No Connect

4083 tbl 01

Pin Configuration

								_									
	A	В	С	D	Е	F	G	Н	J	К	L	М	Ν	Р	R	Т	U
1	NC	NC	I/O12	I/O13	I/O14	I/O15	I/O16	I/O17	NC	I/O18	I/O19	I/O20	I/O21	I/O22	I/O23	NC	NC
2	A0	A5	NC	VCC	GND	VCC	GND	VCC	GND	VCC	GND	VCC	GND	VCC	NC	A9	A13
3	A1	A6	NC	GND	VCC	GND	VCC	GND	VCC	GND	VCC	GND	VCC	GND	NC	A10	A14
4	A2	$\overline{\text{CS}}$	NC	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	NC	WE	ŌĒ
5	A3	A7	NC	GND	VCC	GND	VCC	GND	VCC	GND	VCC	GND	VCC	GND	NC	A11	A15
6	A4	A8	NC	VCC	GND	VCC	GND	VCC	GND	VCC	GND	VCC	GND	VCC	NC	A12	A16
7	NC	NC	I/O0	I/O1	I/O2	I/O3	I/O4	I/O5	NC	I/O6	I/07	I/08	I/O9	I/O10	I/O11	NC	NC

Top View


4083 drw 02

JANUARY 2003

©2003 Integrated Device Technology, Inc.

Functional Block Diagram

static RAMS encapsulated in a Ball Grid Array (BGA).

The IDT7MMV4101 is a three megabit static RAM constructed on an

The IDT7MMV4101 is packaged in a plastic BGA. The BGA configu-

All inputs and outputs of the IDT7MMV4101 are LVTTL compatible and

multilayer laminate substrate using three 3.3V, 128K x 8 (IDT71V124)

ration allows 119 leads to be placed on a package 14mm by 22mm. At a

maximum of 3.5mm high, this low-profile surface mount package is ideal

operate from a single 3.3V supply. Full asynchronous circuitry requires

no clocks or refresh for operation and provides equal access and cycle

IDT7MMV4101 128K x 24 Three Megabit 3.3V CMOS Static RAM

Capacitance (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	Vin = 3dV	20	pF
Cvo	I/O Capacitance	Vout = 3dV	10	pF
				4083 tbl 02

NOTE:

1. This parameter is guaranteed by design but not tested.

Truth Table

Mode	<u>CS</u>	ŌE	WE	I/O	Power	
Standby	Н	Х	Х	High-Z	Standby	
Read	L	L	Н	DATAOUT	Active	
Write	L	Х	L	DATAℕ	Active	
Outputs Disabled	L	Н	Н	High-Z	Active	

4083 tbl 04

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc ⁽¹⁾	Supply Voltage	3.15	3.3	3.6	V
Vcc ⁽²⁾	Supply Voltage	3.0	3.3	3.6	V
GND	Ground	0	0	0	V
ViH	Input High Voltage	2.0		Vcc + 0.3 ⁽⁴⁾	V
Vil	Input Low Voltage	-0.3 ⁽³⁾		0.8	V

NOTES:

1. For 7MMV4101S10BG only.

2. For all speed grades except 7MMV4101S10BG.

3. VIL (min) = -1.5V for pulse width less than 5ns, once per cycle.

4. VIH (max) = Vcc + 1.5V for pulse width less than 5ns, once per cycle.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial	Industrial	Unit
Vcc	Supply Voltage Relative to GND	-0.5 to +4.6	-0.5 to +4.6	V
Vterm	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	-0.5 to Vcc+0.5	V
Та	Operating Temperature	0 to +70	-40 to +85	°C
Tbias	Temperature Under Bias	-10 to +85	-10 to +85	°C
Tstg	Storage Temperature	-55 to +125	-55 to +125	°C
Ιουτ	DC Output Current	50	50	mA

NOTES:

4083 tbl 03

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Vcc = 3.3V ±10%)

Symbol	Parameter	Test Condition	Min.	Max.	Unit
llul	Input Leakage Current	Vcc = Max., VIN = GND to Vcc		15	μΑ
lllol	Output Leakage Current	Vcc = Max., $\overline{CS} \ge V_{H}$, Vout = GND to Vcc,		5	μΑ
Vol	Output Low Voltage	Iol = 8mA, Vcc = Min.		0.4	V
Vон	Output High Voltage	$I_{OH} = -4mA$, $V_{CC} = Min$.	2.4		V

4083 tbl 06

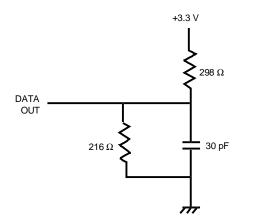
			-10 ⁽¹⁾	-12	-15	
Symbol	Parameter	Test Condition	Max.	Max.	Max.	Unit
lcc	Dynamic Operating Current	$V_{CC} = Max., \overline{CS} \le V_{IL},$ f = fMax, Outputs Open	295	275	255	mA
lsb	Standby Power Supply Current	$V_{CC} = Max., \overline{CS} \ge V_{H}, f = f_{MAX}, Outputs Open$	95	85	85	mA
ISB1	Full Standby Power Supply Current	$\label{eq:constraint} \begin{split} \overline{CS} &\geq Vcc - 0.2V, \ f=0 \\ V_N &> Vcc - 0.2V \ or < 0.2V \end{split}$	10	10	10	mA

2

NOTES:

1. Commercial temperature only, Vcc = -5% to +10%.

4083 tbl 07


Commercial and Industrial Temperature Ranges

IDT7MMV4101 128K x 24 Three Megabit 3.3V CMOS Static RAM

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figures 1 and 2

4083 tbl 08

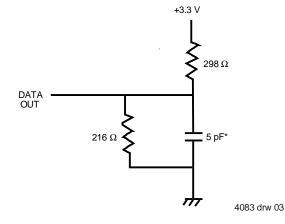


Figure 1. Output Load

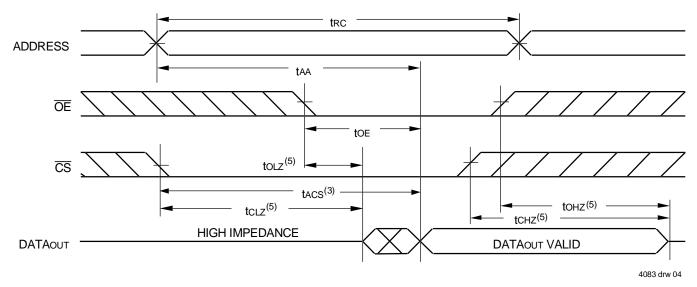
Figure 2. Output Load (for toLz, toHz, tCHz, tCLz, tWHZ, toW) * Includes scope and jig.

4083 tbl 09

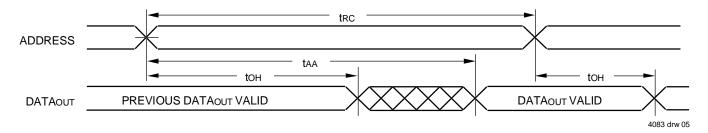
AC Electrical Characteristics⁽²⁾

(Vcc = 3.3V ±10%)

		-1	0 ⁽³⁾	-	12	-15		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								
trc	Read Cycle Time	10		12		15		ns
taa	Address Access Time		10		12		15	ns
tacs	Chip Select Access Time		10		12		15	ns
tcLz ⁽¹⁾	Chip Select to Output in Low-Z	3		3		3		ns
toe	Output Enable to Output Valid		4		6		7	ns
toLz ⁽¹⁾	Output Enable to Output in Low-Z	0		0		0		ns
tcHz ⁽¹⁾	Chip Deselect to Output in High-Z		5		6		7	ns
tohz ⁽¹⁾	Output Disable to Output in High-Z		5		6		7	ns
tон	Output Hold from Address Change	3		3		3		ns
tpu ⁽¹⁾	Chip Select to Power-Up Time	0		0		0		ns
tpd ⁽¹⁾	Chip Deselect to Power-Down Time		10		12		15	ns
Nrite Cycle			<u>8</u>	8	<u>.</u>			
twc	Write Cycle Time	10		12		15		ns
tcw	Chip Select to End-of-Write	8		10		12	_	ns
taw	Address Valid to End-of-Write	8		10		12		ns
tas	Address Set-up Time	0		0		0		ns
twp	Write Pulse Width	8		10		12		ns
twr	Write Recovery Time	0		0		0		ns
twHz ⁽¹⁾	Write Enable to Output in High-Z		5		5		5	ns
tow	Data to Write Time Overlap	6		6		7		ns
tон	Data Hold from Write Time	0		0		0	_	ns
tow ⁽¹⁾	Output Active from End-of-Write	3		3		3		ns

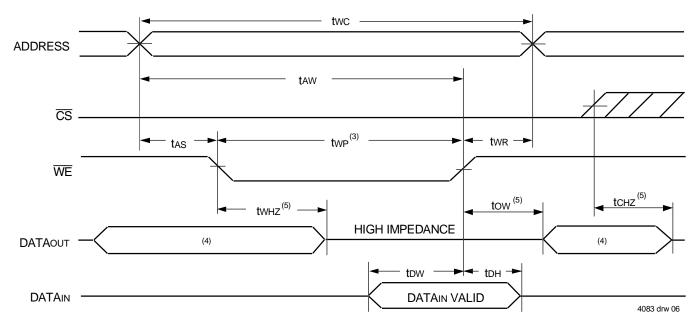

NOTES:

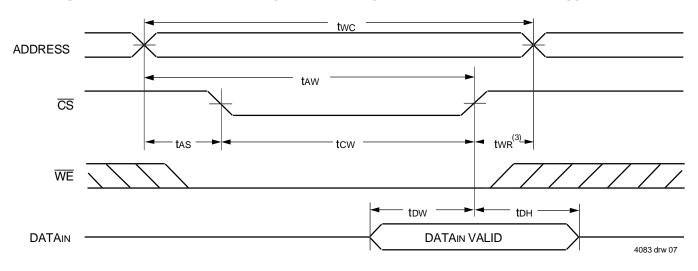
1. This parameter is guaranteed by design but not tested.


2. These specifications are for the individual 71V124 Static RAMs.

3. Commercial temperature only, Vcc = -5% to +10%.

Timing Waveform of Read Cycle No. 1⁽¹⁾

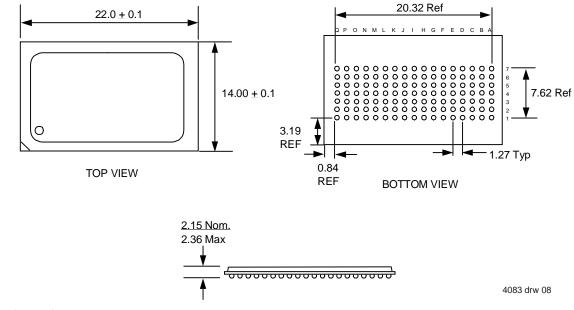

Timing Waveform of Read Cycle No. 2^(1,2,4)


NOTES:

- 1. $\overline{\text{WE}}$ is HIGH for Read Cycle.
- 2. Device is continuously selected, \overline{CS} is LOW.
- 3. Address must be valid prior to or coincident with the later of \overline{CS} transition LOW; otherwise taa is the limiting parameter.
- 4. \overline{OE} is LOW.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 1 (\overline{WE} Controlled Timing)^(1,4,5)

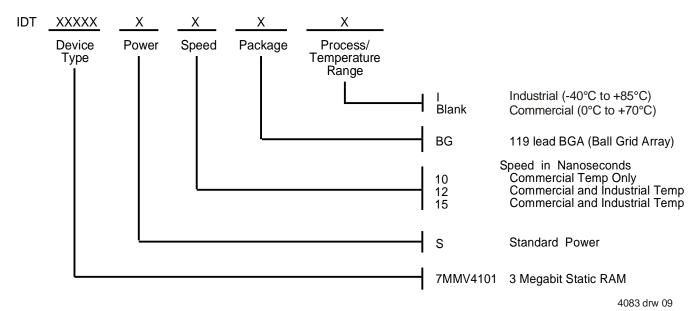
Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)^(1, 4)



NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 2. \overline{OE} is continuously HIGH. During a \overline{WE} controlled write cycle with \overline{OE} LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS must be active during the tcw write period.
- 5. Transition is measured ±200mV from steady state.

IDT7MMV4101 128K x 24 Three Megabit 3.3V CMOS Static RAM


Package Dimensions

1. All dimensions are in mm.

NOTES:

Ordering Information

Datasheet History

09/18/00		Add datasheet history
	Pg. 2	Reduce ICC, ISB, and ISB1 to reflect K step die shrink
01/07/03		Changed datasheet from Prelininary to final release

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax:408-492-8674 www.idt.com for Tech Support: sramhelp@idt.com 800 544-7726, x4033

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com