6367254 MOTOROLA SC (XSTRS/R F) 96D 82620 D T-31-25 3N211 3N212 3N213 **CASE 20-03, STYLE 9** TO-72 (TO-206AF) **DUAL-GATE MOSFET VHF AMPLIFIER** N-CHANNEL -- DEPLETION Refer to MPF211 for graphs. ## **MAXIMUM RATINGS** | Rating | Symbol | 3N211
3N212 | 3N213 | Unit | |---|--------------------------------------|----------------|-------|---------------| | Drain-Source Voltage | V _{DS} | 27 35 | | Vdc | | Drain-Gate Voltage . | V _{DG1}
V _{DG2} | 35 40
35 40 | | Vdc | | Drain Current | ΙD | 5 | mAdc | | | Gate Current | IG1
IG2 | ±
± | mAdc | | | Total Device Dissipation @ T _A = 25°C
Derate above 25°C | PD | 360
2.4 | | mW
mW/°C | | Total Device Dissipation @ T _C = 25°C
Derate above 25°C | PD | 1.2
8.0 | | Watt
mW/°C | | Lead Temperature, 1/16" From Seated
Surface for 10 seconds | TL | 300 | | °C | | Junction Temperature Range | TJ | -65 to +175 | | °C | | Storage Temperature Range | T _{stg} | 65 to | °C | | ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.) | Characteristic | | Symbol | Min | Max | Unit | |---|--------------------|-------------------|----------------|--------------|--------------| | OFF CHARACTERISTICS | | | | | | | Drain-Source Breakdown Voltage(1)
{I _D = 10 μAdc, V _{G1S} = V _{G2S} = -4.0 Vdc} | 3N211,212
3N213 | V(BR)DSX | 25
30 | | Vdc | | Instantaneous Drain-Source Breakdown Voltage) (ID = 10 μ Adc, VG1S = VG2S = -4.0 Vdc) | 3N211,212
3N213 | V(BR)DSX | 27
35 | _ | Vdc | | Gate 1-Source Breakdown Voltage(2)
(I _{G1} = ±10 mAdc, V _{G2S} = V _{DS} = 0) | | V(BR)G1SO | ±6.0 | _ | Vdc | | Gate 2-Source Breakdown Voltage(2)
(I _{G2} = ±10 mAdc, V _{G1S} = V _{DS} = 0) | | V(BR)G2SO | ±6.0 | _ | Vdc | | Gate 1 Leakage Current (VG1S = ± 5.0 Vdc, VG2S = VDS = 0) (VG1S = -5.0 Vdc, VG2S = VDS = 0, TA = 150 °C) | | I _{G1SS} | = | ±10
-10 | nAdc
μAdc | | Gate 2 Leakage Current
(VG2S = ±5.0 Vdc, VG1S = VDS = 0)
(VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150°C) | | lG2SS | _ | ±10
-10 | nAdc
μAdc | | Gate 1 to Source Cutoff Voltage
(V _{DS} = 15 Vdc, V _{G2S} = 4.0 Vdc, I _D = 20 μAdc) | 3N211,213
3N212 | VG1S(off) | - 0.5
- 0.5 | -5.5
-4.0 | Vdc | | Gate 2 to Source Cutoff Voltage
{V _{DS} = 15 Vdc, V _{G1S} = 0, I _D = 20 μAdc} | 3N211
3N212,213 | VG2S(off) | -0.2
-0.2 | -2.5
-4.0 | Vdc | | ON CHARACTERISTICS | | | | | | | Zero-Gate-Voltage Drain Current(3) | | DSS | 6.0 | 40 | mAdc | (V_{DS} = 15 Vdc, V_{G1S} = 0, V_{G2S} = 4.0 Vdc) SMALL-SIGNAL CHARACTERISTICS | Forward Transfer Admittance(4) (VDS = 15 Vdc, VG2S = 4.0 Vdc, VG1S = 0, f = 1.0 kHz) | 3N211,212
3N213 | lyfsl | 17
15 | 40
35 | mmhos | |--|--------------------|------------------|----------|----------|-------| | Reverse Transfer Capacitance $\{V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_D = 1.0 \text{ mAdc}, f = 1.0 \text{ MHz}\}$ | | C _{rss} | 0.005 | 0.05 | pF | FUNCTIONAL CHARACTERISTICS | FONCTIONAL CHARACTERISTICS | | | | | |--|----|-----|-----|----| | Noise Figure | NF | | | dB | | (V _{DD} = 16 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) 3N211 | | _ | 3.5 | | | (V _{DD} = 24 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz) 3N211,13 | | _ ; | 4.0 | | MOTOROLA SMALL-SIGNAL SEMICONDUCTORS 6-92 ## 6367254 MOTOROLA SC (XSTRS/R F) 96D 82621 3N211, 3N212, 3N213 T-31-25 ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.) | Characteristic | | 5ymbol | Min | Max | Unit | |--|----------------------------------|----------------------|----------------------|----------------------|------| | Common Source Power Gain (V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (V _{DD} = 24 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz) (V _{DD} = 24 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz) (V _{DD} = 18 Vdc, f _{LO} = 245 MHz, f _{RF} = 200 MHz) | 3N211
3N211
3N213
3N212 | G _{ps} | 24
29
27
21 | 35
37
35
28 | dB | | Bandwidth (VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz) (VDD = 18 Vdc, f _{LO} = 245 MHz, f _{RF} = 200 MHz) (VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz) | 3N211
3N212
3N211,213 | BW | 5.0
4.0
3.5 | 12
7.0
6.0 | MHz | | Gain Control Gate-Supply Voltage(5) (V _{DD} = 18 Vdc, ΔG _{DS} = -30 dB, f = 200 MHz) (V _{DD} = 24 Vdc, ΔG _{DS} = -30 dB, f = 45 MHz) | 3N211
2N211,213 | V _{GG} (GC) | | -2.0
±1.0 | Vdc | ⁽¹⁾ Measured after five seconds of applied voltage. (2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly. (3) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%. (4) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground. (5) NAC: it officed as the change in G-- from the value at Voc = 7.0 Volts (3N211) and Voc = 6.0 Volts (3N213). ⁽⁵⁾ ΔG_{ps} is defined as the change in G_{ps} from the value at $V_{GG}=7.0$ Volts (3N211) and $V_{GG}=6.0$ Volts (3N213). (6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_{c} .