

March 1993 Revised December 1999

74LVX14

Low Voltage Hex Inverter with Schmitt Trigger Input

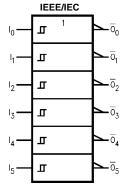
General Description

The LVX14 contains six inverter gates each with a Schmitt trigger input. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

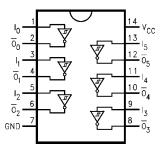
The LVX14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.

The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.

Features


- Input voltage level translation from 5V to 3V
- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance

Ordering Code:


Order Number	Package Number	Package Description
74LVX14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
74LVX14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
I _n	Inputs
Ō _n	Outputs

Truth Table

Input	Output
Α	ō
L	Н
Н	L

© 1999 Fairchild Semiconductor Corporation

DS011603

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V Supply Voltage (V_{CC})

DC Input Diode Current (I_{IK})

-20 mA

-0.5V to $V_{CC} + 0.5V$

-65°C to +150°C

-0.5V to 7V

-20 mA

+20 mA

±25 mA

±50 mA

180 mW

DC Input Voltage (V_I)

 $V_{I} = -0.5V$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$

 $V_O = V_{CC} + 0.5V$

DC Output Voltage (V_O)

DC Output Source

or Sink Current (I_O)

DC V_{CC} or Ground Current $(I_{CC} \text{ or } I_{GND})$

Storage Temperature (T_{STG})

Power Dissipation

Recommended Operating Conditions (Note 2)

Supply Voltage (V_{CC})

2.0V to 3.6V 0V to 5.5V Input Voltage (V_I)

Output Voltage (V_O)

0V to V_{CC}

Operating Temperature (T_A)

-40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions

for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
Syllibol	rarameter	•00	Min Typ		Max	Min Max		Offics	Conditions		
V _t +	Positive Threshold	3.0			2.2		2.2	V			
V _t -	Negative Threshold	3.0	0.9			0.9		V			
V_{H}	Hysteresis	3.0	0.3		1.2	0.3	1.2	V			
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IL}$ or V_{IH} $I_{OH} = -50 \mu A$		
	Output Voltage	3.0	2.9	3.0		2.9		V	$V_{IN} = V_{IL} \text{ or } V_{IH} I_{OH} = -50 \mu\text{A}$		
		3.0	2.58			2.48			$I_{OH} = -4 \text{ mA}$		
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$I_{OL} = 50 \mu A$		
	Output Voltage	3.0		0.0	0.1		0.1	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 50 \mu\text{A}$ $I_{OL} = 4 \text{ mA}$		
		3.0			0.36		0.44		$I_{OL} = 4 \text{ mA}$		
I _{IN}	Input Leakage Current 3.6				±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND		
I _{CC}	Quiescent Supply Current	3.6			2.0		20	μΑ	$V_{IN} = V_{CC}$ or GND		

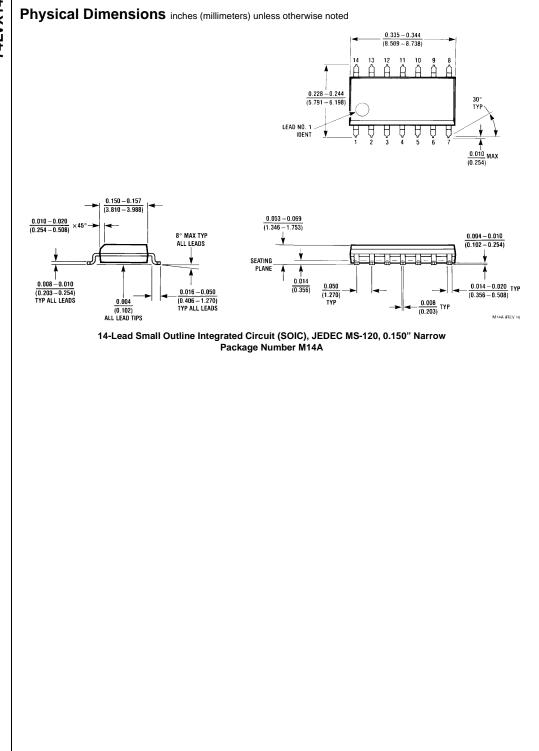
Noise Characteristics (Note 3)

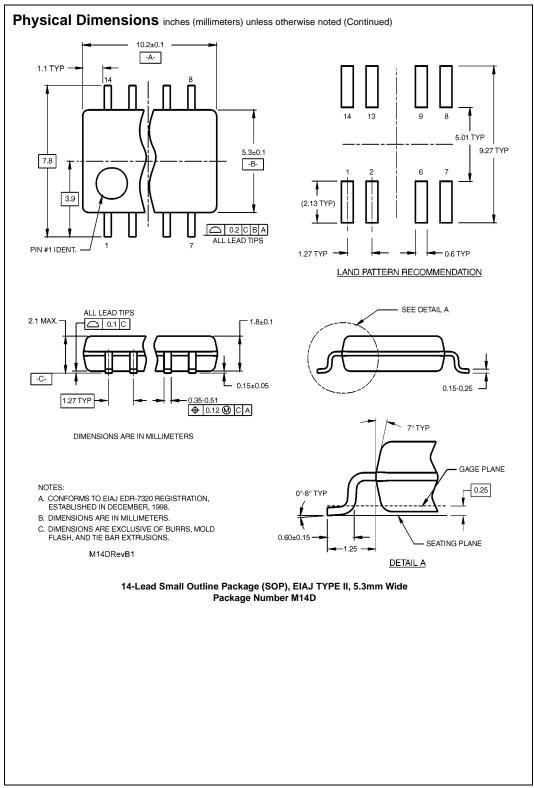
Symbol	Parameter	V _{CC} (V)	T _A = 25°C		Units	C _L (pF)	
	Tarameter		Тур	Limit			
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.3	0.5	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-0.3	-0.5	V	50	
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	

Note 3: Input $t_r = t_f = 3ns$

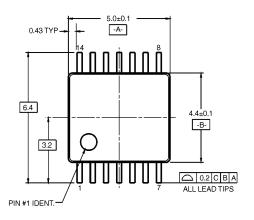
AC Electrical Characteristics

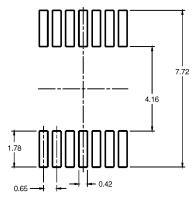
Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}$	C to +85°C	Units	C _L (pF)	
Cynnbon	i arameter	(V)	Min	Тур	Max	Min	Max	Oilles	- [(b.)	
t _{PLH}	Propagation	2.7		8.7	16.3	1.0	19.5		15	
t _{PHL}	Delay Time	2.1		11.2	19.8	1.0	23.0	ns	50	
		3.3 ± 0.3		6.8	10.6	1.0	12.5	115	15	
		3.3 ± 0.3		9.3	14.1	1.0	16.0		50	
t _{OSLH}	Output to Output	2.7			1.5		1.5	ns	50	
t _{OSHL}	Skew (Note 4)	3.3			1.5		1.5	113	30	

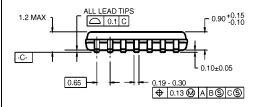

Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

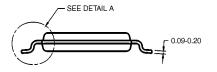

Capacitance

Symbol	Parameter		T _A = +25°C		T _A = -40°0	Units	
	T didiliotor		Тур	Max	Min		Max
C _{IN}	Input Capacitance		4	10		10	pF
C _{PD}	Power Dissipation		21				pF
	Capacitance (Note 5)		21				þг

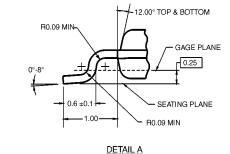

Note 5: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{|N} + I_{CC}}{6 \, (per \, Gate)}$




Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION



NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTC14RevC3

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com