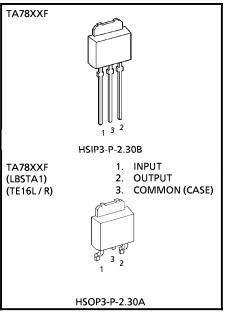
TOSHIBA

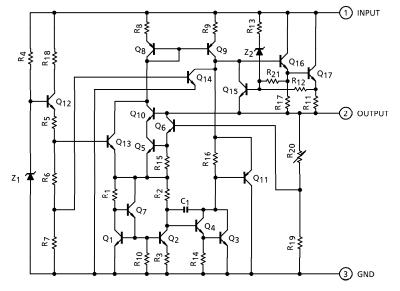

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC TA78M05F, TA78M06F, TA78M08F, TA78M09F, TA78M10F TA78M12F, TA78M15F, TA78M18F, TA78M20F, TA78M24F

0.5 A THREE TERMINAL POSITIVE VOLTAGE REGULATORS 5 V, 6 V, 8 V, 9 V, 10 V, 12 V, 15 V, 18 V, 20 V, 24 V

The TA78M $\times \times F$ series of fixed-voltage monolithic integrated circuit voltage regulators is designed for a wide range of applications. These regulators employ internal current-limiting, thermal-shutdown and safe-area compensation, making them essentially indestructible. One of these regulators can drive up to 0.5 A of output current.

FEATURES

- Suitable for CMOS, TTL and the other Digital IC's Power Supply.
- Output Current in Excess of 0.5 A
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Packaged in POWER MOLD.


Weight HSIP3-P-2.30B : 0.36 g (Typ.) HSOP3-P-2.30A : 0.36 g (Typ.)

980910FBA1

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA products, to prove that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
The products described in this document are subject to the foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

The information contained herein is subject to change without notice.

EQUIVALENT CIRCUIT

MAXIMUM RATINGS (Ta = 25°C)

CHARACTER	ISTIC	SYMBOL	RATING	UNIT
	TA78M05F			
	TA78M06F			
	TA78M08F			
	TA78M09F		35	
Input Voltage	TA78M10F	Visi		v
input vonage	TA78M12F	VIN		v
	TA78M15F			
	TA78M18F			
	TA78M20F		40	
	TA78M24F			
Bower Dissinction	(Ta = 25°C)	PD	1	w
Power Dissipation	$(Tc = 25^{\circ}C)$	۲D	10	vv
Operating Temperat	ure	T _{opr}	- 30~75	°C
Storage Temperature	9	T _{stg}	- 55~150	°C
Junction Temperatur	e	Tj	150	°C
Thormal Desistance		R _{th (j-c)}	12.5	°C ()M
Thermal Resistance		R _{th (j-a)}	125	°C/W

TA78M05F

ELECTRICAL CHARACTERISTICS (VIN = 10 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

CHARACTERIST	ĨC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	T _j = 25°C	4.8	5.0	5.2	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{ \begin{array}{c} 7 V \leq V_{IN} \leq 25 V \\ \\ \begin{array}{c} I_{OUT} = 200 mA \\ \\ \hline 8 V \leq V_{IN} \leq 25 V \end{array} \end{array} }{ \end{array} }$		4	100	mV
		Reg.Line		I _{OUT} = 200 mA		2	50	mv
Load Pogulation		Poglaad	1	$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}}$		25	100	mV
Load Regulation		Reg.Load		$I_j = 25 \text{ C}$ 5 mA $\leq I_{OUT} \leq 200 \text{ mA}$	—	10	50	
Output Voltage		Vout		$T_{j} = 25^{\circ}C \begin{vmatrix} 7 V \leq V_{IN} \leq 20 V \\ 5 mA \leq I_{OUT} \leq 350 mA \end{vmatrix}$	4.75	_	5.25	v
Quiescent Current		۱ _B		T _j = 25°C	_	4.5	8.0	mA
Quiescent	Line	⊿IBI	1	$8.5 V \le V_{IN} \le 25.5 V,$ _{OUT} = 200 mA	_	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	_	_	0.5	
Output Noise Volt	tage	VNO	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	_	50	200	μV_{rms}
Ripple Rejection		R.R.	3	f = 120 Hz, I _{OUT} = 50 mA 8 V \leq V _{IN} \leq 18 V, T _j = 25°C	60	67	_	dB
Short Circuit Curre Limit	ent	lsc	1	T _j = 25°C		960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	_	1.7	—	V
Average Tempera Coefficient Of Ou Voltage		тсvо	1	I _{OUT} = 5 mA	_	- 0.6	_	mV / °C

TA78M06F

ELECTRICAL CHARACTERISTICS (VIN = 11 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

CHARACTERIST	ГIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	T _j = 25°C	5.75	6.0	6.25	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{\begin{vmatrix} 8 \ V \leq V_{IN} \leq 25 \ V \\ I_{OUT} = 200 \ mA \\ 9 \ V \leq V_{IN} \leq 25 \ V \end{vmatrix}}{9 \ V \leq V_{IN} \leq 25 \ V}$	_	4	100	mV
		Reg.Line		I _{OUT} = 200 mA	_	2	50	mv
Load Regulation		Reg.Load	1	$T_{\rm L} = 25^{\circ} c$ 5 mA $\leq I_{\rm OUT} \leq 500$ mA	—	25	120	mV
Load Regulation		Reg.Load		$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}}$	—	10	60	
Output Voltage		Vout	1	$T_{j} = 25^{\circ}C \begin{vmatrix} 8 V \leq V_{IN} \leq 21 V \\ 5 mA \leq I_{OUT} \leq 350 mA \end{vmatrix}$	5.7	_	6.3	v
Quiescent Current	;	۱ _B		T _j = 25°C	—	4.5	8.0	mA
Quiescent	Line	⊿IBI	1	$9.5 V \le V_{IN} \le 25.5 V,$ $I_{OUT} = 200 \text{ mA}$	_	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	_	_	0.5	
Output Noise Vol [.]	tage	V _{NO}	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	—	55	220	μV_{rms}
Ripple Rejection		R.R.	3	f = 120 Hz, I _{OUT} = 50 mA 9 V \leq V _{IN} \leq 19 V, T _j = 25°C	58	65	_	dB
Short Circuit Curr Limit	ent	lsc	1	T _j = 25°C	_	960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	—	1.7	—	V
Average Tempera Coefficient Of Ou Voltage		Tcvo	1	I _{OUT} = 5 mA	_	- 0.7	_	mV/°C

TA78M08F

ELECTRICAL CHARACTERISTICS (VIN = 14 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

CHARACTERIST	ГІС	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	T _j = 25°C	7.7	8.0	8.3	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{\begin{vmatrix} 10.5 \text{ V} \leq \text{V}_{IN} \leq 25 \text{ V} \\ \hline I_{OUT} = 200 \text{ mA} \\ \hline 11 \text{ V} \leq \text{V}_{IN} \leq 25 \text{ V} \end{vmatrix}}{}$	_	5	100	mV
		Reg.Line		I _{OUT} = 200 mA	_	3	50	mv
Load Regulation		Paglaad	1	$T_{\rm L} = 25^{\circ} c$ 5 mA $\leq I_{\rm OUT} \leq 500$ mA	—	26	160	mV
Load Regulation		Reg.Load		$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}}$	—	10	80	
Output Voltage		Vout		$T_{j} = 25^{\circ}C \begin{vmatrix} 10.5 \text{ V} \leq \text{V}_{IN} \leq 23 \text{ V} \\ 5 \text{ mA} \leq \text{I}_{OUT} \leq 350 \text{ mA} \end{vmatrix}$	7.6	_	8.4	v
Quiescent Current	;	۱ _B		T _j = 25°C	—	4.6	8.0	mA
Quiescent	Line	⊿IBI	1	$11 V \le V_{IN} \le 25.5 V,$ $V_{OUT} = 200 mA$	_	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	_	_	0.5	
Output Noise Vol [.]	tage	V _{NO}	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	—	60	250	μVrms
Ripple Rejection		R.R.	3	f = 120 Hz, I_{OUT} = 50 mA 11.5 V \leq V _{IN} \leq 21.5 V, T _j = 25°C	55	62	_	dB
Short Circuit Curro Limit	ent	lsc	1	T _j = 25°C	_	960	_	mA
Dropout Voltage		VD	1	Ta = 25°C		1.7		V
Average Tempera Coefficient Of Ou Voltage		тсvо	1	I _{OUT} = 5 mA	_	- 1.0	_	mV / °C

TA78M09F

ELECTRICAL CHARACTERISTICS (VIN = 15 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

CHARACTERIST	TIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	T _j = 25°C	8.64	9.0	9.36	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{\begin{vmatrix} 11.5 \ V \le V_{IN} \le 26 \ V \\ \hline I_{OUT} = 200 \ mA \\ \hline 13 \ V \le V_{IN} \le 26 \ V \end{vmatrix}}{13 \ V \le V_{IN} \le 26 \ V}$	_	5	100	mV
Line Regulation		Reg.Line		I _{OUT} = 200 mA	_	3	50	mv
Load Regulation		Reg.Load	1	$T_{\rm L} = 25^{\circ} c$ 5 mA $\leq 1_{\rm OUT} \leq 500$ mA	—	26	180	mV
Load Regulation		Reg.Loau		$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}}$	—	10	90	
Output Voltage		Vout	1	$T_{j} = 25^{\circ}C \begin{vmatrix} 11.5 \text{ V} \leq \text{V}_{IN} \leq 24 \text{ V} \\ 5 \text{ mA} \leq \text{I}_{OUT} \leq 350 \text{ mA} \end{vmatrix}$	8.55	_	9.45	v
Quiescent Current		۱ _B	1	T _j = 25°C	—	4.6	8.0	mA
Quiescent	Line	⊿IBI	1	$12 V \le V_{IN} \le 26.5 V,$ $I_{OUT} = 200 \text{ mA}$	_	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	—	—	0.5	
Output Noise Vol [.]	tage	VNO	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	_	60	270	μVrms
Ripple Rejection		R.R.	3	f = 120 Hz, I_{OUT} = 50 mA 12.5 V \leq V _{IN} \leq 22.5 V, T _j = 25°C	54	61	_	dB
Short Circuit Curre Limit	ent	lsc	1	T _j = 25°C	_	960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	—	1.7	_	V
Average Tempera Coefficient Of Ou Voltage		тсvо	1	I _{OUT} = 5 mA	_	- 1.1	_	mV / °C

TA78M10F

ELECTRICAL CHARACTERISTICS (VIN = 16 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

CHARACTERIST	пс	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	$T_j = 25^{\circ}C$	9.6	10.0	10.4	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{\begin{vmatrix} 12.5 \text{ V} \leq \text{ V}_{\text{IN}} \leq 26 \text{ V} \\ \text{I}_{\text{OUT}} = 200 \text{ mA} \\ 14 \text{ V} \leq \text{ V}_{\text{IN}} \leq 26 \text{ V} \end{vmatrix}$	_	6	100	mV
		Neg.Line		lev 200 mA	_	3	50	iiiv
Load Regulation		Reg.Load	1	$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ m/}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ m/}}$	×	26	200	mV
LOAD REGULATION		Reg.Load		$5 \text{ mA} \leq 100 \text{ mJ}$	×	10	100	mv
Output Voltage		Vout	1	$\begin{array}{c} 5 \text{ mA} = 1001 = 200 \text{ m/} \\ 12.5 \text{ V} \leq \text{ V}_{\text{IN}} \leq 25 \text{ V} \\ 5 \text{ mA} \leq 1001 \leq 350 \text{ m/} \end{array}$	9.5	_	10.5	v
Quiescent Current	;	۱ _B	1	T _j = 25°C		4.7	8.0	mA
Quiescent	Line	⊿IBI	1	$13 \text{ V} \leq \text{V}_{\text{IN}} \leq 26.5 \text{ V},$ $1_{\text{OUT}} = 200 \text{ mA}$	-	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	—		0.5	
Output Noise Volt	tage	VNO	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	—	65	280	μV_{rms}
Ripple Rejection		R.R.	3	f = 120 Hz, I _{OUT} = 50 mA 13.5 V \leq V _{IN} \leq 23.5 V, T _j = 25°C	52	59	_	dB
Short Circuit Curre Limit	ent	lsc	1	T _j = 25°C	—	960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	—	1.7	_	V
Average Tempera Coefficient Of Ou Voltage		Tcvo	1	I _{OUT} = 5 mA	_	- 1.3	_	mV/°C

TA78M12F

ELECTRICAL CHARACTERISTICS (VIN = 19 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

CHARACTERIST	ГIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	T _j = 25°C	11.5	12.0	12.5	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{\begin{vmatrix} 14.5 \text{ V} \le \text{ V}_{IN} \le 30 \text{ V} \\ \hline I_{OUT} = 200 \text{ mA} \\ \hline 16 \text{ V} \le \text{ V}_{IN} \le 30 \text{ V} \end{vmatrix}}{16 \text{ V} \le \text{ V}_{IN} \le 30 \text{ V}}$	_	7	100	mV
		Reg.Line		I _{OUT} = 200 mA	_	3	50	mv
Load Regulation		Reg.Load	1	$T_{\rm L} = 25^{\circ} c$ 5 mA $\leq I_{\rm OUT} \leq 500$ mA	—	27	240	mV
Load Regulation		Reg.Load		$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}}$	—	10	120	mv
Output Voltage		Vout	1	$\begin{array}{c} 5 \text{ mA} = 1001 = 200 \text{ mA} \\ \hline 14.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 27 \text{ V} \\ 5 \text{ mA} \leq 1001 \leq 350 \text{ mA} \end{array}$	11.4	_	12.6	v
Quiescent Current	;	۱ _B	1	T _j = 25°C	—	4.8	8.0	mA
Quiescent	Line	⊿IBI	1	$15 V \le V_{IN} \le 30.5 V,$ $I_{OUT} = 200 \text{ mA}$	_	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	_	_	0.5	
Output Noise Vol	tage	V _{NO}	2	Ta = 25°C, 10 Hz $\leq f \leq$ 100 kHz	—	70	300	μV_{rms}
Ripple Rejection		R.R.	3	f = 120 Hz, I _{OUT} = 50 mA 15 V \leq V _{IN} \leq 25 V, T _j = 25°C	50	57	_	dB
Short Circuit Curro Limit	ent	lsc	1	T _j = 25°C	_	960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	—	1.7	—	V
Average Tempera Coefficient Of Ou Voltage		тсvо	1	I _{OUT} = 5 mA	_	- 1.6	_	mV/°C

TA78M15F

ELECTRICAL CHARACTERISTICS (VIN = 23 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

CHARACTERIST	īc	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	$T_j = 25^{\circ}C$	14.4	15.0	15.6	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{\begin{array}{ c c c c c c c c c c c c c c c c c c $	_	8	100	mV
		Reg.Line		I _{OUT} = 200 mA	_	4	50	IIIV
Lood Pogulation		Poglaad	1	$ _{T_{i}} = 25^{\circ} c$ 5 mA $\leq I_{OUT} \leq 500$ mA	—	27	300	mV
Load Regulation		Reg.Load		$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}}$	—	10	150	mv
Output Voltage		Vout		$T_{j} = 25^{\circ}C \begin{vmatrix} 17.5 \text{ V} \leq \text{V}_{IN} \leq 30 \text{ V} \\ 5 \text{ mA} \leq \text{I}_{OUT} \leq 350 \text{ mA} \end{vmatrix}$	14.25	_	15.75	v
Quiescent Current		۱ _B		T _i = 25°C	—	4.8	8.0	mA
Quiescent	Line	⊿IBI	1	$18 V \le V_{IN} \le 30.5 V,$ $I_{OUT} = 200 \text{ mA}$	_	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	—	_	0.5	
Output Noise Volt	tage	V _{NO}	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	_	80	450	μV_{rms}
Ripple Rejection		R.R.	3	f = 120 Hz, I _{OUT} = 50 mA 18.5 V \leq V _{IN} \leq 28.5 V, T _j = 25°C	48	55	_	dB
Short Circuit Curre Limit	ent	lsc	1	T _j = 25°C	_	960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	_	1.7		V
Average Tempera Coefficient Of Ou Voltage		тсvо	1	I _{OUT} = 5 mA	_	- 2.0	_	mV/°C

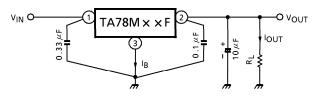
TA78M18F

ELECTRICAL CHARACTERISTICS (VIN = 27 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

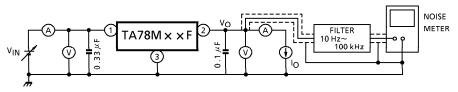
CHARACTERIST	ΊC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	$T_j = 25^{\circ}C$	17.3	18.0	18.7	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{ \begin{array}{c} 21 \text{ V} \leq \text{ V}_{\text{IN}} \leq 33 \text{ V} \\ \hline I_{\text{OUT}} = 200 \text{ mA} \\ \hline 24 \text{ V} \leq \text{ V}_{\text{IN}} \leq 33 \text{ V} \end{array} }{ \end{array} }$	_	9	100	mV
		Reg.Line		I _{OUT} = 200 mA	_	5	50	
Load Regulation		Reg.Load	1	$T_j = 25^{\circ}C$ $5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}$		28	360	mV
LOAD REGULATION		Reg.Loau			—	10	180	
Output Voltage		Vouт	1	$\begin{array}{c} 3 \text{ mA} \cong 1001 \cong 200 \text{ mA} \\ \hline T_{j} = 25^{\circ}\text{C} & 21 \text{ V} \leq \text{V}_{\text{IN}} \leq 33 \text{ V} \\ 5 \text{ mA} \leq 1_{\text{OUT}} \leq 350 \text{ mA} \end{array}$	17.1	-	18.9	v
Quiescent Current		Ι _Β	1	$T_i = 25^{\circ}C$	—	4.8	8.0	mA
Quiescent	Line	⊿IBI	1	$21.5 V \le V_{IN} \le 33.5 V$, $I_{OUT} = 200 \text{ mA}$	-	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	T —	_	0.5	
Output Noise Vol	tage	V _{NO}	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	—	90	490	μV_{rms}
Ripple Rejection		R.R.	3	$ \begin{array}{l} f = 120 \text{ Hz}, \text{ I}_{OUT} = 50 \text{ mA} \\ 22 \text{ V} \leq \text{ V}_{IN} \leq 32 \text{ V}, \text{ T}_{j} = 25 ^{\circ} \text{C} \end{array} $	46	53	_	dB
Short Circuit Curro Limit	ent	lsc	1	T _j = 25°C	_	960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	—	1.7	—	V
Average Tempera Coefficient Of Ou Voltage		Tcvo	1	I _{OUT} = 5mA	-	- 2.5	_	mV/°C

TA78M20F

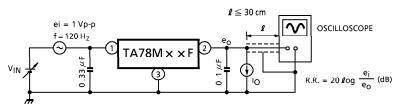
ELECTRICAL CHARACTERISTICS (VIN = 29 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

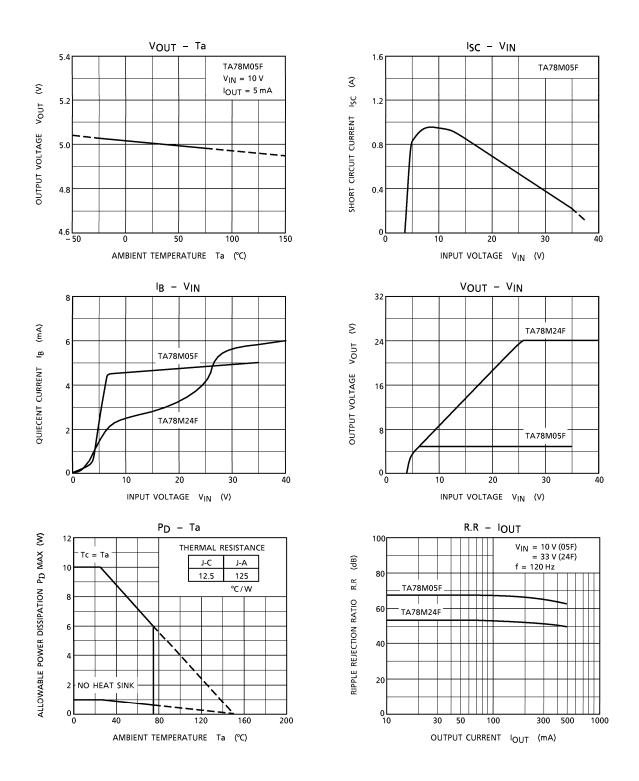

CHARACTERIST	ГІС	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	$T_j = 25^{\circ}C$	19.2	20.0	20.8	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{\begin{vmatrix} 23 \ V \le V_{IN} \le 35 \ V \\ I_{OUT} = 200 \ mA \\ \hline 24 \ V \le V_{IN} \le 35 \ V \end{vmatrix}}{24 \ V \le V_{IN} \le 35 \ V}$	_	10	100	mV
		Reg.Line		I _{OUT} = 200 mA	_	6	50	iiiv
Load Regulation		Reg.Load	1	$T_{\rm H} = 25^{\circ} c$ 5 mA $\leq I_{\rm OUT} \leq 500$ mA	—	28	400	mV
LOAD REGULATION		Reg.Load		$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}}$	—	10	200	mv
Output Voltage		Vout	1	$T_{j} = 25^{\circ}C \begin{vmatrix} 23 \text{ V} \leq \text{V}_{\text{IN}} \leq 35 \text{ V} \\ 5 \text{ mA} \leq \text{I}_{\text{OUT}} \leq 350 \text{ mA} \end{vmatrix}$	19.0	_	21.0	v
Quiescent Current	:	۱ _B		T _j = 25°C	—	4.9	8.0	mA
Quiescent	Line	⊿IBI	1	$23.5 V \le V_{IN} \le 35.5 V,$ $I_{OUT} = 200 \text{ mA}$	_	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	_		0.5	
Output Noise Vol [.]	tage	VNO	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	_	95	540	μV_{rms}
Ripple Rejection		R.R.	3	f = 120 Hz, I_{OUT} = 50 mA 24 V \leq V_{IN} \leq 34 V, T_{j} = 25°C	46	53	_	dB
Short Circuit Curr Limit	ent	lsc	1	T _j = 25°C	_	960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	—	1.7	—	V
Average Tempera Coefficient Of Ou Voltage		Tcvo	1	I _{OUT} = 5 mA	_	- 3.0	_	mV/°C

TA78M24F

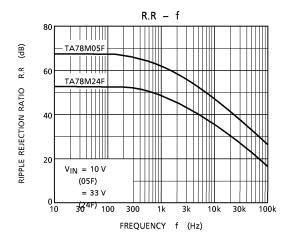

ELECTRICAL CHARACTERISTICS (VIN = 33 V, I_{OUT} = 350 mA, 0°C \leq T_j \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, unless otherwise specified)

CHARACTERIST	ГIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage		νουτ	1	T _j = 25°C	23.0	24.0	25.0	V
Line Regulation		Reg.Line	1	$T_{j} = 25^{\circ}C \frac{\begin{array}{ c c c c c c c c c c c c c c c c c c $		12	100	mV
		Reg.Line		I _{OUT} = 200 mA		7	50	mv
Load Regulation		Reg.Load	1	$T_{\rm L} = 25^{\circ} c$ 5 mA $\leq 1_{\rm OUT} \leq 500$ mA	_	30	480	mV
Load Regulation		Reg.Load		$T_{j} = 25^{\circ}C \frac{5 \text{ mA} \leq I_{OUT} \leq 500 \text{ mA}}{5 \text{ mA} \leq I_{OUT} \leq 200 \text{ mA}}$	—	10	240	
Output Voltage		Vout		$T_{j} = 25^{\circ}C \begin{vmatrix} 27 \text{ V} \leq V_{\text{IN}} \leq 38 \text{ V} \\ 5 \text{ mA} \leq I_{\text{OUT}} \leq 350 \text{ mA} \end{vmatrix}$	22.8	_	25.2	v
Quiescent Current	;	۱ _B		T _j = 25°C	_	5.0	8.0	mA
Quiescent	Line	⊿IBI	1	$27.5 V \le V_{IN} \le 38.5 V,$ $I_{OUT} = 200 \text{ mA}$	_	_	0.8	mA
Current Change	Load	⊿IBO	1	$5 \text{ mA} \leq I_{OUT} \leq 350 \text{ mA}$	_	_	0.5	
Output Noise Vol [.]	tage	V _{NO}	2	Ta = 25°C, 10 Hz \leq f \leq 100 kHz	_	115	650	μV_{rms}
Ripple Rejection		R.R.	3	f = 120 Hz, I_{OUT} = 50 mA 28 V \leq V_{IN} \leq 38 V, T_{j} = 25°C	46	53	_	dB
Short Circuit Curr Limit	ent	lsc	1	T _j = 25°C		960	_	mA
Dropout Voltage		VD	1	Ta = 25°C	_	1.7	—	V
Average Tempera Coefficient Of Ou Voltage		тсvо	1	I _{OUT} = 5 mA	_	- 3.5	_	mV/°C


TEST CIRCUIT 1/STANDARD APPLICATION

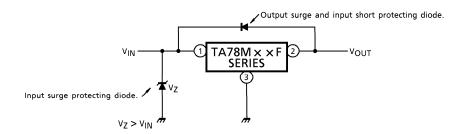


TEST CIRCUIT 2 V_{NO}

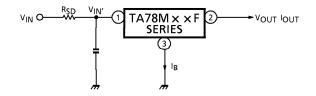


TEST CIRCUIT 3 R.R.

1999-10-15 14/20


PRECAUTIONS ON APPLICATION

- (1) In regard to GND, be careful not to apply a negative voltage to the input/output terminal. Further, special care is necessary in case of a voltage boost application.
- (2) When a surge voltage exceeding maximum rating is applied to the input terminal or when a voltage in excess of the input terminal voltage is applied to the output terminal, the circuit may be destroyed.


Specially, in the latter case, great care is necessary.

Further, if the input terminal sorts to GND in a state of normal operation, the output terminal voltage becomes higher than the input voltage (GND potential), and the electric charge of a chemical capacitor connected to the output terminal flows into the input side, which may cause the destruction of circuit.

In these cases, take such steps as a zener diode and a general silicon diode are connected to the circuit, as shown in the following figure.

(3) When the input voltage is too high, the power dissipation of three terminal regulator increases because of series regulator, so that the junction temperature rises. In such a case, it is recommended to reduce the power dissipation by inserting the power limiting resistor R_{SD} in the input terminal, and to reduce the junction temperature as a result.

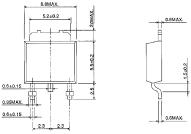
The power dissipation PD of IC is expressed in the following equation.

 $P_{D} = (V_{IN'} - V_{OUT}) \cdot I_{OUT} + V_{IN'} \cdot I_{B}$

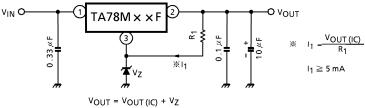
If $V_{IN'}$ is reduced below the lowest voltage necessary for the IC, the parasitic oscillation will be caused according to circumstances.

In determing the resistance value of R_{SD} , design with margin should be made by making reference to the following equation.

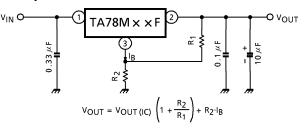
$$R_{SD} < \frac{V_{IN} - V_{IN'}}{I_{OUT} + I_{B}}$$

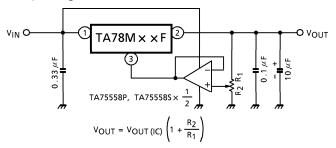

- (4) Connect the input terminal and GND, and the output terminal and GND, by capacitor respectively. The capacitances should be determined experimentally because they depend on prented patterns. In particular, adequate investigation should be made so that there is no problem even at time of high or low temperature.
- (5) The molded plastic portion of this unit, measuring 5.5 mm (L) by 6.5 mm (W) by 2.3 mm (T), is more compact compared to its equivalents TO-220. The collector fin extends directly out of the main body, and can be soldered directly to the ceramic circuitboard, to significantly increase the collector power dissipation of the collector.

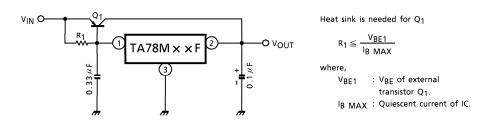
For obtaining high reliability on the heat sink design of the regulator IC, it is generally required to derate more than 20% of maximum junction temperature (T_i MAX.).

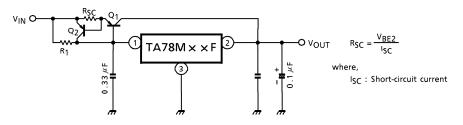

Further, full consideration should be given to the installation of IC to the heat sink.

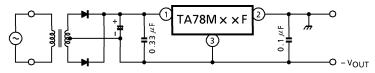
APPLICATION CIRCUITS

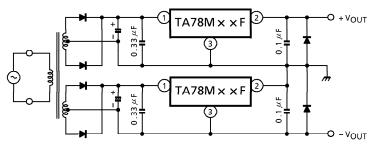

- (1) VOLTAGE BOOST REGULATOR
 - (a) Voltage boost by use of zener diode

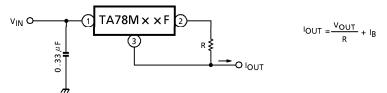



(b) Voltage boost by use of resistor

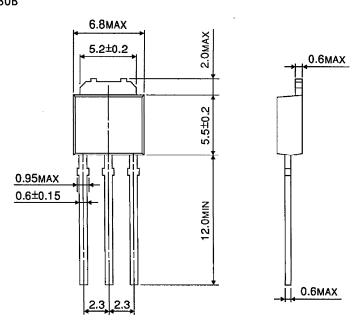

(c) Adjustable output regulator

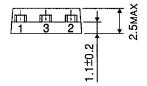

- (2) CURRENT BOOST REGULATOR
 - (a) CURRENT BOOST VOLTAGE REGULATOR


(b) SHORT-CIRCUIT PROTECTION

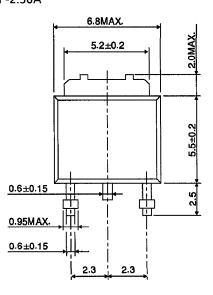

(3) NEGATIVE REGULATOR

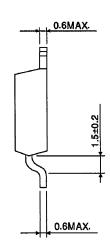
(4) POSITIVE AND NEGATIVE REGULATOR

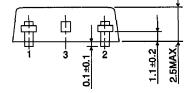



(5) CURRENT REGULATOR

Unit : mm






Weight : 0.36 g (Typ.)

Unit : mm

OUTLINE DRAWING HSOP3-P-2.30A

Weight : 0.36 g (Typ.)