To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M5408B is a family of 4-Mbit static RAMs organized as 524,288-words by 8-bit, fabricated by Mitsubishi's high-performance $0.25\mu m$ CMOS technology.

The M5M5408B is suitable for memory applications where a simple interfacing , battery operating and battery backup are the important design objectives.

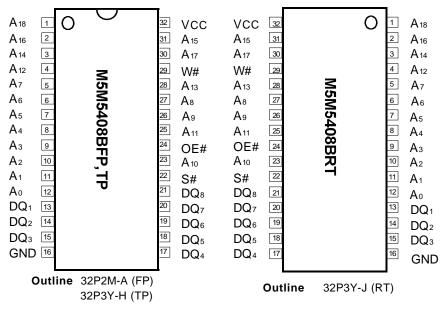
M5M5408B is packaged in 32-pin plastic SOP, 32-pin plastic TSOP. Two types of TSOPs are available, M5M5408BTP (normal-lead-bend TSOP), M5M5408BRT (reverse-lead-bend TSOP). These two types TSOPs are suitable for a surface mounting on double-sided printed circuit boards.

From the point of operating temperature, the family is divided into two versions; "Standard" and "I-version". Those are

FEATURES

- · Single +5V power supply
- · Small stand-by current: 0.4µA(3V,typ.)
- · No clocks, No refresh
- Data retention supply voltage=2.0V to 5.5V
- · All inputs and outputs are TTL compatible.
- · Easy memory expansion by S#
- · Common Data I/O
- · Three-state outputs: OR-tie capability
- \cdot OE# prevents data contention in the I/O bus
- Process technology: 0.25µm CMOS

Package:


M5M5408BFP: 32 pin 525 mil SOP M5M5408BTP/RT: 32 pin 400 mil TSOP(II)

PART NAME TABLE

Version,	Part name	5	Access	Stand-by current Icc(PD), Vcc=3.0V			Active	
Operating	(## stands for	Power	time	typical *	L	imits (ma	x.)	current Icc1
temperature	"FP","TP",and "RT")	Supply	max.	25°C	25°C	70°C	85°C	(5.0V, typ.*)
Standard	M5M5408B## -55H	5.01/	55ns	0.44	4	454		50mA
0 ~ +70°C	M5M5408B## -70H	5.0V	70ns	0.4µA	1µA	15µA		(10MHz)
I-v ersion	M5M5408B## -55H	5.01/	55ns	0.4µA	1µA	15µA	30µA	25mA
-40 ~ +85°C	M5M5408B## -70H	5.0V	70ns	0μ/	iμi	τομπ	σομλ	(1MHz)

*Typical values are sampled, and are not 100% tested.

PIN CONFIGURATION (TOP VIEW)

Pin	Function
A0 ~ A18	Address input
DQ1 ~ DQ8	Data input / output
S# (S)	Chip select input
W# (W)	Write control input
OE# (OE)	Output inable input
Vcc	Power supply
GND	Ground supply

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

FUNCTION

The M5M5408BFP,TP,RT is organized as 524,288-words by 8-bit. These devices operate on a single +5.0V power supply, and are directly TTL compatible to both input and output. Its fully static circuit needs no clocks and no refresh, and makes it usef ul.

A write operation is executed during the S# low and W# low overlap time. The address(A0~A18) must be set up before the write cycle

A read operation is executed by setting W# at a high level and OE# at a low level while S# are in an active state (S#=L).

When setting S# at a high level, the chips are in a nonselectable mode in which both reading and writing are disabled. In this mode, the output stage is in a highimpedance state, allowing OR-tie with other chips. Setting the OE# at a high level, the output stage is in a highimpedance state, and the data bus contention problem in the write cycle is eliminated.

The power supply current is reduced as low as 0.4μ A (25°C, typical), and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode.

Function

Data input / output

Chip select input

Write control input Output inable input

Address input

Power supply

Ground supply

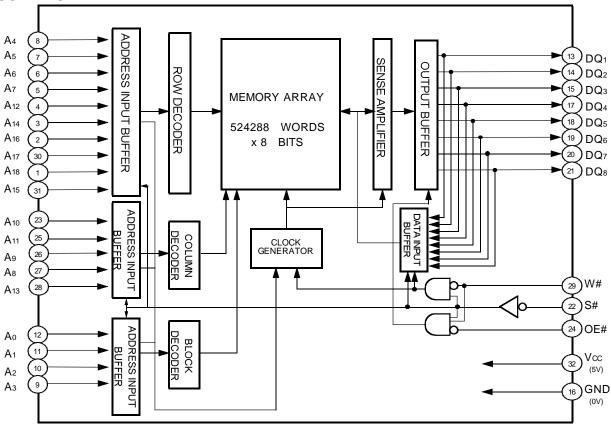
Pin

A0 ~ A18

DQ1 ~ DQ8

S# (S)

W# (W


OE# (OE)

Vcc

GND

F	UNC	TION	TABI	E		
	S#	W#	OE#	Mode	DQ	lcc
	Н	Х	Х	Non selection	High-impedance	Standby
	L	L	Х	Write	Data input (D)	Activ e
	L	Н	L	Read	Data output (Q)	Active
	L	Н	Н	Read	High-impedance	Activ e

note: "H" and "L" in this table mean VIH and VIL, respectively. "X" in this table should be "H" or "L".

BLOCK DIAGRAM

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Units
Vcc	Supply voltage	With respect to GND	-0.3* ~ +7	
Vı	Input voltage	With respect to GND	-0.3* ~ Vcc + 0.3	V
Vo	Output voltage	With respect to GND	0 ~ Vcc	
Pd	Power dissipation	Ta=25°C	700	mW
Ta	Operating	Standard	0 ~ +70	
Ta	temperature	I-version	-40 ~ +85	°C
Tstg	Storage temperature		-65 ~ +150	°C

* -3.0V in case of AC (Pulse width \leq 30ns)

DC ELECTRICAL CHARACTERISTICS

(Vcc= 5V ±10%, unless otherwise noted)

Symbol D		O and it is a s			Limits			
Symbol	Parameter	Conditions		Min	Typ.	Max	Units	
VIH	High-level input voltage			2.2		Vcc+0.3V		
VIL	Low-lev el input voltage			-0.3 *		0.8		
Vон1	High-level output voltage 1	Iон= -1mA		2.4			V	
Vон2	High-level output voltage 2	Iон= -0.1mA		Vcc-0.5V				
Vol	Low-lev el output voltage	lo∟=2mA				0.4		
h	Input leakage current	VI=0 ~ Vcc				±1	μA	
lo	Output leakage current	S# = VIH or OE# =VIH, $VI/O = 0 \sim VC$	C			±1	μΛ	
lcc1	Active supply current	S# \leq 0.2V, output-open	f=10MHz	-	50	80		
	(CMOS-lev el input)	Other inputs $\leq 0.2V$ or $\geq Vcc-0.2V$	f=1MHz	-	25	30	~ ^	
	Active supply current	S# =VIL, output-open	f=10MHz	-	60	90	mA	
lcc2	(TTL-lev el input)	Other inputs= VIH or VIL	f=1MHz	-	30	40		
1002	Stand by supply current	Vcc =5.5V, max.	Standard	-	1.0	30		
Icc3	(CMOS-lev el input)	$S# \ge Vcc-0.2V$, other inputs=0~Vcc	I-v ersion	-	1.0	60	μA	
lcc4	Stand by supply current (TTL-level input)	S# =VIH, other inputs= 0 ~ Vcc		-	-	3	mA	

Note 1: Direction for current flowing into IC is indicated as positive (no mark).

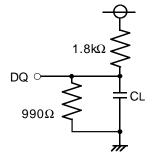
Note 2: Typical values are sampled at Vcc=5.0V and Ta=25°C, and are not 100% tested.

CAPACITANCE

(Vcc=5.0V±10%, unless otherwise noted)

* -3.0V in case of AC (Pulse width ≤30ns)

Cumhal	Paramotor			Limits		
Symbol Parameter		Conditions		Typ.	Max	Units
С	Input capacitance	VI=GND. VI=25mVrms. f=1MHz			8	_
Co	Output capacitance	Vo=GND,Vo=25mVrms, f=1MHz			10	pF



4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS (Vcc=5.0V±10%, unless otherwise noted)

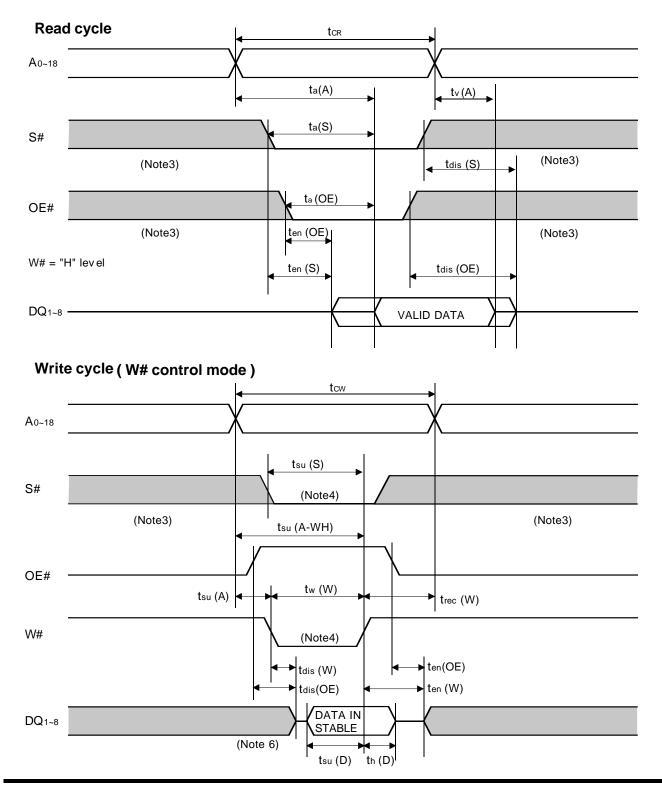
(1) TEST CONDITIONS

Supply voltage	5.0V
Input pulse	VIH=2.4V,VIL=0.6V(-70H, -70HI) VIH=3.0V,VIL=0V(-55H, -55HI)
Input rise time and fall time	5ns
Reference level	VOH=VOL=1.5V
	Transition is measured ±500mV from
	steady state voltage for ten and tdis.
Output loads	Fig.1, CL=100pF (-70H, -70HI)
	CL=30pF (-55H, -55HI)
	CL=5pF (for ten,tdis)

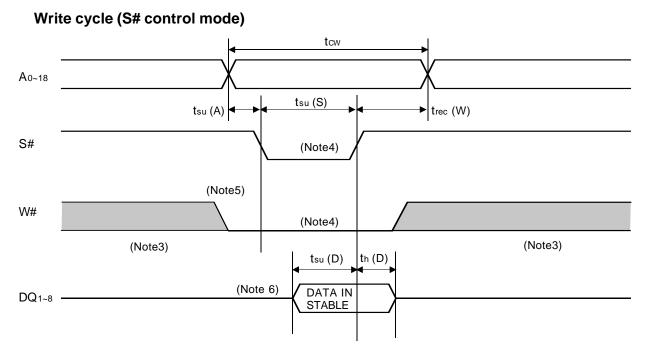
CL Includes scope and jig capacitance Fig.1 Output load

(2) READ CYCLE

			Limits				
Symbol	Parameter	-55H	<u>,</u> -55HI	-70H	Units		
, ,		Min	Max	Min	Max		
t CR	Read cy cle time	55		70		ns	
ta(A)	Address access time		55		70	ns	
ta(S)	Chip select access time		55		70	ns	
ta(OE)	Output enable access time		25		35	ns	
tdis(S)	Output disable time after S# high		20		25	ns	
tdis(OE)	Output disable time after OE# high		20		25	ns	
ten(S)	Output enable time after S# low	10		10		ns	
ten(OE)	Output enable time after OE# low	5		5		ns	
t∨(A)	Data valid time after address	10		10		ns	


(3) WRITE CYCLE

Symbol	Parameter	-55H, -55HI		-70H, -70HI		Units
		Min	Max	Min	Max	
tcw	Write cycle time	55		70		ns
t _w (W)	Write pulse width	40		50		ns
tsu(A)	Address set up time	0		0		ns
tsu(A-WH)	Address set up time with respect to W# high	50		60		ns
tsu(S)	Chip select set up time	50		60		ns
tsu(D)	Data set up time	25		30		ns
th(D)	Data hold time	0		0		ns
t _{rec} (W)	Write recovery time	0		0		ns
tdis(W)	Output disable time after W# low		20		25	ns
tdis(OE)	Output disable time after OE# high		20		25	ns
ten(W)	Output enable time after W# high	5		5		ns
t _{en} (OE)	Output enable time after OE# low	5		5		ns


4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

(4)TIMING DIAGRAMS

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

Note 3: Hatching indicates the state is "don't care".

Note 4: A Write occurs during the overlap of a low S# and a low W#.

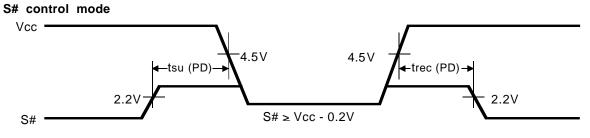
Note 5: If W goes low simultaneously with or prior to S#, the output remains in the high impedance state.

Note 6: Don't apply inverted phase signal externally when DQ pin is in output mode.

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS


Cum hal	Deremeter	Test	Test conditions			Limits		Units
Symbol	Parameter	arameter Test conditions			Min	Ty pical	Max	Units
Vcc (PD)	Power down supply voltage				2	-	-	
VI (S#)	Chip select input S#	$Vcc(PD) \ge 2.2V$			2.2	-	-	V
VI (S#)		$2.2V \ge Vcc(PD) \ge 2.0V$			-	Vcc(PD)	-	
			I-version	85°C	-	-	30	
		Vcc=3.0V,	Standard,	70°C	-	-	15	
ICC (PD)	Power down supply current $S\# \ge Vcc-0.2V$, Other input		I-version	40°C	-	1*	3	μA
		=0 ~ Vcc	Standard	0∼ 25°C	-	0.4*	1	
		=0 ~ VCC	I-version	-40~ 25°C	-	0.4*	1	

*Typical values are sampled, and are not 100% tested.

(2) TIMING REQUIREMENTS

O una ha a l	Deserveden		Limits			Unito
Symbol Parameter		Test conditions	Min	Тур	Max	Units
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		5			ms

(3) TIMING DIAGRAM

4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM

Revision History			
Revision No.	<u>History</u>	<u>Date</u>	
K0.1e	The first edition	Jul.30, '98	Preliminary
K0.2e	1) Icc3 limit revised	Jun. 3, '99	Preliminary
	2) Icc(PD) limit revised		
	3) Icc1,Icc2 conditions revised		
K0.3e	1) Vcc Level in the Block Diagram revised	Jun.28, '99	Preliminary
	2) Icc3 limit (typ) revised		
K1.0e	The first product version	Oct.12, '99	
K1.1e	Product lineup revised	Oct.21, '99	
2.0e	 Product lineup revised Symbol notations revised: 	Feb.12, '02	
	S̄ -> S#, ₩-> ₩#, OĒ -> OE#		
	3) Icc(PD) conditions revised		

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

