3．3 V，Full Duplex， $840 \mu \mathrm{~A}$ 20 Mbps，EIA RS－485 Transceiver

ADM3491

FEATURES

Operates with＋3．3 V Supply
EIA RS－422 and RS－485 Compliant Over Full CM Range
19 k Ω Input Impedance
Up to 50 Transceivers on Bus
20 Mbps Data Rate

Short Circuit Protection

Specified Over Full Temperature Range
Thermal Shutdown
Interoperable with 5 V Logic
$840 \mu \mathrm{~A}$ Supply Current
2 nA Shutdown Current
Also Available in TSSOP Package
Meets IEC1000－4－4（＞1 kV）
8 ns Skew
Upgrade for MAX 3491，SN75ALS180

APPLICATIONS

Telecommunications
DTE－DCE Interface
Packet Switching
Local Area Networks
Data Concentration
Data Multiplexers
Integrated Services Digital Network（ISDN）
AppleTalk
Industrial Controls

GENERAL DESCRIPTION

The ADM 3491 is a low power differential line transceiver designed to operate using a single +3.3 V power supply．Low power consumption coupled with a shutdown mode make it ideal for power sensitive applications．It is suitable for commu－ nication on multipoint bus transmission lines．
It is intended for balanced data transmission and complies with both EIA Standards RS－485 and RS－422．It contains a differen－ tial line driver and a differential line receiver，making it suitable for full duplex data transfer．
The input impedance is $19 \mathrm{k} \Omega$ allowing up to 50 transceivers to be connected on the bus．

Excessive power dissipation caused by bus contention or by output shorting is prevented by a thermal shutdown circuit． This feature forces the driver output into a high impedance state if，during fault conditions，a significant temperature increase is detected in the internal driver circuitry．

REV． 0

[^0]FUNCTIONAL BLOCK DIAGRAM

The receiver contains a fail－safe feature that results in a logic high output state if the inputs are unconnected （floating）．
The ADM 3491 is fabricated on BiCM OS，an advanced mixed technology process combining low power CM OS with fast switching bipolar technology．
The AD M 3491 is fully specified over the industrial tem－ perature range and is available in DIP and SOIC packages as well as a new space saving TSSOP package．

One Technology Way，P．O．Box 9106，Norwood，MA 02062－9106，U．S．A． Tel：781／329－4700 World Wide Web Site：http：／／www．analog．com Fax：781／326－8703 © Analog Devices，Inc．， 1998

ADM3491- SPECIF|CAT1ONS $\left(V_{C C}=+3.3 \mathrm{v} \pm 0.3 \mathrm{v}\right.$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

[^1]
TIMING SPECIFICATIONS $\left(v_{c c}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

Parameter	Min	Typ	Max	Units	Test Conditions/ Comments
DRIVER					
Differential Output D elay $\mathrm{T}_{\text {D }}$	1		35	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{L 1}=\mathrm{C}_{L 2}=15 \mathrm{pF}$, Figure 5
Differential Output T ransition T ime	1	8	15	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{L 1}=\mathrm{C}_{L 2}=15 \mathrm{pF}$, Figure 5
Propagation D elay Input to Output $\mathrm{T}_{\text {PLH }}, \mathrm{T}_{\text {PHL }}$	7	22	35	ns	$\mathrm{R}_{\mathrm{L}}=27 \Omega, \mathrm{C}_{L 1}=\mathrm{C}_{L 2}=15 \mathrm{pF}$, Figure 6
Driver $0 / \mathrm{P}$ to $0 / \mathrm{P} \mathrm{T}_{\text {SKEW }}$			8	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{L 1}=\mathrm{C}_{L 2}=15 \mathrm{pF}$, Figure 6
ENABLE/DISABLE					
Driver Enable to Output Valid		45	90	ns	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, F igure 3
D river D isable T iming		40	80	ns	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{L}=50 \mathrm{pF}$, F igure 3
Driver Enable from Shutdown		650	110	ns	$R_{L}=110 \Omega, C_{L}=15 \mathrm{pF}$, Figure 3
RECEIVER					
Time to Shutdown	80	190	300	ns	
Propagation D elay Input to Output $\mathrm{T}_{\text {PLH }}, \mathrm{T}_{\text {PHL }}$	25	65	90	ns	
Skew $\mathrm{T}_{\text {PLH }}-\mathrm{T}_{\text {PHL }}$			10	ns	$\mathrm{C}_{L}=15 \mathrm{pF}$, Figure 8
Receiver Enable $\mathrm{T}_{\text {EN }}$		25	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, F igure 4
Receiver Disable T den		25	45	ns	$C_{L}=15 \mathrm{pF}$, Figure 4
Receiver Enable from Shutdown			500	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 4

TIMING SPECIFICATIONS $N_{c c}=+3.3 v \pm 0.3 v, T_{A}=T_{m u t}+T_{\text {mex }}$

Parameter	Min	Typ	Max	Units	Test Conditions/ Comments
DRIVER					
D ifferential Output D elay $T_{\text {DD }}$	1		70	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{L 1}=\mathrm{C}_{L 2}=15 \mathrm{pF}$, F igure 5
Differential Output T ransition Time	2	8	15	ns	$\mathrm{R}_{\mathrm{L}}=60 \Omega, \mathrm{C}_{L 1}=\mathrm{C}_{L 2}=15 \mathrm{pF}$, F igure 5
Propagation D elay Input to Output $\mathrm{T}_{\text {PLH }}, \mathrm{T}_{\text {PHL }}$	7	22	70	ns	$\mathrm{R}_{\mathrm{L}}=27 \Omega, \mathrm{C}_{L 1}=\mathrm{C}_{L 2}=15 \mathrm{pF}$, F igure 6
D river 0/P to 0/P $\mathrm{T}_{\text {SKEW }}$			10	ns	$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{C}_{L 1}=\mathrm{C}_{L 2}=15 \mathrm{pF}$, Figure 6
ENABLE/DISABLE					
D river Enable to O utput Valid		45	110	ns	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, F igure 3
D river D isable Timing		40	110	ns	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, F igure 3
D river Enable from Shutdown		650	110	ns	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 3
RECEIVER					
Time to Shutdown	50	190	500	ns	
Propagation D elay Input to Output $\mathrm{T}_{\text {PLH }}$, $\mathrm{T}_{\text {PHL }}$	25	65	115	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 8
Skew $\mathrm{TPLH}^{-\mathrm{T}_{\text {PHL }}}$			20	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 8
Receiver Enable $\mathrm{T}_{\text {EN }}$		25	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 4
Receiver Disable T den		25	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 4
Receiver Enable from Shutdown			600	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Figure 4

ADM3491

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)	
$\mathrm{V}_{\text {CC }}$. + + 7 V	
Inputs	
D river Input (DI)	-0.3 V to $\mathrm{V}_{C C}+0.3 \mathrm{~V}$
Control Inputs ($\mathrm{DE}, \overline{\mathrm{RE}}$)	-0.3 V to $\mathrm{V}_{C C}+0.3 \mathrm{~V}$
Receiver Inputs (A, B)	-7.5 V to +12.5 V
Outputs	
D river Outputs	-7.5 V to +12.5 V
Receiver Output	-0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
Power Dissipation 14-L ead DIP	800 mW
θ_{JA}, Thermal Impedance	$140^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation 14-Lead SOIC	650 mW
θ_{JA}, Thermal Impedance	$115^{\circ} \mathrm{C} / \mathrm{W}$

Power Dissipation 16-L ead T SSOP	500 mW
$\theta_{\text {JA }}$, Thermal Impedance	$58^{\circ} \mathrm{C} / \mathrm{W}$
Operating T emperature R ange	
Industrial (A Version)	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage T emperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead T emperature (Soldering, 10	$+300^{\circ} \mathrm{C}$
Vapor Phase (60 sec)	$+215^{\circ} \mathrm{C}$
Infrared (15 sec)	$+220^{\circ} \mathrm{C}$
ESD Rating	$>2 \mathrm{kV}$
EFT Rating (IEC 1000-4-4)	>1 kV
*Stresses above those listed under Absolute M a nent damage to the device. This is a stress ratin device at these or any other conditions above sections of this specification is not implied. ratings for extended periods of time may affect	tings may cause permactional operation of the sted in the operational to absolute maximum eliability.

$\theta_{\text {a }}$,
Operating T emperature Range
Industrial (A Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
torage T emperature Range 10 $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$
ESD Rating >2 kV
EFT Rating (IEC 1000-4-4) . >1 kV
*Stresses above those listed under Absolute M aximum R atings may cause permanent damage to the device. This is a stress rating only; functional operation of the
 ratings for extended periods of time may affect device reliability.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
ADM 3491AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Plastic DIP	$\mathrm{N}-14$
ADM 3491AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Small Outline (SOIC)	$\mathrm{R}-14$
ADM 3491ARU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline (TSSOP)	$\mathrm{RU}-16$

PIN CONFIGURATION

DIP/SOIC

TSSOP

PIN FUNCTION DESCRIPTIONS

Mnemonic Pin	$\begin{aligned} & \text { DIP/ } \\ & \text { SOIC } \end{aligned}$	TSSOP	Function
NC	1, 8	$\begin{aligned} & 2,7,9,10 \\ & 13,16 \end{aligned}$	N o Connect.
RO	2	3	Receiver Output. High when A > B by 200 mV or Low when A < B by 200 mV .
$\overline{\mathrm{RE}}$	3	4	Receiver Output Enable. With $\overline{\mathrm{RE}}$ low, the receiver output RO is enabled. With $\overline{\mathrm{RE}}$ high, the output goes high impedance. If $\overline{\mathrm{RE}}$ is high and DE low, the AD M 3491 enters a shutdown state.
DE	4	5	D river Output Enable. A high level enables the driver differential outputs, Y and Z. A low level places it in a high impedance state.
DI	5	6	D river Input. When the driver is enabled, a logic L ow on $D I$ forces Y low and Z high while a logic high on DI forces Y high and Z low.
GND	6, 7	8	Ground Connection, 0 V.
Y	9	11	N oninverting D river Output Y .
Z	10	12	Inverting D river Output Z.
B	11	14	Inverting Receiver Input B.
A	12	15	N oninverting Receiver Input A.
V_{CC}	13, 14	1	Power Supply, 3.3 V $\pm 0.3 \mathrm{~V}$.

Test Circuits

Figure 1. Driver Voltage Measurement Test Circuit

Figure 2. Driver Enable/Disable Test Circuit

Figure 3. Driver Differential Output Delay Test Circuit

Figure 4. Driver/Receiver Propagation Delay Test Circuit

Figure 5. Driver Voltage Measurement Test Circuit 2

Figure 6. Receiver Enable/Disable Test Circuit

Figure 7. Driver Propagation Delay Test Circuit

Figure 8. Receiver Propagation Delay Test Circuit

Switching Characteristics

Figure 9. Driver Propagation Delay, Rise/Fall Timing

Figure 10. Receiver Propagation Delay

Figure 11. Driver Enable/Disable Timing

Figure 12. Receiver Enable/Disable Timing

Figure 13. Receiver Output Low Voltage vs. Output Current

Figure 14. Receiver Output Low Voltage vs. Temperature

Figure 15. Driver Differential Output Voltage vs. Output Current

Figure 16. Receiver Output High Voltage vs. Output Current

Figure 17. Receiver Output High Voltage vs. Temperature

Figure 18. Driver Differential Output Voltage vs. Temperature

Figure 19. Supply Current vs. Temperature

Figure 20. Driving 100 ft . Cable L-H Transition

Figure 21. Driving 100 ft. Cable H-L Transition

Figure 22. Shutdown Current vs. Temperature

Figure 23. ADM3491 Full-Duplex Data Link

Table I. Transmitting Truth Table

Transmitting				
Inputs			Outputs	
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	DI	\mathbf{Z}	\mathbf{Y}
X	1	1	0	1
X	1	0	1	0
0	0	X	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$
1	0	X	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$

Table II. Receiving Truth Table

Receiving			
Inputs			
$\overline{\mathbf{R E}}$	DE	A-B	Outputs
0	X	$>+0.2 \mathrm{~V}$	1
0	X	$<-0.2 \mathrm{~V}$	0
0	X	Inputs O/C	1
1	X	X	Hi-Z

APPLICATIONS INFORMATION

Differential Data Transmission

Differential data transmission is used to reliably transmit data at high rates over long distances and through noisy environments. Differential transmission nullifies the effects of ground shifts and noise signals which appear as common-mode voltages on the line.
T wo main standards are approved by the Electronics Industries Association (EIA) which specify the electrical characteristics of transceivers used in differential data transmission. The R S-422 standard specifies data rates up to 10 M B aud and line lengths up to 4000 ft . A single driver can drive a transmission line with up to 10 receivers.
The RS-485 standard was defined to cater to true multipoint communications. This standard meets or exceeds all the requirements of RS-422, but also allows multiple drivers and receivers to be connected to a single bus. An extended common mode range of -7 V to +12 V is defined.
The most significant difference between RS-422 and RS-485 is the fact that the drivers may be disabled thereby allowing more than one to be connected to a single line. Only one driver should be enabled at a time, but the RS-485 standard contains additional specifications to guarantee device safety in the event of line contention.

Cable and Data Rate

The transmission line of choice for RS-485 communications is a twisted pair. T wisted pair cable tends to cancel common-mode noise and also causes cancellation of the magnetic fields generated by the current flowing through each wire, thereby reducing the effective inductance of the pair.
The AD M 3491 is designed for bidirectional data communications on multipoint transmission lines. A typical application showing a multipoint transmission network is illustrated in Figure 23. Only one driver can transmit at a particular time, but multiple receivers may be enabled simultaneously.
As with any transmission line, it is important that reflections are minimized. T his may be achieved by terminating the extreme ends of the line using resistors equal to the characteristic impedance of the line. Stub lengths of the main line should also be kept as short as possible. A properly terminated transmission line appears purely resistive to the driver.

Receiver Open-Circuit Fail Safe

The receiver input includes a fail-safe feature that guarantees a logic high on the receiver when the inputs are open circuit or floating.

Table III. Comparison of RS-422 and RS-485 Interface Standards

Specification	RS-422	RS-485
Transmission T ype	D ifferential	Differential
M aximum C able L ength	4000 ft.	4000 ft.
M inimum D river Output Voltage	$\pm 2 \mathrm{~V}$	$\pm 1.5 \mathrm{~V}$
Driver Load Impedance	100Ω	54Ω
Receiver Input Resistance	$4 \mathrm{k} \Omega \mathrm{min}$	$12 \mathrm{k} \Omega \mathrm{min}$
Receiver Input Sensitivity	$\pm 200 \mathrm{mV}$	$\pm 200 \mathrm{mV}$
Receiver Input Voltage Range	-7 V to +7 V	-7 V to +12 V

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable．However，no responsibility is assumed by Analog Devices for its use，nor for any infringements of patents or other rights of third parties which may result from its use．No license is granted by implication or otherwise under any patent or patent rights of Analog Devices．

[^1]: Specifications subject to change without notice.

