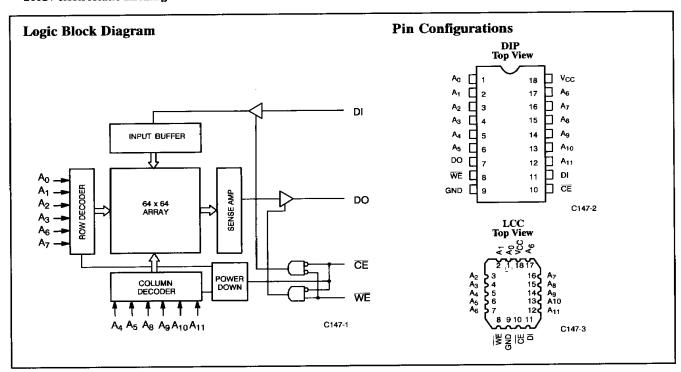


Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
 - 25 ns
- Low active power
 - 440 mW (commercial)
 - 605 mW (military)
- Low standby power
 - 55 mW
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C147 is a high-performance CMOS static RAMs organized as 4096 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable (CE) and three-state drivers. The CY7C147 has an automatic power-down feature, reducing the power consumption by 80% when deselected.


Writing to the device is accomplished when the chip select (\overline{CE}) and write enable (\overline{WE}) inputs are both LOW. Data on the input pin (DI) is written into the memory loca-

4096 x 1 Static RAM

tion specified on the address pins $(A_0 \text{ through } A_{11})$.

Reading the device is accomplished by taking the chip enable ($\overline{\text{CE}}$) LOW while ($\overline{\text{WE}}$) remains HIGH. Under these condintions, the contents of the location specified on the address pins will appear on the data output (DO) pin.

The output pin remains in a high-impedance state when chip enable is HIGH, or write enable (\overline{WE}) is LOW.

Selection Guide

		7C147-25	7C147-35	7C147-45
Maximum Access	Commercial	25	35	45
Time (ns)	Military		35	45
Maximum Operating Current(mA)	Commercial	90	80	80
	Military		110	110
Maximum Standby	Commercial	15	10	10
Current (mA)	Military		10	10

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

not tested.)
Storage Temperature $\ \ \ \ \ \ \ \ \ \ \ \ \ $
Ambient Temperature with Power Applied 55°C to +125°C
Supply Voltage to Ground Potential (Pin 18 to Pin 9)
DC Voltage Applied to Outputs in High Z State 0.5V to +7.0V
DC Input Voltage 3.0V to +7.0V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-UpCurrent	>200 mA

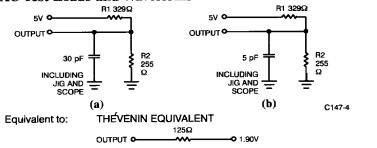
Operating Range

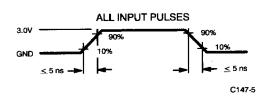
Range	Ambient Temperature	V _{CC}
Commercial	0°C to + 70°C	5V ± 10%
Military ^[1]	- 55°C to + 125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[2]

				7C14	7C147-25		7C147-35,45	
Parameters	Description	Test Condit	ions	Min.	Max.	Min.	Max.	1
V _{OH}	Output High Voltage	$V_{CC} = Min., I_{OH} = -$	-4.0 mA	2.4		2.4		V
V _{OL}	Output Low Voltage	$V_{CC} = Min., I_{OL} = 1$	2.0 mA		0.4		0.4	V
V _{IH}	Input High Voltage			2.0	6.0	2.0	6.0	V
V _{IL}	Input Low Voltage	1		-3.0	0.8	-3.0	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-10	+10	-10	+10	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{c} \text{GND} \leq V_O \leq V_{CC} \\ \text{Output Disabled} \end{array}$		-50	+50	-50	+50	μА
I _{OS}	Output Short Circuit Current ^[3]	$V_{CC} = Max., V_{OUT} = GND$			-350		-350	mA
I_{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		90		80	mA
	Supply Current	$I_{OUT} = 0 \text{ mA}$	Mil				110]
I _{SB}	Automatic CE ^[4]	Max. V _{CC} ,	Com'l		15		10	mA
52	Power-DownCurrent	$\overline{CE} \ge V_{IH}$	Mil				10	<u> </u>

Capacitance^[5]


Parameters	Description	Test Conditions	Max.	Units
C _{IN}	InputCapacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
Cour	OutputCapacitance	$V_{CC} = 5.0V$	8	pF

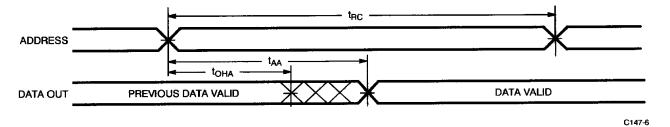

Notes:

- 1. T_A is the "instant on" case temperature.
- See the last page of this specification for Group A subgroup testing information.
- 3. Duration of the short circuit should not exceed 30 seconds.
- 4. A pull-up resistor to V_{CC} on the \overline{CE} input is required to keep the device deselected during VCC power-up, otherwise I_{SB} will exceed values given.
- Tested initially and after any design or process changes that may affect these parameters.

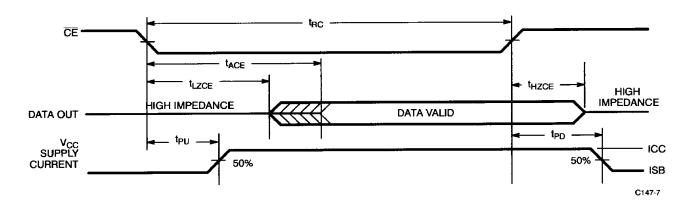
AC Test Loads and Waveforms

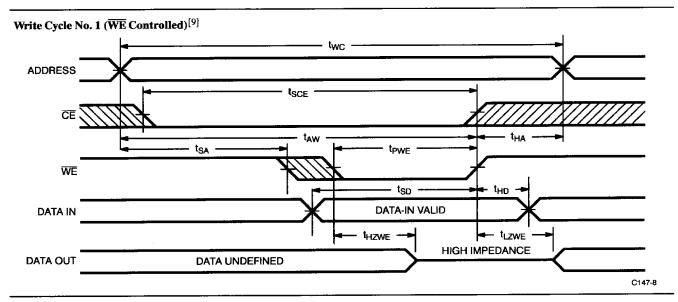
Switching Characteristics Over the Operating Range^[6]

		7C147-25		7C147-35		7C147-45		
Parameters	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
READ CYCL	Æ							
t _{RC}	Read Cycle Time	25		35		45		ns
t _{AA}	Address to Data Valid		25		35		45	ns
t _{OHA}	Data Hold from Address Change	3		5		5		ns
t _{ACE}	CE LOW to Data Valid		25		35		45	ns
tLZCE	CE LOW to Low Z ^[7]	5		5		5		ns
tHZCE	CE HIGH to High Z ^[7,8]		20		30		30	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		20		20		20	ns
WRITE CYC	TE[8]	<u> </u>						
t _{WC}	Write Cycle Time	25		35		45		ns
t _{SCE}	CE LOW to Write End	25		35		45		ns
t _{AW}	Address Set-Up to Write End	25		35		45		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	15		20		25		ns
t_{SD}	Data Set-Up to Write End	15	<u> </u>	20	1	25		ns
t _{HD}	Data Hold from Write End	0		10		10		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[7,8]		15		20		25	ns


Notes:

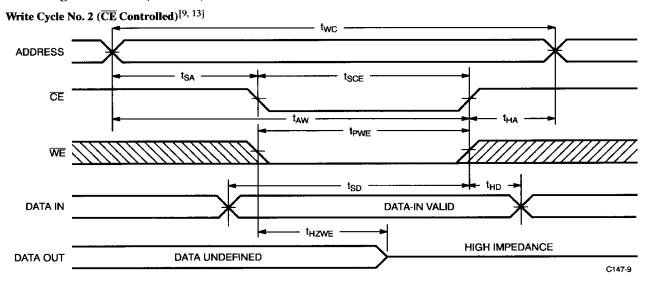
- 6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices.
- t_{HZCE} and t_{HZWE} are tested with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
- 9. The internal write time of the memory is defined by the overlap of \(\overline{\text{CE}}\) LOW and \(\overline{\text{WE}}\) LOW. Both signals must be LOW to intiate a write and either signal can teminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.




Switching Waveforms

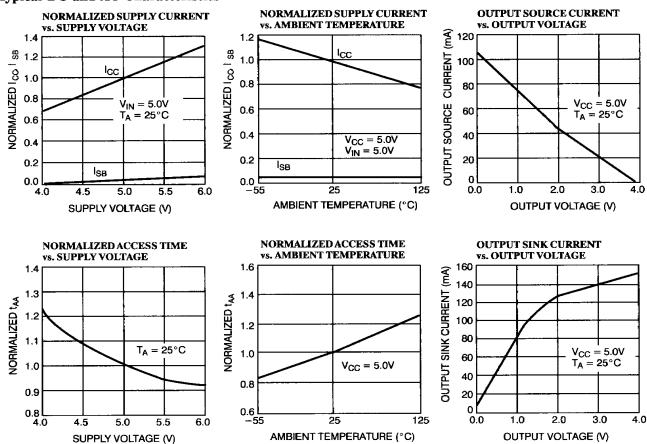
Read Cycle No. 1[10, 11]

Read Cycle No. $2^{[10, 12]}$


Notes: 10. WE is HIGH for read cycle.

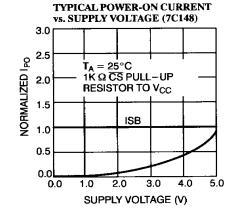
11. Device is continuously selected, $\overline{CE} = V_{IL}$.

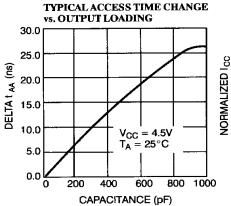
12. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

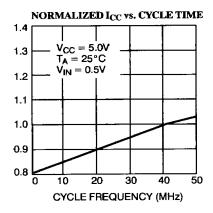

Switching Waveforms (continued)

Notes:

13. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.


Typical DC and AC Characteristics




2-146

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
25	CY7C147-25PC	P3	Commercial
	CY7C147-25DC	D4]
	CY7C147-25LC	L50	
35	CY7C147-35PC	P3	Commercial
	CY7C147-35DC	D4	
	CY7C147-35LC	L50	
	CY7C147-35DMB	D4	Military
	CY7C147-35KMB	K 70]
	CY7C147-35LMB	L50	1
45	CY7C147-45PC	P3	Commercial
	CY7C147-45DC	D4	1
	CY7C147-45LC	L50	1
	CY7C147-45DMB	D4	Military
	CY7C147-45KMB	K 70]
	CY7C147-45LMB	L50	

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V _{OH}	1,2,3
V_{OL}	1,2,3
$V_{ m IH}$	1,2,3
V _{IL} Max.	1,2,3
I_{IX}	1,2,3
I_{OZ}	1,2,3
I_{CC}	1,2,3
I_{SB}	1,2,3

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t _{RC}	7,8,9,10,11
t _{AA}	7,8,9,10,11
t _{OHA}	7,8,9,10,11
t _{ACE}	7,8,9,10,11
WRITE CYCLE	
t _{WC}	7,8,9,10,11
t _{SCE}	7,8,9,10,11
t _{AW}	7,8,9,10,11
t _{HA}	7,8,9,10,11
t _{SA}	7,8,9,10,11
t _{PWE}	7,8,9,10,11
t _{SD}	7,8,9,10,11
t _{HD}	7,8,9,10,11

Document #: 38-00030-B